2D Imaging in Random Media with Active Sensor Array Paper Presentation: "Imaging and Time Reversal in Random Media"

Xianyi Zeng

rhodusz@stanford.edu

iCME, Stanford University

Math 221 Presentation May 18 2010

2 Active Sensor Array: Cross-Range Resolution

Problem Setup Modelling and SVD DOA Estimation

3 Active Sensor Array: Range Resolution

Arrival Time Analysis DOA with Arrival Times Estimating Arrival Times

④ Subspace Arrival Time Analysis (SAT)

2 Active Sensor Array: Cross-Range Resolution

Problem Setup Modelling and SVD DOA Estimation

Octive Sensor Array: Range Resolution Arrival Time Analysis DOA with Arrival Times Estimating Arrival Times

Output Subspace Arrival Time Analysis (SAT)

2 Active Sensor Array: Cross-Range Resolution

Problem Setup Modelling and SVD DOA Estimation

3 Active Sensor Array: Range Resolution

Arrival Time Analysis DOA with Arrival Times Estimating Arrival Times

Output Subspace Arrival Time Analysis (SAT)

2 Active Sensor Array: Cross-Range Resolution

Problem Setup Modelling and SVD DOA Estimation

3 Active Sensor Array: Range Resolution

Arrival Time Analysis DOA with Arrival Times Estimating Arrival Times

4 Subspace Arrival Time Analysis (SAT)

Wave equations and Green functions in random media:

• Green function in time domain

$$\frac{1}{c(\mathbf{x})^2}G_{tt}(\mathbf{x}_0, \mathbf{x}, t) - \Delta_x G(\mathbf{x}_0, \mathbf{x}, t) = \delta(t)\delta(\mathbf{x}_0 - \mathbf{x})$$

• Green function in frequence domain

$$\left(\frac{\omega}{c(\mathbf{x})}\right)^2 \hat{G}(\mathbf{x}_0, \mathbf{x}, \omega) + \Delta_x \hat{G}(\mathbf{x}_0, \mathbf{x}, \omega) = -\delta(\mathbf{x}_0 - \mathbf{x})$$

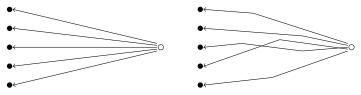
• In homogeneous medium, $c(\mathbf{x}) \equiv c_0$, we have explicit expression for Green function:

$$\hat{G}_{0}(\mathbf{x}, \mathbf{y}, \omega) = rac{\exp\left(ik|\mathbf{x} - \mathbf{y}|\right)}{4\pi|\mathbf{x} - \mathbf{y}|}$$

here: $k = \omega/c_0$ is the wave number.

Super-Resolution and Self-Averaging Wave Propagation in Random Medium

In inhomogeneous medium, G(x, y, ω) is not known, and can be very different from G₀(x, u, ω):



Homogeneous Medium

Inhomogeneous Medium

 The illuminating Green vector in homogeneous medium for a source y and N sensors x_p, p = 1,..., N is known:

$$\hat{\mathbf{g}}_0(\mathbf{y},\omega) = [\hat{G}_0(\mathbf{x}_1,\mathbf{y},\omega),\ldots,\hat{G}_0(\mathbf{x}_N,\mathbf{y},\omega)]^T$$

• The illuminating Green vector in inhomogeneous medium is not known:

$$\hat{\mathbf{g}}(\mathbf{y},\omega) = [\hat{G}(\mathbf{x}_1,\mathbf{y},\omega),\ldots,\hat{G}(\mathbf{x}_N,\mathbf{y},\omega)]^T$$

Xianyi Zeng (Stanford University)

Time reversal in random media:

For simplicity, consider a passive sensor array given by x_p, 1 ≤ p ≤ N, and a source point y in random medium, emanating a short pulse f(t). The recorded signal at x_p is:

$$\hat{\psi}(\mathbf{x}_p,\omega) = \hat{f}(\omega)\hat{G}(\mathbf{x}_p,\mathbf{y},\omega)$$

The physical time-reversed back-propogated field at a search point y^s is:

$$\hat{\Gamma}^{TR}(\mathbf{y}^{s}, \mathbf{y}, \omega) = \sum_{p=1}^{N} \overline{\hat{\psi}(\mathbf{x}_{p}, \omega)} \hat{G}(\mathbf{x}_{p}, \mathbf{y}^{s}, \omega)$$
$$= \overline{\hat{f}(\omega)} \sum_{p=1}^{N} \hat{G}(\mathbf{x}_{p}, \mathbf{y}^{s}, \omega) \overline{\hat{G}(\mathbf{x}_{p}, \mathbf{y}, \omega)}$$

• $\Gamma^{TR}(\mathbf{y}^s, \mathbf{y}, t)$ is large when \mathbf{y}^s is close to \mathbf{y} , and near t = 0.

