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Super-Resolution and Self-Averaging
Wave Propagation in Random Medium

Wave equations and Green functions in random media:

• Green function in time domain

1

c(x)2
Gtt(x0, x, t)−∆xG(x0, x, t) = δ(t)δ(x0 − x)

• Green function in frequence domain(
ω

c(x)

)2

Ĝ(x0, x, ω) + ∆xĜ(x0, x, ω) = −δ(x0 − x)

• In homogeneous medium, c(x) ≡ c0, we have explicit expression for
Green function:

Ĝ0(x, y, ω) =
exp (ik|x− y|)

4π|x− y|
here: k = ω/c0 is the wave number.
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Super-Resolution and Self-Averaging
Wave Propagation in Random Medium

• In inhomogeneous medium, Ĝ(x, y, ω) is not known, and can be very
different from Ĝ0(x,u, ω):

Homogeneous Medium Inhomogeneous Medium

• The illuminating Green vector in homogeneous medium for a source y
and N sensors xp, p = 1, . . . , N is known:

ĝ0(y, ω) = [Ĝ0(x1, y, ω), . . . , Ĝ0(xN , y, ω)]T

• The illuminating Green vector in inhomogeneous medium is not
known:

ĝ(y, ω) = [Ĝ(x1, y, ω), . . . , Ĝ(xN , y, ω)]T
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Super-Resolution and Self-Averaging
Time Reversal and Imaging

Time reversal in random media:

• For simplicity, consider a passive sensor array given by xp, 1 ≤ p ≤ N ,
and a source point y in random medium, emanating a short pulse
f(t). The recorded signal at xp is:

ψ̂(xp, ω) = f̂(ω)Ĝ(xp, y, ω)

• The physical time-reversed back-propogated field at a search point ys

is:

Γ̂TR(ys, y, ω) =
N∑

p=1

ψ̂(xp, ω)Ĝ(xp, y
s, ω)

= f̂(ω)
N∑

p=1

Ĝ(xp, y
s, ω)Ĝ(xp, y, ω)

• ΓTR(ys, y, t) is large when ys is close to y, and near t = 0.
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Super-Resolution and Self-Averaging
Time Reversal and Imaging

Self-averaging property of ΓTR(ys, y, t):

• Self-averaging: the recorded, time-reversed signals are sent back into
the same random medium, hence phases of random Green functions
Ĝ(xp, y, ω) and Ĝ(xp, ys, ω) are approximately cancelled for each
frequency ω.

• Because of the self-averaging property, Γ̂TR for different frequencies
are statistically decorrelated:

E[Γ̂TR(ys, y, ω1)Γ̂
TR(ys, y, ω2)] = E[Γ̂TR(ys, y, ω1)]E[Γ̂TR(ys, y, ω2)]

for ω1 6= ω2.

• Consequently, averaging over frequncies is like averaging over
realizations of the random medium (for broad-band pulse):

ΓTR(ys, y, t) ≈ E[ΓTR(ys, y, t)]
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Super-Resolution and Self-Averaging
Time Reversal and Imaging

Super-resolution property of ΓTR(ys, y, t):

• Super-resolution means, that for time reversal in random media, the
cross-range resolution is better that the one in homogenous media,
λL/a.

• Super-resolution is a consequence of self-averaging property, that if
the search point ys is displaced from y by an amount (ξ, 0), it can be
calculated:

E[Ĝ(xp, y, ω)Ĝ(xp, y
s, ω)] ≈ Ĝ0(xp, y, ω)Ĝ0(xp, y

s, ω) exp

(
−k

2ξ2a2
e

2L2

)
here ae =

√
DL3, where D depends only on the statistics of the

random fluctuations of c(x).
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Super-Resolution and Self-Averaging
Time Reversal and Imaging

• The multiplier is independent of xp:

Γ̂TR(ys, y, ω) = Γ̂TR
0 (ys, y, ω) exp

(
−k

2ξ2a2
e

2L2

)
• For search point off the target, fix ξ > 0, the back-propagated field in

random medium has smaller amptitude than in homogeneous medium.

