Variance Swaps

MS&E 345 Advanced Topics in Financial Engineering

Winter '09

Gerry Tsoukalas [gts@stanford.edu] Xianyi Zeng [rhodusz@stanford.edu]

Part I: Background

- Introduction to Variance Swaps
- Pricing Intuition
- The Variance Swap Market

Part II: Replication and Pricing

Part I: Background

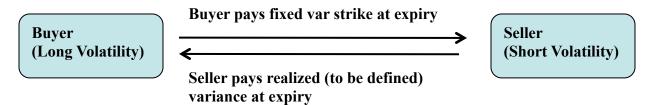
- >>> Introduction to Variance Swaps
 - Pricing Intuition
 - The Variance Swap Market

Part II: Replication and Pricing

Introduction to Variance Swaps

• The Product

Offers direct and "simple" exposure to the volatility of an underlying asset



- Liquid across major equity indices and some large-cap stocks
- Used for various purposes:
 - Take a volatility view (Long or Short)
 - Diversify returns
 - Trade forward volatility, correlation, dispersion
- Replication:
 - Exact replication by an infinite continuous portfolio of vanilla options
 - In practice, hedged with a "small" number of options
 - Pricing reflects volatilities across the entire skew surface
 - In practice, VSwaps trade at a slight premium to ATM implied volatilities

Introduction to Variance Swaps

- The VSwap contract
 - OTC product: Two parties agree to enter into a swap with maturity T
 - The buyer of the swap receives realized variance, σ^2 , over the life of the contract at date T
 - The seller of the swap receives a fixed pre-determined strike K² at date T. The strike reflects market estimates of future volatility (implied volatility) at time t.

$$payoff_{(long)} = h(T) = N_{Var}(\sigma^2 - K^2) = \frac{N_{Vega}}{2K}(\sigma^2 - K^2)$$

 $N_{\rm Vega}$ represents the average profit/loss for a 1% (1 vega) change in volatility

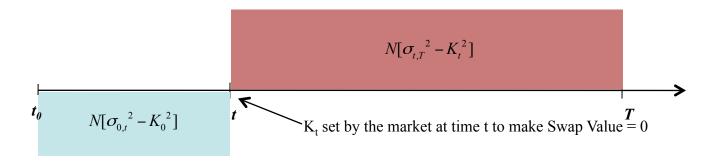
- Measuring realized variance and volatility
 - Issues
 - Frequency of sampling: hourly? Daily? Intraday? Weekly? Time-period?
 - Actual method used: "RMS" (Root-Mean-Squared) = ignore mean
 - Simplifies calculation (a little), error made not too big, mean is typically around zero

$$\sigma^2 = \frac{252}{N} \sum_{i=1}^{N} \left[\ln(\frac{S_i}{S_{i-1}}) \right]^2$$
 where S_i is the price of the underlying at closing and N is the number of trading days during the length of the contract.

VSwap Mark-to-Market

- Variance is additive, which simplifies the MTM, we need:
 - Realized variance since the start of the swap
 - Implied variance (new Strike) from t until expiry T
 - Additivity equation: $(T - t_0) \operatorname{var}_{t_0 \to T}(S) = (t - t_0) \operatorname{var}_{t_0 \to t}(S) + (T - t) \operatorname{var}_{t \to T}(S) \Rightarrow \begin{cases} t_0 = 0 \\ \operatorname{var}_{t_0 \to T}(S) = \sigma_{0,T}^{-2} \end{cases} \Rightarrow \begin{cases} \sigma_{0,T}^{-2} = \lambda \sigma_{0,t}^{-2} + (1 - \lambda) \sigma_{t,T}^{-2} \\ \operatorname{var}_{t_0 \to t}(S) = \sigma_{0,t}^{-2} \end{cases}$ $\operatorname{var}_{t_0 \to t}(S) = \sigma_{0,t}^{-2}$ $\operatorname{var}_{t \to T}(S) = \sigma_{t,T}^{-2}$

$$Payoff(0,T) = N[\sigma_{0,T}^{2} - K_{0}^{2}] \Longrightarrow PV(t,T) = Ne^{-r(T-t)} \{ [\sigma_{t}^{2} - K_{0}^{2}]\lambda + [K_{t}^{2} - K_{0}^{2}](1-\lambda) \}$$