Super-Resolution and Self-Averaging Time Reversal and Imaging

Self-averaging property of $\Gamma^{TR}(\mathbf{y}^s, \mathbf{y}, t)$:

- Self-averaging: the recorded, time-reversed signals are sent back into the same random medium, hence phases of random Green functions *Ĝ*(**x**_p, **y**, ω) and *Ĝ*(**x**_p, **y**^s, ω) are approximately cancelled for each frequency ω.
- Because of the self-averaging property, $\hat{\Gamma}^{TR}$ for different frequencies are statistically decorrelated:

$$E[\hat{\mathsf{\Gamma}}^{TR}(\mathbf{y}^{s},\mathbf{y},\omega_{1})\hat{\mathsf{\Gamma}}^{TR}(\mathbf{y}^{s},\mathbf{y},\omega_{2})] = E[\hat{\mathsf{\Gamma}}^{TR}(\mathbf{y}^{s},\mathbf{y},\omega_{1})]E[\hat{\mathsf{\Gamma}}^{TR}(\mathbf{y}^{s},\mathbf{y},\omega_{2})]$$

for $\omega_1 \neq \omega_2$.

• Consequently, averaging over frequncies is like averaging over realizations of the random medium (for broad-band pulse):

$$\Gamma^{TR}(\mathbf{y}^s, \mathbf{y}, t) \approx E[\Gamma^{TR}(\mathbf{y}^s, \mathbf{y}, t)]$$

Super-resolution property of $\Gamma^{TR}(\mathbf{y}^s, \mathbf{y}, t)$:

- Super-resolution means, that for time reversal in random media, the cross-range resolution is better that the one in homogenous media, $\lambda L/a.$
- Super-resolution is a consequence of self-averaging property, that if the search point y^s is displaced from y by an amount (ξ, 0), it can be calculated:

$$E[\overline{\hat{G}(\mathbf{x}_{p},\mathbf{y},\omega)}\hat{G}(\mathbf{x}_{p},\mathbf{y}^{s},\omega)] \approx \overline{\hat{G}_{0}(\mathbf{x}_{p},\mathbf{y},\omega)}\hat{G}_{0}(\mathbf{x}_{p},\mathbf{y}^{s},\omega)\exp\left(-\frac{k^{2}\xi^{2}a_{e}^{2}}{2L^{2}}\right)$$

here $a_e = \sqrt{DL^3}$, where D depends only on the statistics of the random fluctuations of $c(\mathbf{x})$.

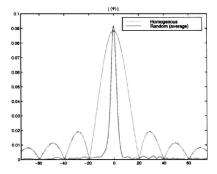
• The multiplier is independent of **x**_p:

$$\hat{\mathsf{\Gamma}}^{TR}(\mathbf{y}^{s},\mathbf{y},\omega) = \hat{\mathsf{\Gamma}}_{0}^{TR}(\mathbf{y}^{s},\mathbf{y},\omega) \exp\left(-\frac{k^{2}\xi^{2}a_{e}^{2}}{2L^{2}}\right)$$

- For search point off the target, fix $\xi > 0$, the back-propagated field in random medium has smaller amptitude than in homogeneous medium.
- At the target, $\xi \approx 0$, the back-propagated field in random medium has almost the same strength as in homogeneous medium.
- Super-resolution is obtained.

Super-Resolution and Self-Averaging

Time Reversal and Imaging



L = 1000m, a = 50m, average over 428 realizations for inhomogeneous case

Imaging in random media:

• For imaging, the recorded signals are back-propagated (analytically or numerically) in homogeneous medium, i.e. the imaging function is given by:

$$\begin{split} \hat{F}^{IM}(\mathbf{y}^s,\mathbf{y},\omega) &= \sum_{p=1}^N \overline{\hat{\psi}(\mathbf{x}_p,\omega)} \hat{G}_0(\mathbf{x}_p,\mathbf{y}^s,\omega) \ &= \overline{\hat{f}(\omega)} \sum_{p=1}^N \hat{G}_0(\mathbf{x}_p,\mathbf{y}^s,\omega) \overline{\hat{G}(\mathbf{x}_p,\mathbf{y},\omega)} \end{split}$$

• The deterministic Green function has no random phase, hence the random phases from the complex conjugate of random Green functions stays in imaging function $\hat{\Gamma}^{IM}$.

Super-Resolution and Self-Averaging Time Reversal and Imaging

• $\hat{\Gamma}^{IM}$ is **not** self-averaging.

- We can not derive super-resolution property for imaging in random media, as we did for time reversal.
- Actually, Γ^{IM} gives wider cross-range resolution than in homogeneous media.

- $\hat{\Gamma}^{IM}$ is **not** self-averaging.
- We can not derive super-resolution property for imaging in random media, as we did for time reversal.
- Actually, Γ^{IM} gives wider cross-range resolution than in homogeneous media.

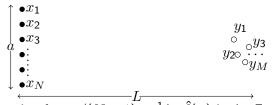
- $\hat{\Gamma}^{IM}$ is **not** self-averaging.
- We can not derive super-resolution property for imaging in random media, as we did for time reversal.
- Actually, Γ^{IM} gives wider cross-range resolution than in homogeneous media.

Conclusions:

- For locating targets in random media, estimators with self-averaging property are favored.
- Super-resolution is expected, when self-averaging property is satisfied.
- Self-averaging can be achieved, when any random Green function always appear in pair with a approximate complex conjugate random Green function (hence some time reversals are involved).
- For random media, self-averaging estimator should be used together with broad-band pulse, in order to give stable results. (Numerical examples shown later.)