• At the target, ξ ≈ 0, the back-propagated field in random medium
has almost the same strength as in homogeneous medium.

• Super-resolution is obtained.
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Super-Resolution and Self-Averaging
Time Reversal and Imaging

L = 1000m, a = 50m, average over 428 realizations for inhomogeneous
case
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Super-Resolution and Self-Averaging
Time Reversal and Imaging

Imaging in random media:

• For imaging, the recorded signals are back-propagated (analytically or
numerically) in homogeneous medium, i.e. the imaging function is
given by:

Γ̂IM (ys, y, ω) =
N∑

p=1

ψ̂(xp, ω)Ĝ0(xp, y
s, ω)

= f̂(ω)
N∑

p=1

Ĝ0(xp, y
s, ω)Ĝ(xp, y, ω)

• The deterministic Green function has no random phase, hence the
random phases from the complex conjugate of random Green
functions stays in imaging function Γ̂IM .
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Super-Resolution and Self-Averaging
Time Reversal and Imaging

• Γ̂IM is not self-averaging.

• We can not derive super-resolution property for imaging in random
media, as we did for time reversal.

• Actually, ΓIM gives wider cross-range resolution than in homogeneous
media.
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Super-Resolution and Self-Averaging
Conclusions for Imaging in Random Media

Conclusions:
• For locating targets in random media, estimators with self-averaging

property are favored.

• Super-resolution is expected, when self-averaging property is satisfied.

• Self-averaging can be achieved, when any random Green function
always appear in pair with a approximate complex conjugate random
Green function (hence some time reversals are involved).

• For random media, self-averaging estimator should be used together
with broad-band pulse, in order to give stable results. (Numerical
examples shown later.)
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Active Sensor Array: Cross-Range Resolution
Problem Setup

Problem setup:

• Target: to image M unknown scatterers with an active array of N
transducers in 2D plane. The number of scatters, i.e. M is also
unknown.

xN

...

...

x3

x2

x1

y3

y1

y2
yM
· · ·a

L
• Transducer spacing h = a/(N − 1) ≈ 1

2λ; f̂(ω) is the Fourier
transform of probing pulse.

• The scatter yj , j = 1, . . . ,M are assumed to be sufficiently far apart,
and they have scattering coefficients (reflectivity) ρ̂j(ω).

Xianyi Zeng (Stanford University) Imaging in Random Media Math 221, May 18, 2010 13 / 51



Active Sensor Array: Cross-Range Resolution
Problem Setup

• Full data is assumed to be recorded: P̂ (ω) = [P̂pq(ω)], 1 ≤ p, q ≤ N .

• Questions:

1 How many objects are there?

M =?

2 Where are they?
yj =? j = 1, . . . ,M
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Active Sensor Array: Cross-Range Resolution
Modelling and SVD

Point target model for response matrix

• Let Ĝ be the Green function for random media as before. The pulse
from xq, received by scatter yj is f̂(ω)Ĝ(yj , xq, ω). It will send back a

reflected pulse: ρ̂j(ω)f̂(ω)Ĝ(yj , xq, ω).

• Neglecting any multiple scattering between unkown targets, the
recorded signal at xp from xq will be:

Π̂pq(ω) = f̂(ω)
M∑

j=1

ρ̂j(ω)Ĝ(yj , xp, ω)Ĝ(yj , xq, ω)

• The full response matrix Π̂(ω) in frequency domain should be:

P̂ (ω) ≈ Π̂(ω) = f̂(ω)
M∑

j=1

ρ̂j(ω)ĝ(yj , ω)ĝ(yj , ω)T
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Active Sensor Array: Cross-Range Resolution
Modelling and SVD

• Here ĝ(yj , ω) is the illuminating Green vector onto the array from yj

in random media:

ĝ(yj , ω) =


Ĝ(yj , x1, ω)

Ĝ(yj , x2, ω)
...

Ĝ(yj , xN , ω)


• For any j, ĝ(yj , ω)T ĝ(yj , ω) is a rank one matrix. Hence when yj are

far apart, Π̂(ω) is a matrix with rank M .