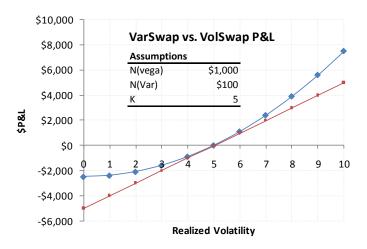
Part I: Background

- Introduction to Variance Swaps
- >>>
- Pricing Intuition
- The Variance Swap Market

Part II: Replication and Pricing

Pricing Intuition

- The strike K, reflects the market's best guess of future volatility <u>but</u> with a premium (actually 2 premiums)
 - Convexity premium:
 - Variance swaps are convex in volatility: The gain from an increase in volatility is greater in absolute terms than the loss from the corresponding decrease
 - To take this into account, traders charge a premium to the ATM implied volatilities



		P&L			
Real. Vol	Real. Var	VarSwap	VolSwap		
0	0	-\$2,500	-\$5,000		
1	1	-\$2,400	-\$4,000		
2	4	-\$2,100	-\$3,000		
3	9	-\$1,600	-\$2,000		
4	16	-\$900	-\$1,000		
5	25	\$0	\$0		
6	36	\$1,100	\$1,000		
7	49	\$2,400	\$2,000		
8	64	\$3,900	\$3,000		
9	81	\$5,600	\$4,000		
10	100	\$7,500	\$5,000		

- Volatility risk premium (replication premium):
 - Theoretical price calculated from prices of replicating options, so the strike K can be thought of a weighted average of vanilla option implied vols. In the presence of skew and skew convexity, avg. vols will usually be above ATM vol, making the VSwap more expensive.
- VSwaps usually trade 1-2 vegas above ATM volatility

Part I: Background

- Introduction to Variance Swaps
- Pricing Intuition

>>>

The Variance Swap Market

Part II: Replication and Pricing

¹⁰ The Variance Swap Market

- First mentioned in the 1990's took off early 2000's
 - Mostly on index underlyings, EURO STOXX 50, S&P 500
 - Also on large-cap constituents allowing for dispersion trades
- Steady growth over past few years
 - Marketed as an alternative to options without path dependence issues and transaction costs resulting from delta-hedging
- Significant increases in liquidity
 - Variance swaps moved from exotics desks into flow-trading
 - Bid/offer spreads on indices at around 0.4 vegas, 1-2 on single-names
 - Liquid maturities ranging from 3 months to 2 years
 - VIX represents theoretical prices of VSwaps on S&P
 - Around 30% of the vega traded in the market is done so via Vswaps
- Less liquidity in other assets (bonds, fx, commodities)
 - In theory, this should change

Part I: Background

Part II: Replicating and Pricing

- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- The Fair Strike
- Numerical Application

Part I: Background

Part II: Replicating and Pricing

- >>>
- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- The Fair Strike
- Numerical Application

Delta Hedging in Black-Scholes

• P/L over small price movement, in terms of gamma

$$\begin{split} & [C(S+dS) - C_S(S)(S+dS)] - [C(S) - C_S(S)S] \\ = & C_S dS + \frac{1}{2} C_{SS} dS^2 - C_S dS + O(dS^3) \\ \approx & \frac{1}{2} C_{SS} dS^2 = \frac{1}{2} \Gamma dS^2 \end{split}$$

Dollar gamma

Dollar gamma measure P/L in terms of return

$$\$\Gamma = \Gamma S^2 / 100$$

- P/L in terms of dollar gamma: connection to return

$$P/L = \frac{1}{2} \Gamma dS^2 = \Gamma S^2 \left(\frac{dS}{S}\right)^2 = 50 \$ \Gamma R^2$$

Delta Hedging in Black-Scholes

- There ain't no such thing as a free lunch
 - At the first glance, delta hedge always give positive P/L
 - We have only considered asset price's movement, omitting the theta

$$\theta = C_t = -\frac{1}{2}\Gamma S^2 \sigma^2$$
 (We assume zero risk free rate)
- P/L with theta

$$P/L = \frac{1}{2}\Gamma dS^{2} + \theta dt = \frac{1}{2}\Gamma S^{2}[R^{2} - \sigma^{2}dt] = 50\$\Gamma[R^{2} - \sigma^{2}dt]$$

- Realised volatility
 - What is return: $1+R=(S+dS)/S=S_{dt}/S_0$
 - What is realised volatility: (assume dt is 1 day)

$$\sigma_{real}^2 = 252[\ln(S_{dt}/S_0)]^2 = 252[\ln(1+R)]^2 \approx 252R^2$$

$$R^2 = \sigma_{real}^2 dt \implies P/L = 50\$\Gamma dt (\sigma_{real}^2 - \sigma^2)$$

15 Delta Hedging v.s. Variance Swap

Delta hedging and variance swap are similar

- If realised volatility is higher than implied volatility, delta hedging gains. Otherwise, delta hedging loses money.
- If realised volatility is higher than the strike, variance swap gains. Otherwise, variance swap loses money.