Problem setup:

• Target: to image M unknown scatterers with an active array of N transducers in 2D plane. The number of scatters, i.e. M is also unknown.



- Transducer spacing $h = a/(N-1) \approx \frac{1}{2}\lambda$; $\hat{f}(\omega)$ is the Fourier transform of probing pulse.
- The scatter y_j , j = 1, ..., M are assumed to be sufficiently far apart, and they have scattering coefficients (reflectivity) $\hat{\rho}_j(\omega)$.

- Full data is assumed to be recorded: $\hat{P}(\omega) = [\hat{P}_{pq}(\omega)]$, $1 \le p,q \le N$.
- Questions:

How many objects are there?

M = ?

2 Where are they?

$$\mathbf{y}_j = ? \ j = 1, \dots, M$$

- Full data is assumed to be recorded: $\hat{P}(\omega) = [\hat{P}_{pq}(\omega)], 1 \le p, q \le N$.
- Questions:
 - 1 How many objects are there?

M = ?

2 Where are they?

 $\mathbf{y}_j = ? \ j = 1, \dots, M$

- Full data is assumed to be recorded: $\hat{P}(\omega) = [\hat{P}_{pq}(\omega)], 1 \le p, q \le N$.
- Questions:

1 How many objects are there?

M = ?

2 Where are they?

$$\mathbf{y}_j = ? \ j = 1, \dots, M$$

Active Sensor Array: Cross-Range Resolution Modelling and SVD

Point target model for response matrix

- Let \hat{G} be the Green function for random media as before. The pulse from \mathbf{x}_q , received by scatter \mathbf{y}_j is $\hat{f}(\omega)\hat{G}(\mathbf{y}_j, \mathbf{x}_q, \omega)$. It will send back a reflected pulse: $\hat{\rho}_j(\omega)\hat{f}(\omega)\hat{G}(\mathbf{y}_j, \mathbf{x}_q, \omega)$.
- Neglecting any multiple scattering between unkown targets, the recorded signal at x_p from x_q will be:

$$\hat{\mathsf{\Pi}}_{pq}(\omega) = \hat{f}(\omega) \sum_{j=1}^{M} \hat{\rho}_{j}(\omega) \hat{G}(\mathsf{y}_{j}, \mathsf{x}_{p}, \omega) \hat{G}(\mathsf{y}_{j}, \mathsf{x}_{q}, \omega)$$

• The full response matrix $\hat{\Pi}(\omega)$ in frequency domain should be:

$$\hat{P}(\omega) \approx \hat{\Pi}(\omega) = \hat{f}(\omega) \sum_{j=1}^{M} \hat{\rho}_j(\omega) \hat{\mathbf{g}}(\mathbf{y}_j, \omega) \hat{\mathbf{g}}(\mathbf{y}_j, \omega)^T$$

Active Sensor Array: Cross-Range Resolution Modelling and SVD

 Here ĝ(y_j, ω) is the illuminating Green vector onto the array from y_j in random media:

$$\hat{\mathbf{g}}(\mathbf{y}_j, \omega) = \begin{bmatrix} \hat{G}(\mathbf{y}_j, \mathbf{x}_1, \omega) \\ \hat{G}(\mathbf{y}_j, \mathbf{x}_2, \omega) \\ \vdots \\ \hat{G}(\mathbf{y}_j, \mathbf{x}_N, \omega) \end{bmatrix}$$

- For any j, $\hat{\mathbf{g}}(\mathbf{y}_j, \omega)^T \hat{\mathbf{g}}(\mathbf{y}_j, \omega)$ is a rank one matrix. Hence when \mathbf{y}_j are far apart, $\hat{\Pi}(\omega)$ is a matrix with rank M.
- The rank of recorded data $\hat{P}(\omega) \approx \hat{\Pi}(\omega)$ has the rank equaling number of scatters:

$$\operatorname{rank}(\hat{P}) = M$$

First application of SVD:

• Calculate the SVD of the response matrix:

$$\hat{P}(\omega) = \hat{U}(\omega)\Sigma(\omega)\hat{V}^{H}(\omega)$$

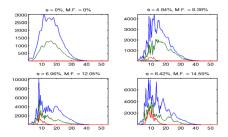
The diagonal matrix $\Sigma(\omega)$ has non-negative diagonal elements:

$$\sigma_1(\omega) \geq \sigma_2(\omega) \geq \cdots \geq \sigma_{M'}(\omega) > \sigma_{M'+1}(\omega) pprox \cdots pprox \sigma_N(\omega) pprox 0$$

- Columns of $\hat{U}(\omega)$: $\hat{U}_r(\omega)$ is the left singular vector associated with $\sigma_r(\omega)$; and it's also the eigenvector of $\hat{P}(\omega)\hat{P}(\omega)^H$ associated with the eigenvalue $\sigma_r^2(\omega)$.
- The rank of response data $\hat{P}(\omega)$ is approximately M', the rank of diagonal matrix Σ .