• The rank of recorded data P̂ (ω) ≈ Π̂(ω) has the rank equaling
number of scatters:

rank(P̂ ) = M
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Active Sensor Array: Cross-Range Resolution
Modelling and SVD

First application of SVD:

• Calculate the SVD of the response matrix:

P̂ (ω) = Û(ω)Σ(ω)V̂ H(ω)

The diagonal matrix Σ(ω) has non-negative diagonal elements:

σ1(ω) ≥ σ2(ω) ≥ · · · ≥ σM ′(ω) > σM ′+1(ω) ≈ · · · ≈ σN (ω) ≈ 0

• Columns of Û(ω): Ûr(ω) is the left singular vector associated with
σr(ω); and it’s also the eigenvector of P̂ (ω)P̂ (ω)H associated with
the eigenvalue σ2

r (ω).

• The rank of response data P̂ (ω) is approximately M ′, the rank of
diagonal matrix Σ.
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Active Sensor Array: Cross-Range Resolution
Modelling and SVD

• We must have: M ≈M ′, and for media with small fluctuation;
M = M ′, for any frequency ω within bandwidth of probing pulse.

• Some examples of two targets in both homogeneous and
inhomogeneous medium:

First three singular values from simulations with two targets in the
medium
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Active Sensor Array: Cross-Range Resolution
DOA Estimation

Information about singular vectors:

• Targets are far apart, thus ĝ(yj , ω) are approximately orthogonal to
each other.

• Left singular vectors Ûr(ω), 1 ≤ r ≤M are calculated from SVD of
P̂ (ω), from the modelling, they should be:

Ûr(ω) ≈ eiφ(ω) ĝ(yj , ω)

|ĝ(yj , ω)|
σr(ω) ≈ |f̂(ω)||ρ̂j(ω)||ĝ(yj , ω)|2

Here φ(ω) is an arbitrary phase, depending on the algorithm used to
performing the SVD.
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Active Sensor Array: Cross-Range Resolution
DOA Estimation

Try beam-forming:

• Beam-forming takes inner product of singular vector with normalized
illumination vector.

• In random media case, ĝ(ys, ω) is unknown. Hence the known
illumination vector in homogeneous medium, ĝ0(y

s, ω) is tried:

ÛH
r (ω)

ĝ0(y
s, ω)

|ĝ0(y
s, ω)|

≈ eiφ(ω) ĝ(yj , ω)H ĝ0(y
s, ω)

|ĝ(yj , ω)||ĝ0(y
s, ω)|

• Difficulty 1: unknown phase φ(ω). It can be fixed by computing
singular vectors using power method.

• Difficulty 2: random Green function is not compensated by a complex
conjugate one which cancels the large random phases, hence not
self-averaging.
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Active Sensor Array: Cross-Range Resolution
DOA Estimation

Statistically stable broad-band DOA estimation:

• P̂ (ω)P̂H(ω) is known, and it provides random Green function and
complex conjugate of random Green function naturally:

[
P̂ (ω)P̂H(ω)

]
pq

=
N∑

r=1

P̂pr(ω)P̂rq(ω) ≈
N∑

r=1

Π̂pr(ω)Π̂rq(ω)

• Apply MUSIC (multiple signal classification): looking for ys whose
illumitating Green vector is orthogonal to null space of P̂ (ω)P̂H(ω).

• Observation: if the random vector ĝ(ys, ω) is orthogonal to the null
space of Π̂(ω)Π̂H(ω) ≈ P̂ (ω)P̂H(ω), then ys must coincide with one
of yj , for some 1 ≤ j ≤M .