Delta hedging and variance swap are different

- Delta hedging
 - For high dollar gamma (asset price close to strike), the option has high exposure to spread between implied and realised volatilities.
 - For low dollar gamma (asset price far away from the strike), the option has little exposure to volatilities.
 - Such exposure to volatility is path dependent.
- Variance swap
 - Whatever the price the underlying asset has, variance swap has constant exposure to the spread between realised and strike volatilities.
 - Such exposure to volatility is path independent

Part I: Background

Part II: Replicating and Pricing

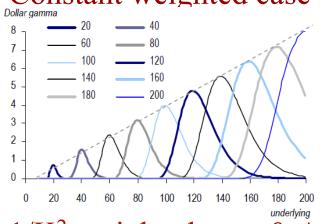
- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- The Fair Strike
- Numerical Application

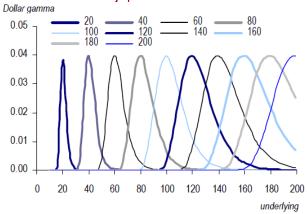
17 Replicating a Variance Swap

- General idea of replicating variance swap
 - const × $(\sigma_{real}^2 \sigma_{Strike}^2)$ - P/L of variance swap:
 - variable × $(\sigma_{real}^2 \sigma_{impl}^2)$ - P/L of delta hedging:
 - Replicating: choose proper weights of options, to achieve constant gamma.
- A mathematical point of view
 - What price function has constant dollar gamma
 - Suppose the price is C(S):
 - Gamma is: $\Gamma = C_{SS}$
 - Dollar gamma is: $S \Gamma = \frac{\Gamma S^2}{100} = \frac{\Gamma S}{100} = \frac{\Gamma S}{$
- Payoff of the constant dollar gamma porfolio at T:

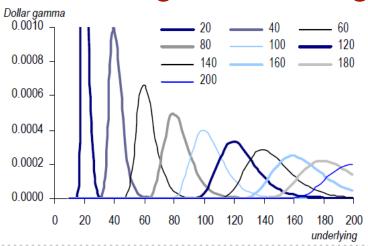
¹⁸ Replicating a Variance Swap

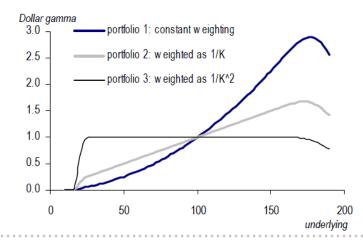
Constant weighted case v.s. 1/K-weighted case





1/K²-weighted case & Aggregate dollar gamma





Replicating a Variance Swap

• Use payoffs of vanilla options to construct such payoff:

$$\int_{0}^{S_{0}} \frac{(K - S_{T})^{+}}{K^{2}} dK + \int_{S_{0}}^{\infty} \frac{(S_{T} - K)^{+}}{K^{2}} dK = \int_{S_{0}}^{S_{T}} \frac{S_{T} - K}{K^{2}} dK$$

$$= -\ln(S_{T}) - \frac{1}{S_{0}} S_{T} + \ln(S_{0}) - 1$$

Conclusion:

- We can construct a portfolio of calls and puts initially, weighted as 1/ strike-squred, and such portfolio has constant dollar gamma
- This is a static portfolio, no dynamic trading of options is required.
- It is not commonly used in practice. Why?

Replicating a Variance Swap

- Other possibilities to construct constant dollar gamma portfolio
 - Use a single vanilla option, buy or sell over time, to keep constant dollar gamma.
 - Dynamic trading is needed
 - The position could end up wih enormous amounts of the option.
 - Start with an ATM option, and on each re-hedging step, either sell or hold the previous option, and buy an amound of new ATM to achieve constant dollar gamma
 - Still, dynamic trading of options is needed
 - However, such portfolios are actually used in practice
- Drawbacks of theoretical portforlio
 - Traded strikes are not continuous
 - Lack of liquidity in OTM strikes, especially for puts
- We just use the theoretical model for a fair price