Active Sensor Array: Cross-Range Resolution Modelling and SVD

- We must have: $M \approx M'$, and for media with small fluctuation; M = M', for any frequency ω within bandwidth of probing pulse.
- Some examples of two targets in both homogeneous and inhomogeneous medium:



First three singular values from simulations with two targets in the medium

Xianyi Zeng (Stanford University)

Imaging in Random Media

Math 221, May 18, 2010 18 / 51

Information about singular vectors:

- Targets are far apart, thus $\hat{\mathbf{g}}(\mathbf{y}_j, \omega)$ are approximately orthogonal to each other.
- Left singular vectors $\hat{U}_r(\omega)$, $1 \le r \le M$ are calculated from SVD of $\hat{P}(\omega)$, from the modelling, they should be:

$$\begin{split} \hat{U}_r(\omega) &\approx e^{i\phi(\omega)} \frac{\hat{\mathbf{g}}(\mathbf{y}_j, \omega)}{|\hat{\mathbf{g}}(\mathbf{y}_j, \omega)|} \\ \sigma_r(\omega) &\approx |\hat{f}(\omega)| |\hat{\rho}_j(\omega)| |\hat{\mathbf{g}}(\mathbf{y}_j, \omega)|^2 \end{split}$$

Here $\phi(\omega)$ is an arbitrary phase, depending on the algorithm used to performing the SVD.

Active Sensor Array: Cross-Range Resolution DOA Estimation

Try beam-forming:

- Beam-forming takes inner product of singular vector with normalized illumination vector.
- In random media case, $\hat{\mathbf{g}}(\mathbf{y}^s, \omega)$ is unknown. Hence the known illumination vector in homogeneous medium, $\hat{\mathbf{g}}_0(\mathbf{y}^s, \omega)$ is tried:

$$\hat{U}_r^H(\omega) \frac{\hat{\mathbf{g}}_0(\mathbf{y}^s,\omega)}{|\hat{\mathbf{g}}_0(\mathbf{y}^s,\omega)|} \approx e^{i\phi(\omega)} \frac{\hat{\mathbf{g}}(\mathbf{y}_j,\omega)^H \hat{\mathbf{g}}_0(\mathbf{y}^s,\omega)}{|\hat{\mathbf{g}}(\mathbf{y}_j,\omega)||\hat{\mathbf{g}}_0(\mathbf{y}^s,\omega)|}$$

- Difficulty 1: unknown phase $\phi(\omega)$. It can be fixed by computing singular vectors using power method.
- Difficulty 2: random Green function is not compensated by a complex conjugate one which cancels the large random phases, hence not self-averaging.

Statistically stable broad-band DOA estimation:

• $\hat{P}(\omega)\hat{P}^{H}(\omega)$ is known, and it provides random Green function and complex conjugate of random Green function naturally:

$$\left[\hat{P}(\omega)\hat{P}^{H}(\omega)\right]_{pq} = \sum_{r=1}^{N} \hat{P}_{pr}(\omega)\overline{\hat{P}_{rq}(\omega)} \approx \sum_{r=1}^{N} \hat{\Pi}_{pr}(\omega)\overline{\hat{\Pi}_{rq}(\omega)}$$

- Apply MUSIC (multiple signal classification): looking for \mathbf{y}^s whose illumitating Green vector is orthogonal to null space of $\hat{P}(\omega)\hat{P}^H(\omega)$.
- Observation: if the random vector $\hat{\mathbf{g}}(\mathbf{y}^s, \omega)$ is orthogonal to the null space of $\hat{\Pi}(\omega)\hat{\Pi}^H(\omega) \approx \hat{P}(\omega)\hat{P}^H(\omega)$, then \mathbf{y}^s must coincide with one of \mathbf{y}_j , for some $1 \leq j \leq M$.

• We cannot project $\hat{\mathbf{g}}(\mathbf{y}^s, \omega)$, since it is unknown; instead, the deterministic illuminating vector $\hat{\mathbf{g}}_0(\mathbf{y}^s, \omega)$ is projected to the null space of $\hat{P}(\omega)\hat{P}^H(\omega)$:

$$\mathcal{P}_{N}\hat{\mathbf{g}}_{0}(\mathbf{y}^{s},\omega) = \sum_{r=1}^{M} \left[\hat{U}_{r}^{H}(\omega)\hat{\mathbf{g}}_{0}(\mathbf{y}^{s},\omega) \right] \hat{U}_{r}(\omega) - \hat{\mathbf{g}}_{0}(\mathbf{y}^{s},\omega)$$

• If $\hat{P}(\omega) = \hat{\Pi}(\omega)$, and the random illuminating vector comes from a target \mathbf{y}_{i} , the projection nearly zero:

$$\mathcal{P}_N \hat{\mathbf{g}}(\mathbf{y}_j, \omega) pprox \left[\hat{U}_j^H(\omega) \hat{\mathbf{g}}(\mathbf{y}_j, \omega)
ight] \hat{U}_j(\omega) - \hat{\mathbf{g}}(\mathbf{y}_j, \omega) = 0$$

22 / 51

Active Sensor Array: Cross-Range Resolution

• Normalize the projection by singular value $\sigma_j(\omega)$:

$$\hat{\mathcal{F}}^{(j)}(\mathbf{y}^s,\omega)=\sigma_j(\omega)\mathcal{P}_N \hat{\mathbf{g}}_0(\mathbf{y}^s,\omega)$$

