

Capital Budgeting

- Process of deciding which long-term investments to make
- Current outlay followed by cash inflows beyond one year in the future
 - New equipment, plants, new products
 - Often replacing old equipment with new
- Expected return = required return?

Copyright ©2003 Stephen G. Buell

Temporary assumption

- Required return is given and is the same for all projects
- $k_0 =$ required return or the hurdle rate
- Assumption will be relaxed in the next chapter when we consider risk

5 steps to capital budgeting

- 1. Generation of investment proposals
- 2. Estimation of expected cash flows
- 3. Evaluation of expected cash flows
- 4. Selection of proposals
- 5. Continual reevaluation of proposals after acceptance

We are mainly concerned with 2, 3 and 4

Copyright ©2003 Stephen G. Buell

Estimation of expected cash flows

- Incremental → CF of the firm with proposal vs. CF of firm without proposal
- After-tax → what actually affects the common stockholders (available for retention or payout)
- CF = Net Income + Depreciation

Copyright ©2003 Stephen G. Buell

Incremental cash flows

- $\Delta CF = (\Delta S \Delta C \Delta D)(1 t) + \Delta D$
- ? S = change in sales revenue
- ?C = change in operating costs
- ? D = change in depreciation
- t = firm's marginal tax rate

Horizontal income statement

Given : $(\Delta S - \Delta C - \Delta D) = \Delta$ (before - tax profits) if $(\Delta S - \Delta C - \Delta D)(t) = \Delta$ taxes then $(\Delta S - \Delta C - \Delta D)(1 - t) = \Delta$ (after - tax profits) $\therefore \Delta CF = (\Delta S - \Delta C - \Delta D)(1 - t) + \Delta D$

Copyright ©2003 Stephen G. Buell

Replacement example

Old equipment: original cost= 60,000 SV = 0 15 yr original life currently 5 yrs old with a MV = 8,000New equipment: Cost = 40,000 SV = 4,000 10 yr life $\Delta S = +4,000/yr \Delta C = -8,000/yr$ $\Delta NWC = 10,000$ t = 50% k = 10% straight-line depr. on both

Initial Outlay			
Purchase price new	\$40,000		
-Net proceeds sale of old	-24,000		
+ΔNWC	+10,000		
Initial Outlay	\$26,000		

Net proceeds from sale of old

Net proceeds = MV - t(MV - BV) MV = market value, BV = book value $D_{old} = (Cost - SV)/n = (60000-0)/15 = 4000/yr$ BV = 60000 - 5(4000) = 40000Net proceeds = 8000-.50(8000-40000) Net proceeds = 24000

Copyright ©2003 Stephen G. Buell

Net proceeds from sale of old

Net proceeds = MV - t(MV - BV)

What if MV>BV and machine is sold for a gain? Then there is a tax on the gain equal to t(MV-BV), and this tax is subtracted from the selling price to yield the net proceeds

The formula works for gains or losses

Copyright ©2003 Stephen G. Buell

ΔNWC

 Δ NWC = Δ current assets – Δ current liabilities Δ NWC is additional motor oil or nuts and bolts needed to service the equipment

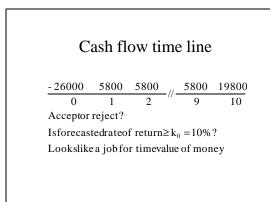
 Δ NWC is additional cash that must be kept on hand if the proposal is accepted

 Δ NWC is part of the initial outlay and is also a cash inflow at the end of the life of the project

Incremental Cash Flows (ΔCF)

$$\begin{split} \Delta CF &= (\Delta S - \Delta C - \Delta D)(1 - t) + \Delta D \\ \Delta S &= 4000/yr \ and \Delta C = -8000/yr \\ D_{old} &= 4000 \ D_{new} = (40000 - 4000)/10 = 3600 \\ \Delta D &= 3600 - 4000 = -400/yr \\ \Delta CF &= [4000 - (-8000) - (-400)](1 - .5) - 400 \\ \Delta CF &= 5800/yr \ for 10 \ years \end{split}$$

Copyright ©2003 Stephen G. Buell


Terminal cash flow

Often there is an extra cash inflow in the terminal year

Return of the Δ NWC = 10000 since the motor oil, nuts and bolts, and cash are no longer needed Incremental salvage value Δ SV = SV_{new} - SV_{old} Δ SV = 4000 - 0

Total non-operating CF = 10000 + 4000 = 14000

Copyright ©2003 Stephen G. Buell

Acceptance criteria

Two discounted cash flow methods

Internal Rate of Return (IRR)

Net Present Value (NPV)

Internal Rate of Return (IRR)

Copyright ©2003 Stephen G. Buell

IRR → that discount rate that equates the present value of the expected cash inflows with the present value of the expected cash outflows

IRR \rightarrow that discount rate that makes $PV_{in} = PV_{out}$

Accept if IRR>= k_0 and reject if IRR< k_0

Copyright ©2003 Stephen G. Buell

Internal Rate of Return (IRR)

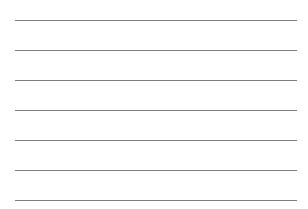
$$CF_{0} = \frac{CF_{1}}{(1+r)^{1}} + \frac{CF_{2}}{(1+r)^{2}} + \dots + \frac{CF_{n}}{(1+r)^{n}} = \sum_{t=1}^{n} \frac{CF_{t}}{(1+r)^{t}}$$