Xianyi Zeng (Stanford University) Imaging in Random Media Math 221, May 18, 2010 21 / 51



Active Sensor Array: Cross-Range Resolution
DOA Estimation

• We cannot project ĝ(ys, ω), since it is unknown; instead, the
deterministic illuminating vector ĝ0(y

s, ω) is projected to the null
space of P̂ (ω)P̂H(ω):

PN ĝ0(y
s, ω) =

M∑
r=1

[
ÛH

r (ω)ĝ0(y
s, ω)

]
Ûr(ω)− ĝ0(y

s, ω)

• If P̂ (ω) = Π̂(ω), and the random illuminating vector comes from a
target yj , the projection nearly zero:

PN ĝ(yj , ω) ≈
[
ÛH

j (ω)ĝ(yj , ω)
]
Ûj(ω)− ĝ(yj , ω) = 0
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Active Sensor Array: Cross-Range Resolution
DOA Estimation

• Normalize the projection by singular value σj(ω):

F̂ (j)(ys, ω) = σj(ω)PN ĝ0(y
s, ω)

• Apply the inverse Fourier transform (up to a constant):

F (j)(ys, t) =

∫
e−iωtσj(ω)

M∑
r=1

[
ÛH

r (ω)ĝ0(y
s, ω)Ûr(ω)dω

]
−

∫
e−iωtσj(ω)ĝ0(y

s, ω)dω

• The second term of F (j)
p (ys, t) has deterministic arrival time:

tp(ys) = |xp − ys|/c0.
• The second term of F (j)

p (ys, tp(ys)) resembles f(0) ≈ 0 up to a
constant.
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Active Sensor Array: Cross-Range Resolution
DOA Estimation

Probing pulse f(t)
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Active Sensor Array: Cross-Range Resolution
DOA Estimation

• Define the sum:

G(j)(ys) =
N∑

p=1

(
F (j)

p (ys, tp(y
s))

)2
(1)

• When ys ≈ yj , PN ĝ0(y
s, ω) ≈ PN ĝ(ys, ω) ≈ 0, hence for any t,

F (j)(ys, t) ≈ 0, thus G(j)(ys) ≈ 0.

• The objective functional defined as:

R(ys) =
M∑

j=1

miny G(j)(y)

G(j)(ys)
(2)

should has peak values near yj , 1 ≤ j ≤M , since one of the
denominators is nearly zero.
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Active Sensor Array: Cross-Range Resolution
DOA Estimation

Claim: the estimator is self-averaging:

• This can be illustrated both mathematically and physically for one
target case (M = 1).

• When there is only one target:

F(ys, t) = B(ys, t)−A(ys, t)

with

Â(ys, ω) = |f̂(ω)||ρ̂(ω)|ĝ0(y
s, ω)

N∑
p=1

Ĝ(y1, xp, ω)Ĝ(y1, xp, ω)

B̂(ys, ω) = |f̂(ω)||ρ̂(ω)|ĝ(y1, ω)
N∑

p=1

Ĝ0(y
s, xp, ω)Ĝ(y1, xp, ω)
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Active Sensor Array: Cross-Range Resolution
DOA Estimation

• Clearly Â(ys, ω) is self-averaging.

• The q-th component of B̂(y)s, ω is:

B̂q(y
s, ω) = |f̂(ω)||ρ̂(ω)|

N∑
p=1

Ĝ0(y
s, xp, ω)Ĝ(y1, xq, ω)Ĝ(y1, xp, ω)

Random Green functions are compensated for approximation of its
complex conjugate random Green function.
Hence B̂(ys, ω) is also self-averaging.

• The explanations can be given physically, in terms of time-reversal.
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Active Sensor Array: Cross-Range Resolution
Numerical Results

Comparison between broad-band simulation and single-frequency
simulation:

• Methods using (2) with a broad-band pulse, and a single-frequency
pulse are simulated, to imaging one or two targets in homogeneous or
random media:

Problem setups for one-target case and two-target case.
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Active Sensor Array: Cross-Range Resolution
Numerical Results

• Imaging one target:

Left: broad-band. Right: single-frequency.
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Active Sensor Array: Cross-Range Resolution
Numerical Results

• Imaging two targets:

Left: broad-band. Right: single-frequency.
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Active Sensor Array: Cross-Range Resolution
Conclusions for DOA Estimation

Conclusions:
• Beam-forming method is not self-averaging, hence not adviced.

• A method based on MUSIC is proposed for imaging, which is shown
to be self-averaging.

• Statistical stable results can be obtained by using broad-band probing
pulse.