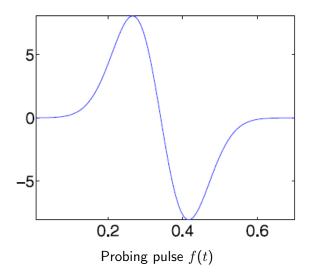
• Apply the inverse Fourier transform (up to a constant):

$$\mathcal{F}^{(j)}(\mathbf{y}^{s},t) = \int e^{-i\omega t} \sigma_{j}(\omega) \sum_{r=1}^{M} \left[\hat{U}_{r}^{H}(\omega) \hat{\mathbf{g}}_{0}(\mathbf{y}^{s},\omega) \hat{U}_{r}(\omega) d\omega \right]$$
$$- \int e^{-i\omega t} \sigma_{j}(\omega) \hat{\mathbf{g}}_{0}(\mathbf{y}^{s},\omega) d\omega$$

- The second term of $\mathcal{F}_p^{(j)}(\mathbf{y}^s, t)$ has deterministic arrival time: $t_p(\mathbf{y}^s) = |\mathbf{x}_p - \mathbf{y}^s|/c_0.$
- The second term of $\mathcal{F}_p^{(j)}(\mathbf{y}^s,t_p(\mathbf{y}^s))$ resembles $f(\mathbf{0})\approx \mathbf{0}$ up to a constant.

Xianyi Zeng (Stanford University)

Active Sensor Array: Cross-Range Resolution DOA Estimation



Xianyi Zeng (Stanford University)

Active Sensor Array: Cross-Range Resolution

• Define the sum:

$$\mathcal{G}^{(j)}(\mathbf{y}^s) = \sum_{p=1}^N \left(\mathcal{F}_p^{(j)}(\mathbf{y}^s, t_p(\mathbf{y}^s)) \right)^2 \tag{1}$$

- When $\mathbf{y}^s \approx \mathbf{y}_j$, $\mathcal{P}_N \hat{\mathbf{g}}_0(\mathbf{y}^s, \omega) \approx \mathcal{P}_N \hat{\mathbf{g}}(\mathbf{y}^s, \omega) \approx 0$, hence for any t, $\mathcal{F}^{(j)}(\mathbf{y}^s, t) \approx \mathbf{0}$, thus $\mathcal{G}^{(j)}(\mathbf{y}^s) \approx 0$.
- The objective functional defined as:

$$\mathcal{R}(\mathbf{y}^{s}) = \sum_{j=1}^{M} \frac{\min_{\mathbf{y}} \mathcal{G}^{(j)}(\mathbf{y})}{\mathcal{G}^{(j)}(\mathbf{y}^{s})}$$
(2)

should has peak values near \mathbf{y}_j , $1 \le j \le M$, since one of the denominators is nearly zero.

Active Sensor Array: Cross-Range Resolution

Claim: the estimator is self-averaging:

- This can be illustrated both mathematically and physically for one target case (M = 1).
- When there is only one target:

$$\mathcal{F}(\mathbf{y}^{s},t) = \mathcal{B}(\mathbf{y}^{s},t) - \mathcal{A}(\mathbf{y}^{s},t)$$

with

$$\hat{\mathcal{A}}(\mathbf{y}^{s},\omega) = |\hat{f}(\omega)||\hat{\rho}(\omega)|\hat{\mathbf{g}}_{0}(\mathbf{y}^{s},\omega)\sum_{p=1}^{N}\hat{G}(\mathbf{y}_{1},\mathbf{x}_{p},\omega)\overline{\hat{G}(\mathbf{y}_{1},\mathbf{x}_{p},\omega)}$$

$$\hat{\mathcal{B}}(\mathbf{y}^s,\omega) = |\hat{f}(\omega)||\hat{
ho}(\omega)|\hat{\mathbf{g}}(\mathbf{y}_1,\omega)\sum_{p=1}^N \hat{G}_0(\mathbf{y}^s,\mathbf{x}_p,\omega)\overline{\hat{G}(\mathbf{y}_1,\mathbf{x}_p,\omega)}$$

- Clearly $\hat{\mathcal{A}}(\mathbf{y}^s, \omega)$ is self-averaging.
- The q-th component of $\hat{\mathcal{B}}(\mathbf{y})^s, \omega$ is:

$$\hat{\mathcal{B}}_q(\mathbf{y}^s,\omega) = |\hat{f}(\omega)||\hat{
ho}(\omega)|\sum_{p=1}^N \hat{G}_0(\mathbf{y}^s,\mathbf{x}_p,\omega)\hat{G}(\mathbf{y}_1,\mathbf{x}_q,\omega)\overline{\hat{G}(\mathbf{y}_1,\mathbf{x}_p,\omega)}$$

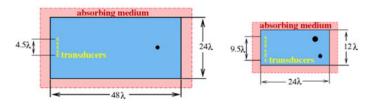
Random Green functions are compensated for approximation of its complex conjugate random Green function. Hence $\hat{\mathcal{B}}(\mathbf{y}^s, \omega)$ is also self-averaging.

• The explanations can be given physically, in terms of time-reversal.