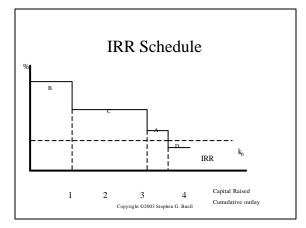
$$CF_{t} = \cosh \text{ flow, end of period } t$$

$$n = \text{life of the project}$$

$$r = \text{IRR}$$

Internal Rate of Return


 $26000 = \frac{5800}{(1+r)^1} + \frac{5800}{(1+r)^2} + \dots + \frac{5800 + 4000 + 10000}{(1+r)^{10}}$


Solve for r

Accept if $r = k_0$ Reject if $r < k_0$ Finding IRR using a financial calculator: -26000 \rightarrow CF_j 5800 \rightarrow CF_j 9 \rightarrow N_j 19800 \rightarrow CF_i IRR=20.58%

Copyright ©2003 Stephen G. Buell

Project	Outlay	IRR
В	1,000,000	30%
С	2,000,000	20%
А	500,000	13%
D	500,000	7%

Net Present Value (NPV)

NPV \rightarrow present value of the expected cash inflows minus the present value of the expected cash outflows when all cash flows are discounted at the required rate k₀

Copyright ©2003 Stephen G. Buell

Accept if NPV = 0 Reject if NPV<0

-j----

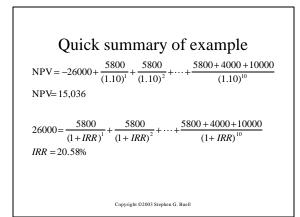
Net Present Value (NPV) $NPV = -CF_0 + \frac{CF_1}{(1+k_0)^1} + \frac{CF_2}{(1+k_0)^2} + \dots + \frac{CF_n}{(1+k_0)^n} = \sum_{t=0}^n \frac{CF_t}{(1+k_0)^t}$ $CF_t = \text{cash flow, end of period t}$ n = life of the project $k_0 = \text{required rate of return}$

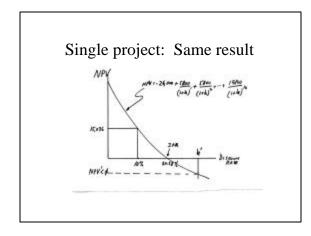
Copyright ©2003 Stephen G. Buell

NPV = $-26000 + \frac{5800}{(1.10)^1} + \frac{5800}{(1.10)^2} + \dots + \frac{5800 + 4000 + 10000}{(1.10)^{10}}$ Solve for NPV Accept if NPV = 0 Reject if NPV<0 Finding NPV using a financial calculator: $-26000 \rightarrow CF_j$ 5800 → CF_j 9 → N_j 19800 → CF_j *I*/YR → 10 NPV=15,036.10

Another definition of IRR

Since NPV = $PV_{in} - PV_{out}$ and IRR makes $PV_{in} = Pv_{out}$


IRR can be defined as the discount rate that makes NPV = 0


Copyright ©2003 Stephen G. Buell

Quick summary

$$\begin{split} \text{Two alternative methods:} \\ \text{NPV} = \text{PV}_{\text{inflows}} - \text{PV}_{\text{outflows}} & \text{discount at rate } k_0 \\ \text{IRR: } \text{PV}_{\text{inflows}} & = \text{PV}_{\text{outflows}} & \text{solve for IRR} \end{split}$$

Accept if NPV = 0 or IRR = k_0 Reject if NPV<0 or IRR< k_0

Why IRR = k_0 or NPV = 0?

Pretend entire \$26,000 outlay is financed by a 10 yr loan at interest rate = 10% Annual uniform payment to retire loan: $26000 = R(PVIF_a-10\%-10) R=$4231/yr$ Annual CF=5800 plus extra 14000 in yr 10 (5800-4231)(PVIF_a-10\%-10) + 14000/(1.10)^{10} = 15036

Copyright ©2003 Stephen G. Buell

D · 1		
Period	Project A	Project I
0	-23616	-23616
1	10000	0
2	10000	5000
3	10000	10000
4	10000	32675
NPV(k ₀ =10	%) 8083	10347
	25%	22%

Assumed reinvestment rates

IRR \rightarrow All CF's reinvested at the IRR NPV \rightarrow All CF's reinvested at k_0

NPV: more realistic, more conservative, more consistent Normally choose project with higher NPV

Copyright ©2003 Stephen G. Buell

Modified IRR (MIRR)

Eliminates flaw of regular IRR method Assumes all CF's reinvested at k₀ Compute sum of CF's at terminal point assuming reinvestment at k₀ Solve for MIRR: discount rate that equates the PV of this terminal sum with initial outlay

Copyright ©2003 Stephen G. Buell

Modified IRR (MIRR)

 $\begin{aligned} FV_{A,4} &= 10000 (FVIFa-10\%-4) = 46,410 \\ 23616 &= 46410 \ / \ (1 + MIRR_A)^4 \quad MIRR_A = 18.4\% \end{aligned}$

 $FV_{B,4} = 5000(1.10)^{2} + 10000(1.10)^{1} + 32675$ $FV_{B,4} = 49,725$ $23616 = 49725 / (1 + MIRR_{B})^{4} MIRR_{B} = 20.5\%$ Choose project B