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Abstract

A non-destructive system approach is developed and applied to the study of cou-
pled flow in porous media subject to hydraulic and thermal gradients. The approach
makes use of the transient pressure and temperature responses of the saturated
porous media under applied gradients to obtain the flow related soil parameters.
An experimental one-dimensional set-up is developed to apply the gradients and
measure the real time pressure and temperature responses of the system along the
sample. The analytical governing equations for the transient development of the
fluxes of a multi-component system are derived based on conservation equations
and nonequilibrium thermodynamics theories. The analytical model is then used
to form the appropriate numerical simulation environment, which is constructed to
solve the governing set of partial differential equations. The soil parameters defining
the heat and fluid flow in porous media are obtained by constructing an optimization
environment, which obtains the parameters by minimizing the objective function.
The objective function is defined as the sum of the least squares of the experimental

and numerical responses of the system.



Chapter 1
Introduction

The heat and mass transfer problem is studied and developed extensively in fields
ranging from chemistry, material science to micro-electronics. Similar concepts are
also studied in geotechnical engineering in the hydro-geothermal problems related to
radioactive waste burial facilities, other waste impoundments, or constructed heat
barriers.

The design, life span, and performance of such earth facilities and their effects
on the surrounding ground depends on the rate of the heat and mass transfer in soil.
Some performance related issues for such facilities can be listed as: emanation of gas
from buried tailings, surface dust, surface run-off and groundwater contamination,
decay and leakage of the constructed barrier and their impact on the quality of the
surrounding life. The changes in the hydro and thermal characteristics of the soil
subject to elevated values of pressure and temperature may cause failure in terms
of leakage, excessive deformation or instability of the near by ground and supported
structures. The overall performance of these underground facilities is measured by
their ability to withstand such impacts over their life cycle.

The advancement of monitoring equipment and subsurface measurement tech-
niques have direct impact on the understanding and evaluation of the existing fa-
cilities, as well as the design of the new ones. The advantage of monitoring the
performance of a constructed facility over its entire life cycle should improve their

design and help schedule effective maintenance and preventive measures. Presently,
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information gathering and processing is limited to indirect observations or random
sampling for the hydro-thermal problems of the subsurface.

In this study, a direct approach to monitoring, and data acquisition and process-
ing is considered to address the heat and mass transfer problem in porous media.
Of particular interest is the coupled flow in porous media as a result of elevated
temperature and pressure in subsurface. A testing scheme with on-line monitoring
is designed to allow continuous observation of the transient response of a test sample
to induced temperature and pressure perturbations.

To accomplish this, a non-destructive testing environment had to be constructed
to record the transient temperature and pressure response of the sample and be able
to verify its repetition in multiple applications. The irreversible thermodynamics
concepts are used in developing the pertinent analytical model to represent the gov-
erning physical system. A numerical solution of the analytical model simulated the
experiments. The collocation of the numerical and experimental responses provided

the means to estimate the soil parameters under the given transient event.

1.1 Background

The problem of soil subjected to elevated temperatures and the resulting heat and
material flow has been one of the most studied topics in geomechanics. The two
commonly used models for the study of soil water flow are the mechanistic and the
thermodynamic models. The mechanistic model is based on the coupling of Darcy’s
law with conservation of water mass, and the thermodynamic model is related to
the principles applied to equilibrium or consecutive equilibrium states.

The mechanistic models are developed for both isothermal and nonisothermal,
and saturated and partially saturated medium. Karl Terzaghi [37] developed the
consolidation theory for an isothermal saturated deforming soil based on the effective
stress concept. Biot [4] developed the three-dimensional consolidation concept based
on linear elasticity and the generalized form for the porous media. In his formulation,

he used the relations between the four terms; modulus of elasticity, Poisson’s ratio,
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the compressibility of the fluid and the hydraulic conductivity [5], [6].

One of the first works on coupled thermal and fluid flow in partially saturated
media was by Philip and DeVries [29], expressing the vapor flux for a rigid soil in
terms of volumetric water content and temperature gradients within the soil.

Narasimhan and Witherspoon [26], developed the model for water flow in par-
tially saturated deforming soil based on the assumption of small strains. Dakshana-
murthy and Fredlund [7] developed a model for moisture flow in partially saturated
deformable soil subject to hydraulic and thermal gradients. In this model, heat
flow is due to conduction only, where the water vapor flux is neglected, and the
temperature effect is included in terms of the increase in soil air pressure.