27 / 51

Comparison between broad-band simulation and single-frequency simulation:

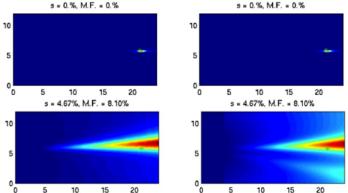
• Methods using (2) with a broad-band pulse, and a single-frequency pulse are simulated, to imaging one or two targets in homogeneous or random media:



Problem setups for one-target case and two-target case.

Active Sensor Array: Cross-Range Resolution Numerical Results

Imaging one target: •

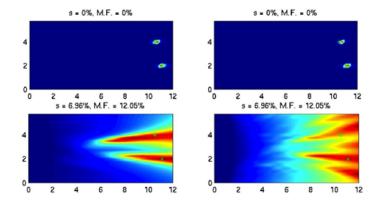


s = 0.%, M.F. = 0.%

Left: broad-band. Right: single-frequency.

Active Sensor Array: Cross-Range Resolution

Imaging two targets:



Left: broad-band. Right: single-frequency.

Imaging in Random Media

Conclusions:

- Beam-forming method is not self-averaging, hence not adviced.
- A method based on MUSIC is proposed for imaging, which is shown to be self-averaging.
- Statistical stable results can be obtained by using broad-band probing pulse.
- The DOA estimator $\mathcal{R}(\mathbf{y}^s)$ gives good cross-range resolution, but bad range resolution.

Why no range-resolution?

- Object functional (2) gives reasonable cross-range resolution; however the range resolution is not good at all.
- The reason is that we use the arrival time $t_p(\mathbf{y}^s)$ (which is the arrival time for $\mathcal{A}(\mathbf{y}^s, t)$) as a crude estimation for that of the whole function $\mathcal{F}(\mathbf{y}^s, t)$ in (1).
- Suppose $\tau_p^{(j)}$ is an estimation to the exact travel time between \mathbf{x}_p and \mathbf{y}_j in the random medium.
- Assuming one target, due to self-averaging property of $\mathcal{F}_q^{(1)}(\mathbf{y}^s, t)$, we can approximate the product $\overline{\hat{G}}(\mathbf{y}_1, \mathbf{x}_p, \omega) \hat{G}(\mathbf{y}_1, \mathbf{x}_q, \omega)$ by its expectation:

Active Sensor Array: Range Resolution Arrival Time Analysis

• Define
$$r_p = |\mathbf{x}_p - \mathbf{y}_1|$$
, $r_p^s = |\mathbf{x}_p - \mathbf{y}^s|$.

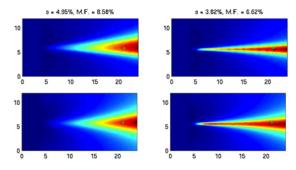
$$E[\overline{\hat{G}(\mathbf{y}_1, \mathbf{x}_p, \omega)} \hat{G}(\mathbf{y}_1, \mathbf{x}_q, \omega)] \approx \frac{e^{-\beta(\omega)|\mathbf{x}_p - \mathbf{x}_q|^2}}{(4\pi)^2 r_p r_q} e^{-i\omega(\tau_p^{(1)} - \tau_q^{(1)})}$$

• To illustrate the sensitivity of \mathcal{F} on traveling time, test simulations are setup, assuming $|\hat{\rho}(\omega)| = 1$, $\beta(\omega) \equiv \beta$, and replace $|\hat{f}(\omega)|$ with $\hat{f}(\omega)$, $\mathcal{F}_q^{(1)}(\mathbf{y}^s, t)$ is approximated by:

$$\mathcal{M}_{q}(\mathbf{y}^{s},t) = \frac{1}{(4\pi)^{2}} \sum_{p=1}^{N} \left\{ \frac{e^{-\beta |\mathbf{x}_{p}-\mathbf{x}_{q}|^{2}}}{r_{p}r_{q}r_{p}^{s}} f(t+\tau_{p}^{(1)}-\tau_{q}^{(1)}-t_{p}(\mathbf{y}^{s})) -\frac{1}{r_{p}^{2}r_{q}^{s}} f(t-t_{q}(\mathbf{y}^{s})) \right\}$$
(3)

Active Sensor Array: Range Resolution Arrival Time Analysis

• Using $\mathcal{M}_q(\mathbf{y}^s, t)$ instead of $\mathcal{F}_q^{(1)}(\mathbf{y}^s, t)$ in (2), the results are almost reproduced:



Top: using \mathcal{F} ; bottom: using \mathcal{M}

• Here estimations $\tau_p^{(1)} = \tau_{p,DG}^{(1)}$ based on diagonal of $\hat{P}(\omega)$ are used.

- We can look at (3) for answering why there is no range-resolution by using (2) with (1).
- Using $t = t_q(\mathbf{y}^s)$ only minimize the second term in $\mathcal{M}_q(\mathbf{y}^s, t)$, the first term has a differential arriving time:

$$t_q(\mathbf{y}^s) + \tau_p^{(1)} - \tau_q^{(1)} - t_p(\mathbf{y}^s)$$

- It is the difference between travel times in random medium that plays an important role in imaging, not the travel time.
- There is essentially no range information in \mathcal{M} , hence \mathcal{F} cannot give good range-resolution.