• The DOA estimator R(ys) gives good cross-range resolution, but bad
range resolution.
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Active Sensor Array: Range Resolution
Arrival Time Analysis

Why no range-resolution?

• Object functional (2) gives reasonable cross-range resolution; however
the range resolution is not good at all.

• The reason is that we use the arrival time tp(ys) (which is the arrival
time for A(ys, t)) as a crude estimation for that of the whole function
F(ys, t) in (1).

• Suppose τ
(j)
p is an estimation to the exact travel time between xp and

yj in the random medium.

• Assuming one target, due to self-averaging property of F (1)
q (ys, t), we

can approximate the product Ĝ(y1, xp, ω)Ĝ(y1, xq, ω) by its
expectation:
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Active Sensor Array: Range Resolution
Arrival Time Analysis

• Define rp = |xp − y1|, rs
p = |xp − ys|.

E[Ĝ(y1, xp, ω)Ĝ(y1, xq, ω)] ≈ e−β(ω)|xp−xq |2

(4π)2rprq
e−iω(τ

(1)
p −τ

(1)
q )

• To illustrate the sensitivity of F on traveling time, test simulations
are setup, assuming |ρ̂(ω)| = 1, β(ω) ≡ β, and replace |f̂(ω)| with

f̂(ω), F (1)
q (ys, t) is approximated by:

Mq(ys, t) = 1
(4π)2

∑N
p=1

{
e−β|xp−xq |2

rprqrs
p

f(t+ τ
(1)
p − τ

(1)
q − tp(ys))

− 1
r2
prs

q
f(t− tq(ys))

}
(3)
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Active Sensor Array: Range Resolution
Arrival Time Analysis

• Using Mq(ys, t) instead of F (1)
q (ys, t) in (2), the results are almost

reproduced:

Top: using F ; bottom: using M
• Here estimations τ

(1)
p = τ

(1)
p,DG based on diagonal of P̂ (ω) are used.
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Active Sensor Array: Range Resolution
Arrival Time Analysis

• We can look at (3) for answering why there is no range-resolution by
using (2) with (1).

• Using t = tq(ys) only minimize the second term in Mq(ys, t), the first
term has a differential arriving time:

tq(y
s) + τ (1)

p − τ (1)
q − tp(y

s)

• It is the difference between travel times in random medium that plays
an important role in imaging, not the travel time.

• There is essentially no range information in M, hence F cannot give
good range-resolution.
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Active Sensor Array: Range Resolution
DOA with Arrival Times

Improvement: choosing different t for B:

• If we choose t = τ
(1)
q for first term in (3), the value of M will

depends on travel time directly:

τ (1)
q + τ (1)

p − τ (1)
q − tp(y

s) = τ (1)
p − tp(y

s)

• This suggests the estimator using:

H(1)
q (ys) = B(1)

q (ys, τ (1)
q )−A(1)

q (ys, tq(y
s)) (4)

G(1)
τ (ys) =

N∑
p=1

(H(1)
p (ys))2

• Imaging is to maximizing the DOA-AT estimator:

Rτ (y
s) =

miny G(1)
τ (y)

G(1)
τ (ys)

(5)
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Active Sensor Array: Range Resolution
DOA with Arrival Times

• By using an estimator τ
(1)
p,SV D based on SVD of P̂ (ω), the imagings of

previous examples:

• Both cross-range and range resolutions are good.

• However, the usefulness of estimator (5) relies on a good travel time
estimator.
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Active Sensor Array: Range Resolution
Estimating Arrival Times

Using diagonal of response matrix to estimate arrival times:

• If one keep track of Ppp(t), the arrival times of pulses will be twice
the travel time between xp and targets.

• The signals are clean in homogeneous medium:

Two peaks are clearly distinguished in homogeneous medium
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Active Sensor Array: Range Resolution
Estimating Arrival Times

• In random medium, the signals are not so clean:

Scattered fronts from two targets are difficult to interpret in random
medium
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Active Sensor Array: Range Resolution
Estimating Arrival Times

• Let τ
(j)
p,DG be the estimated arrival times

for j-th scattered front.