The use of thermodynamics principles in soil was introduced by Sposito’s early
works on soil swelling under isothermal conditions and the more complete recent
work on thermodynamics of soil solutions [35]. However, the major advance was
the development of the theory of irreversible (non-equilibrium) thermodynamics.
The theory studies the rate of change of entropy of a system. Entropy is a state
function, as the internal energy and the enthalpy of a system. The change of entropy
is divided in to two parts; entropy flow and local entropy production. The entropy
flow component is due to convective flow carried through the boundaries of a system
and the heat conduction through its walls. The local entropy production is a source
and also a positive definite term indicating that the system is not in equilibrium,
which is the main cause of flows.

Onsager [27], [28] introduced the concept of coupled flow based on a hypothesis
that all the potential functions causing direct flow will also cause coupled flows. His
theory stated that all fluxes such as mass, heat, electrical current can be related
linearly to the corresponding thermodynamic forces. The positive nature of the
entropy production term restricts the form and value of the cross coefficients and
causes them to be equal. This outcome allowed determination of the cross coupled
terms by measuring only one of the cross terms.

The application of irreversible thermodynamics to coupled flow in soil systems
was introduced by Taylor and Cary [36]. The study developed non-equilibrium

expressions for heat and water vapor flow in soil and verified that the cross-coupling
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terms were equal. Later, analytical expressions for the coupled fluxes based on the
irreversible thermodynamics or theory of mixtures for multicomponent systems were
formulated by others [31], [8], [13], [24].

Since then, the multi-phase heat and mass transfer for saturated and unsaturated
porous media has become a well understood problem for the researchers [9], [25],
[32], [35], [29],[39].

1.2 Scope

The specific manner a typical heat and mass transfer problem is handled deter-
mines the applicability of the thermodynamics method to soils. This handling may
include utilization of the analytical expressions, experimental methods or the numer-
ical schemes and algorithms in analyzing and explaining the observed or designed
phenomena. The analytical, experimental and numerical components are seldom
applied simultaneously as a unified system capable of addressing the phenomenon
at hand.

The analytical formulas are highly detailed and often expressed for general cases.
These formulations often deal with parameters that may not be appropriate for
direct use in a unified system approach consisting of experimental and numerical
components as well. In an integrated system, the solution requires measurable
parameters.

A well planned unified system should take advantage of the initial experiments
to determine a relevant set (and combination) of coefficients and terms used in the
analytical representation of the tested event. The next step is the numerical solution
of the analytical equations to determine the required characteristics. In this way,
redundancies due to the large number of built-in coefficients and terms involved in
the numerical solution of the system can be reduced without oversimplifying the
problem.

The research to be discussed here is based on this unified system approach with
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experimental, analytical and numerical components. A unique experiment, its equip-
ment, and an accompanying methodology is designed to serve this purpose. The
analytical expressions are formulated using principles of non-equilibrium thermo-
dynamics that represent the system with easily measurable terms. The numerical
solution of these formulas are collocated with the experimental results in a parameter
identification and optimization process to obtain the desired coupled coefficients.

A nondestructive approach is considered here to test the classical heat and mass
transfer problem. The tests are conducted by applying various types and combi-
nations of the temperature and pressure gradients. The transient response of a
saturated porous medium is measured in terms of temperature and pressure flux.
The non-destructive test is achieved by closed material boundaries and pulse like
gradient applications to minimize possible deformation to the porous skeleton and
preserve the original physical properties of the medium.

A set of coupled governing equations were derived and used in the numerical
generation of the temperature and pressure profiles in the direction of the applied
gradients. These simulations utilized initial sets of estimated coupled coefficients.
The profiles were then compared to the experimental profiles generated under the
same boundary conditions. A parameter estimation routine was performed by min-
imizing the error between the experimentally and numerically generated responses,
to obtain the coupled coefficients that will satisfy the experimental data.

The components of this unified system are designed to conform to each other
within the system. For example, the nondestructive experimental approach capa-
bility is utilized to allow to test under closed material boundary conditions which
improves gradient control. The analytical formulas express the transient state of the
coupled flow allowing conformance with the transient state experimental measure-
ments. The numerical simulation of the analytical model is based on the solution
of the governing equations by discretizing the spatial derivative and integrating the
resulting ODE in time which is also referred to as; the Method of Lines [33]. A pa-
rameter identification approach is built-in the simulation routine that collocates the
simulated results and the experimental measurements. The parameter identification

routine performs search-and-optimization to determine the coupled flow parameters

6
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satisfying an error term.