Part I: Background

Part II: Replicating and Pricing

- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- >>>
- The Fair Strike
- Numerical Application

Derive the Strike

• Ito's formula

For arbitrary smooth f(S)

$$f(S_T) - f(S_0) = \int_0^T f'(S_t) dS_t + \int_0^T \frac{1}{2} S_t^2 f''(S_t) \sigma_t^2 dt$$

Assume

$$f(S_t) = \frac{2}{T} \left[\ln(\frac{S_0}{S_t}) + \frac{S_t}{S_0} - 1 \right] \Rightarrow f''(S_t) = \frac{2}{TS_t^2}$$

– Average realised variance:

$$\frac{1}{T} \int_0^T \sigma_t^2 dt = \frac{2}{T} \left[\ln(\frac{S_0}{S_T}) + \frac{S_T}{S_0} - 1 \right] - \frac{2}{T} \int_0^T \left[\frac{1}{S_0} - \frac{1}{S_t} \right] dS_T$$

$$= \frac{2}{T} \int_0^{S_0} \frac{\left(K - S_T\right)^+}{K^2} \, dK + \frac{2}{T} \int_{S_0}^{\infty} \frac{\left(S_T - K\right)^+}{K^2} \, dK - \frac{2}{T} \int_0^T [\frac{1}{S_0} - \frac{1}{S_t}] dS_T$$

Derive the Strike

• Fair strike:

$$K_{VAR}^{2} = \frac{2e^{rT}}{T} \left[\int_{0}^{S_{0}} \frac{P_{0}(K)}{K^{2}} dK + \int_{S_{0}}^{\infty} \frac{C_{0}(K)}{K^{2}} dK \right]$$

- The last term in realised volatilities
 - It is equivalent as holding $1/S_t$ - $1/S_0$ units of underlying asset at time t.
 - Initially, no underlying asset is needed.
- Strike calculation in practice
 - Use discrete strike values

$$K_{VAR}^{2} = \frac{2e^{rT}}{T} \left[\sum_{K_{i} \leq S_{0}} \frac{\Delta K_{i}}{K_{i}^{2}} P_{0}(K_{i}) + \sum_{K_{i} > S_{0}} \frac{\Delta K_{i}}{K_{i}^{2}} C_{0}(K_{i}) \right] - \frac{1}{T} \left(\frac{S_{0}}{K_{0}} - 1 \right)^{2}$$

Part I: Background

Part II: Replicating and Pricing

- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- The Fair Strike

>>> • Numerical Application

A Real Life Application

●Underlying asset price: \$2,935.02

● Chosen strikes: equally apart, every 5% steps

● Calculated strike for variance swap: 16.625%

● Variance notional: 10,000

Floating leg: €2,701,397.53

Fixed leg: €2,701,355.88

Present value: ≈ 0

Weight = 5% Strike% ²	Under- lying	Call / Put	Forward	Strike	Strike (%Forward)	Maturity	Implied Volatility	Price (%Notional)
20.00%	SX5E	P	2,935.02	1,467.51	50%	1Y	27.6%	0.04%
16.53%	SX5E	P	2,935.02	1,614.26	55%	1Y	26.4%	0.08%
13.89%	SX5E	P	2,935.02	1,761.01	60%	1Y	25.2%	0.15%
11.83%	SX5E	P	2,935.02	1,907.76	65%	1Y	24.0%	0.27%
10.20%	SX5E	P	2,935.02	2,054.51	70%	1Y	22.7%	0.46%
8.89%	SX5E	P	2,935.02	2,201.26	75%	1Y	21.4%	0.75%
7.81%	SX5E	P	2,935.02	2,348.01	80%	1Y	20.0%	1.17%
6.92%	SX5E	P	2,935.02	2,494.76	85%	1Y	18.7%	1.79%
6.17%	SX5E	P	2,935.02	2,641.51	90%	1Y	17.3%	2.67%
5.54%	SX5E	P	2,935.02	2,788.26	95%	1Y	16.0%	3.94%
2.50%	SX5E	P	2,935.02	2,935.02	100%	1Y	14.8%	5.74%
2.50%	SX5E	С	2,935.02	2,935.02	100%	1Y	14.8%	5.74%
4.54%	SX5E	С	2,935.02	3,081.77	105%	1Y	13.7%	3.37%
4.13%	SX5E	С	2,935.02	3,228.52	110%	1Y	12.9%	1.76%
3.78%	SX5E	С	2,935.02	3,375.27	115%	1Y	12.2%	0.81%
3.47%	SX5E	С	2,935.02	3,522.02	120%	1Y	11.9%	0.35%
3.20%	SX5E	С	2,935.02	3,668.77	125%	1Y	11.8%	0.15%
2.96%	SX5E	С	2,935.02	3,815.52	130%	1Y	11.9%	0.06%
2.74%	SX5E	С	2,935.02	3,962.27	135%	1Y	12.1%	0.03%
2.55%	SX5E	С	2,935.02	4,109.02	140%	1Y	12.5%	0.02%
2.38%	SX5E	С	2,935.02	4,255.77	145%	1Y	12.9%	0.01%
2.22%	SX5E	С	2,935.02	4,402.52	150%	1Y	13.4%	0.01%