• ATA estimator functional:

G(j)
ATA(ys) =

N∑
p=1

[
τ

(j)
p,DG − 2tp(y

s)
]2

Imaging is to maximize:

RATA(ys) =
M∑

j=1

miny G(j)
ATA(y)

G(j)
ATA(ys)
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Active Sensor Array: Range Resolution
Estimating Arrival Times

Using singular vectors from SVD to estimate arrival times:

• The idea is that the trace of the singular vector Ur(t) have only one
front (arrival time) back-scattered by the target that makes the
largest contribution to σj(ω).

• Assumption: contribution of some Green vector ĝ(yj , ω) in Ûr(ω) is
more significant than that of ĝ(yh, ω) for all h 6= j.

• Suppose y1 is the strongest target associated with σ1(ω). Difficulty:
Û1(ω) has an unknown, arbitrary, frequency dependent phase. Hence
U1(t) looks incoherent in time domain.

• We can project columns of P̂ (ω) onto the singular vector Û1(ω) to
remove the unknown phase:

Û
(p)
1 (ω) =

[
Û1(ω)H P̂ (p)(ω)

]
Û1(ω) p = 1, . . . , N
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Active Sensor Array: Range Resolution
Estimating Arrival Times

• For different xp, the arrival times are different (introduced by different
Green functions Ĝ(xp, y1, ω)).

• They can be synchronized and then be averaged to obtain the
effective singular vector:

U1(t) =
1

N

N∑
p=1

U
(p)
1 (t− τ (1)

p )

• Here τ
(1)
p are estimated as the minimizer of integrated squared error:

min
τ

(1)
p

∫ T

0

N∑
p=1

[
U

(p)
1 (t− τ (1)

p )− U1(t)
]2
dt
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Active Sensor Array: Range Resolution
Estimating Arrival Times

• Comparison of matrix diagonals and averaged singular vector in
homogeneous medium:

• The results are essentially the same.
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Active Sensor Array: Range Resolution
Estimating Arrival Times

• Comparison of matrix diagonals and averaged singular vector in
inhomogeneous medium:

• Much cleaner fronts are obtained by using averaged sinvular vectors.
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Active Sensor Array: Range Resolution
Conclusions for ATA

Conclusions:

• Estimator R(ys) has poor range resolution because it depends on
differential arrival times rather than arrival times.

• Estimator Rτ (ys), using different times for B and A, can have both
good cross-range resolution and reasonable range resolution. But they
may be sensitive to the choice of arrival time estimator.

• One can use only the arrival time estimation to obtain good range
resolution, like RATA(ys).

• For random medium, arrival time estimator based on SVD is better
than estimator based on diagonals of response matrix.
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SAT

An estimator combines both DOA analysis and ATA:

• Minimizers for [F (j)
p (ys, tp(ys))]2 gives good cross-range resolution.

• Minimizers for [τ
(j)
p,SV D − tp(ys)]s gives good range resolution.

• SAT estimator combines the two, and define:

G(j)
SAT (ys) =

N∑
p=1

[
F (j)

p (ys, tp(y
s))

]2 [
τ

(j)
p,SV D − tp(y

s)
]2

• The objective functional to be maximized:

RSAT (ys) =
M∑

j=1

miny G(j)
SAT (y)

G(j)
SAT (ys)
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SAT

• Imaging one target using SAT:
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SAT

• Imaging two targets using SAT:
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SAT

Conclusions:

• RSAT can give both good cross-range resolution (it is self-averaging)
and good range resolution (there is arrival time estimation).

• RSAT is robust, in the sense that the dependency on arrival time

estimator is decreased by multiplication with F (j)
p , which is

independent of arrival time estimation.

Materials not covered:

• SAI (synthetic aperture imaging) estimators, which only use diagonals
of P̂ (ω). The estimator gives good range resolution but poor
cross-range resolution, since it is not self-averaging.

• Use SAI estimator to improve range resolution of R(ys).

• Analysis of multiple scattering between targets (complication of
modelling).
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SAT

Imaging using SAI estimator, an example of non-self-averaging estimators.
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