Active Sensor Array: Range Resolution DOA with Arrival Times

Improvement: choosing different t for \mathcal{B} :

• If we choose $t = \tau_q^{(1)}$ for first term in (3), the value of \mathcal{M} will depends on travel time directly:

$$\tau_q^{(1)} + \tau_p^{(1)} - \tau_q^{(1)} - t_p(\mathbf{y}^s) = \tau_p^{(1)} - t_p(\mathbf{y}^s)$$

• This suggests the estimator using:

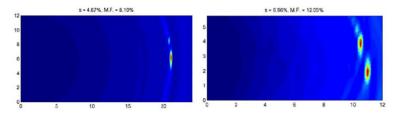
$$\mathcal{H}_{q}^{(1)}(\mathbf{y}^{s}) = \mathcal{B}_{q}^{(1)}(\mathbf{y}^{s}, \tau_{q}^{(1)}) - \mathcal{A}_{q}^{(1)}(\mathbf{y}^{s}, t_{q}(\mathbf{y}^{s}))$$
(4)
$$\mathcal{G}_{\tau}^{(1)}(\mathbf{y}^{s}) = \sum_{p=1}^{N} (\mathcal{H}_{p}^{(1)}(\mathbf{y}^{s}))^{2}$$

• Imaging is to maximizing the **DOA-AT** estimator:

$$\mathcal{R}_{\tau}(\mathbf{y}^{s}) = \frac{\min_{\mathbf{y}} \mathcal{G}_{\tau}^{(1)}(\mathbf{y})}{\mathcal{G}_{\tau}^{(1)}(\mathbf{y}^{s})}$$
(5)

Active Sensor Array: Range Resolution DOA with Arrival Times

By using an estimator τ⁽¹⁾_{p,SVD} based on SVD of P̂(ω), the imagings of previous examples:

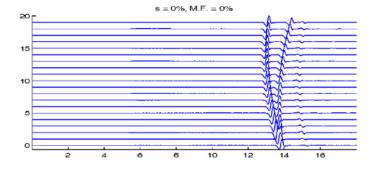


- Both cross-range and range resolutions are good.
- However, the usefulness of estimator (5) relies on a good travel time estimator.

Active Sensor Array: Range Resolution Estimating Arrival Times

Using diagonal of response matrix to estimate arrival times:

- If one keep track of P_{pp}(t), the arrival times of pulses will be twice the travel time between x_p and targets.
- The signals are clean in homogeneous medium:

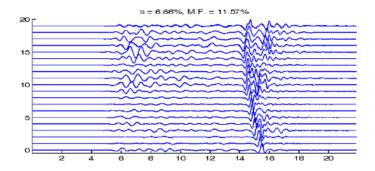


Two peaks are clearly distinguished in homogeneous medium

Xianyi Zeng (Stanford University)

Active Sensor Array: Range Resolution Estimating Arrival Times

• In random medium, the signals are not so clean:



Scattered fronts from two targets are difficult to interpret in random medium

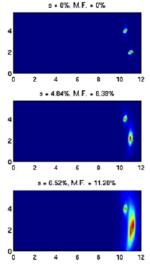
Active Sensor Array: Range Resolution Estimating Arrival Times

- Let τ^(j)_{p,DG} be the estimated arrival times for j-th scattered front.
- ATA estimator functional:

$$\mathcal{G}_{ATA}^{(j)}(\mathbf{y}^s) = \sum_{p=1}^{N} \left[\tau_{p,DG}^{(j)} - 2t_p(\mathbf{y}^s) \right]^2$$

Imaging is to maximize:

$$\mathcal{R}_{ATA}(\mathbf{y}^s) = \sum_{j=1}^{M} rac{\min_{\mathbf{y}} \mathcal{G}_{ATA}^{(j)}(\mathbf{y})}{\mathcal{G}_{ATA}^{(j)}(\mathbf{y}^s)}$$



Using singular vectors from SVD to estimate arrival times:

- The idea is that the trace of the singular vector $U_r(t)$ have only one front (arrival time) back-scattered by the target that makes the largest contribution to $\sigma_j(\omega)$.
- Assumption: contribution of some Green vector $\hat{\mathbf{g}}(\mathbf{y}_j, \omega)$ in $\hat{U}_r(\omega)$ is more significant than that of $\hat{\mathbf{g}}(\mathbf{y}_h, \omega)$ for all $h \neq j$.
- Suppose \mathbf{y}_1 is the strongest target associated with $\sigma_1(\omega)$. Difficulty: $\hat{U}_1(\omega)$ has an unknown, arbitrary, frequency dependent phase. Hence $U_1(t)$ looks incoherent in time domain.
- We can project columns of $\hat{P}(\omega)$ onto the singular vector $\hat{U}_1(\omega)$ to remove the unknown phase:

$$\hat{U}_1^{(p)}(\omega) = \begin{bmatrix} \hat{U}_1(\omega)^H \hat{P}^{(p)}(\omega) \end{bmatrix} \hat{U}_1(\omega) \quad p = 1, \dots, N$$

Active Sensor Array: Range Resolution Estimating Arrival Times

- For different x_p, the arrival times are different (introduced by different Green functions Ĝ(x_p, y₁, ω)).
- They can be synchronized and then be averaged to obtain the effective singular vector:

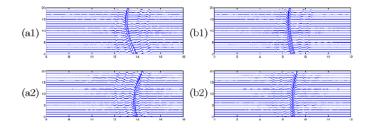
$$U_1(t) = \frac{1}{N} \sum_{p=1}^{N} U_1^{(p)}(t - \tau_p^{(1)})$$

• Here $\tau_p^{(1)}$ are estimated as the minimizer of integrated squared error:

$$\min_{\tau_p^{(1)}} \int_0^T \sum_{p=1}^N \left[U_1^{(p)}(t - \tau_p^{(1)}) - U_1(t) \right]^2 dt$$

42 / 51

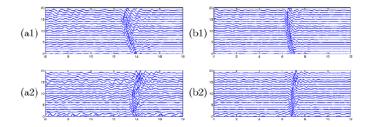
• Comparison of matrix diagonals and averaged singular vector in homogeneous medium:



• The results are essentially the same.

Active Sensor Array: Range Resolution Estimating Arrival Times

• Comparison of matrix diagonals and averaged singular vector in inhomogeneous medium:



• Much cleaner fronts are obtained by using averaged sinvular vectors.

Conclusions:

- Estimator $\mathcal{R}(\mathbf{y}^s)$ has poor range resolution because it depends on differential arrival times rather than arrival times.
- Estimator $\mathcal{R}_{\tau}(\mathbf{y}^s)$, using different times for \mathcal{B} and \mathcal{A} , can have both good cross-range resolution and reasonable range resolution. But they may be sensitive to the choice of arrival time estimator.
- One can use only the arrival time estimation to obtain good range resolution, like $\mathcal{R}_{ATA}(\mathbf{y}^s)$.
- For random medium, arrival time estimator based on SVD is better than estimator based on diagonals of response matrix.

An estimator combines both DOA analysis and ATA:

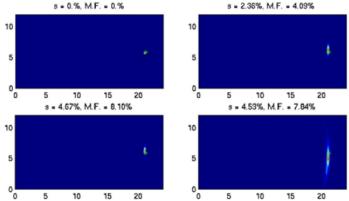
- Minimizers for $[\mathcal{F}_p^{(j)}(\mathbf{y}^s, t_p(\mathbf{y}^s))]^2$ gives good cross-range resolution.
- Minimizers for $[au_{p,SVD}^{(j)} t_p(\mathbf{y}^s)]^s$ gives good range resolution.
- SAT estimator combines the two, and define:

$$\mathcal{G}_{SAT}^{(j)}(\mathbf{y}^s) = \sum_{p=1}^{N} \left[\mathcal{F}_p^{(j)}(\mathbf{y}^s, t_p(\mathbf{y}^s)) \right]^2 \left[\tau_{p,SVD}^{(j)} - t_p(\mathbf{y}^s) \right]^2$$

• The objective functional to be maximized:

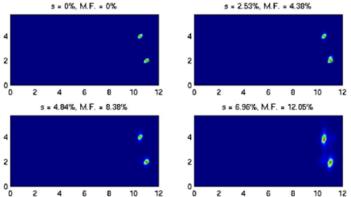
$$\mathcal{R}_{SAT}(\mathbf{y}^s) = \sum_{j=1}^{M} rac{\min_{\mathbf{y}} \mathcal{G}_{SAT}^{(j)}(\mathbf{y})}{\mathcal{G}_{SAT}^{(j)}(\mathbf{y}^s)}$$

• Imaging one target using SAT:



s = 2.36%, M.F. = 4.09%

• Imaging two targets using SAT:



s = 2.53%, M.F. = 4.38%

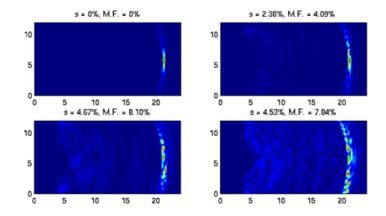
Conclusions:

- \mathcal{R}_{SAT} can give both good cross-range resolution (it is self-averaging) and good range resolution (there is arrival time estimation).
- \mathcal{R}_{SAT} is robust, in the sense that the dependency on arrival time estimator is decreased by multiplication with $\mathcal{F}_p^{(j)}$, which is independent of arrival time estimation.

Materials not covered:

- SAI (synthetic aperture imaging) estimators, which only use diagonals of $\hat{P}(\omega)$. The estimator gives good range resolution but poor cross-range resolution, since it is not self-averaging.
- Use SAI estimator to improve range resolution of $\mathcal{R}(\mathbf{y}^s)$.
- Analysis of multiple scattering between targets (complication of modelling).

SAT



Imaging using SAI estimator, an example of non-self-averaging estimators.

P. Blomgren, G. Papanicolaou, and H. Zhao.
 Super-resolution in time-reversal acoustics.
 Journal of Acoustical Society of America, 111:238–248, 2002.

L. Borcea, G. Papanicolaou, and C. Tsogka. Theory and applications of time reversal and interferometric imaging. *Inverse Problems*, 19:S139–S164, 2003.

 L. Borcea, G. Papanicolaou, C. Tsogka, and J. Berryman. Imaging and time reversal in random media. *Inverse Problems*, 18:1247–1279, 2002.

R. O. Schmidt.

Multiple emitter location and signal parameter estimation.

IEEE Transactions on Antennas and Propagation, 34:276–280, 1986.