Part I: Background

Part II: Replicating and Pricing

- >>>
- Uses of Variance Swaps
- Rolling Short Variance

²⁷ Uses of Variance Swaps

- Express local or macro volatility view
 - Buy Swap on Index ahead of recession, sell vol into a spike
 - Better than straddles because not affected by trending underlying, no path dependence, no active management of delta-hedging needed
- Hedging purposes
 - Volatility tends to go up in a slumping market
- Rolling short variance
 - Strategy consists of selling short-dated index variance
 - This is to try and take advantage of the volatility risk premium described earlier
- Diversification
- Index Variance spreads (Vol on S&P 500 vs. EuroStoxx)
- Single-Stock volatility pairs trading
- Correlation and dispersion trading (long index, short basket)
- And many many other....

Part I: Background

Part II: Replicating and Pricing

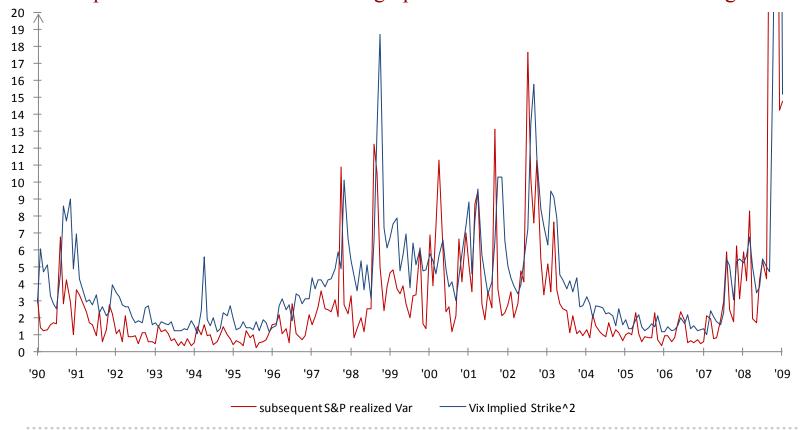
Part III: Variance Swap Strategies

Uses of Variance Swaps

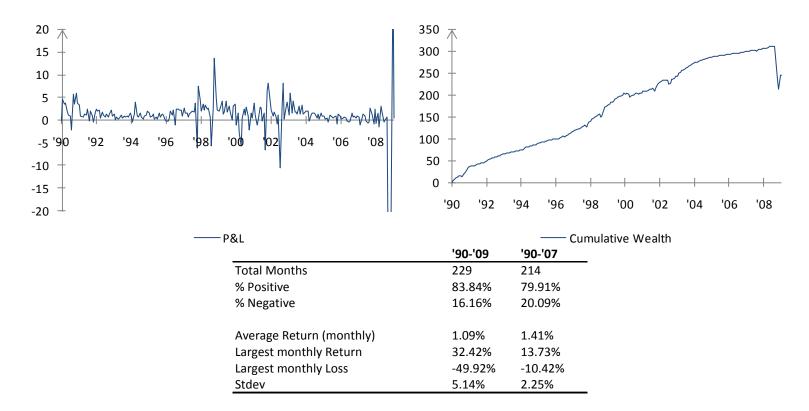
Rolling Short Variance

Rolling Short Variance

- Idea: Take advantage of premiums embedded in Vswap
 - Volatility Risk Premium and Convexity Premium
- Short N=\$1 Variance Swap at start of each month
- Implied strike taken from VIX in graph below => Actual P&L will be higher



Rolling Short Variance



- Note: this example is a conservative estimate
 - Using VIX bid-side instead of actual VS Strikes
 - Not reinvesting gains / accounting losses for tax purposes

End of Presentation

• Questions?