1.3 Contents

This study is presented in the following four main chapters and a conclusion chapter.
Chapter 2 describes the design and operation of the nondestructive experimental set-
up. The governing equations are derived in Chapter 3. First, the multi-phase form of
coupled equations for heat and mass transfer are obtained. Then, transient coupled
and uncoupled expressions for hydraulic and thermal components are derived from
the general expressions. Chapter 4 discusses the selected numerical solution method
including its advantages and applicability to the problem in hand. Also provided in
this chapter are sample solutions of the typical forms of the governing equations of
the system.

The parameter identification - estimation approach utilizing a quasi-newton
quadratic search-and-optimization method is discussed in Chapter 5. The exam-
ples of the application of the method to the numerical and experimental responses
obtained are shown. The final list of the soil parameters obtained for each case are
discussed in Chapter 5 also.

A brief discussion of the relevance and importance of the method developed and

the required improvements and further applications are discussed in Chapter 6.



Chapter 2
Experimental Approach

A unified system of experimental testing, analytical modeling, simulation and pa-
rameter identification were applied to the coupled flow problem in porous media.
A unique system approach was needed to overcome the experimental limitations
in acquiring a set of parameters that conform with the analytical and numerical
components. The experimental component of the system had to be well represented
by an analytical model. The measured parameters were then put in the model to
obtain the desired coupled coefficients.

The experimental method was designed to be flexible for continuous improvement
of the testing methodology, measurement techniques, and the quality and repeata-
bility of the data by feedback from the analytical model. Such a design required
complete understanding of analytical limitations and capabilities of the numerical
solution method. This requirement forced the experimental improvements to be
incremental and concurrent with the development of the analytical and numerical
components.

The experimental set-up is designed to work with the transient state response
of the system. The transient response is defined as the temperature and pressure
distribution along the deformable saturated porous media, in the same direction as
the applied gradient or force. The real time temperature and pressure measure-
ments are used to model the transient state behavior when solving for the coupled

coeflicients.



2.1. NONDESTRUCTIVE TESTING APPROACH

A one-dimensional and a triaxial experimental set-ups were designed and con-
structed to observe the system response under the applied thermal and hydraulic
gradients. The unified system approach presented in here is validated using only

the one-dimensional set-up.

2.1 Nondestructive testing approach

It is desired to construct a testing environment where minimal disturbance is intro-
duced to the original state, constituents and the skeleton of the porous media. A
non-destructive test is required to achieve the minimal disturbance which in turn
provides better quality data and higher rate of success in repeatability.

Use of the closed material boundaries and the pulse like gradient applications
are two of the possible conditions that can be induced to minimize the disturbance
and changes to the skeleton of the porous media. The advantage of applying these
conditions on a two-phase system (solid-liquid) is the elimination of the material flux
and thereby minimization of the disturbance by deformation or particle seepage.

The elimination of the flux prevents us from using steady state flux and gradient
relationships to obtain the pertinent coupled coefficients. Consequently, transient
state response is selected as an alternative which can provide information not only
for the final equilibrium state, but also allows in-depth look to the development of
the process itself.

Another precaution to ensure as little disturbance as possible, is to operate the
system at low levels of stresses. These conditions qualify the testing environment as
non-destructive and permit application of various types and combinations of gradi-
ents on a single specimen in repeated experiments. This approach was also found
to eliminate the variations observed in measurements when un-identical specimens
are used typically.

The implementation of the non-destructive test and the analysis of the transient

response of the system allow shorter duration experiments without the requirement



2.2. SOIL SPECIMEN

to achieve a steady state condition. The analytical model and the numerical sim-
ulation, in the following chapters are integral parts of the nondestructive approach
discussed. They complement the experimental method by cloning the experimental

pressure and temperature responses numerically.

2.2 Soil specimen

The system referred to in this dissertation is the two-phase solid-fluid specimen of
soil. The soil samples were prepared to obtain a desired range of permeability so

that the fluid saturation could be achieved in reasonable duration of time.

2.2.1 Constituents and composition

The soil particle sizes range from clay to sand size. The diameter of the particles is
between 0.005 < D < Imm. The typical particle size distribution curve is shown in
Figure 2.1. The mixture was prepared by mixing 15% Georgia kaolinite (LL=42%,
PL=30%) with 40% silt, 25% medium sand and 20% coarse sand by weight at a
water content of approximately 20%. As stated previously, the proportions and the
size distribution were pre-selected to obtain a permeability in the range of 10~ to
107%cm /s.

2.2.2 Sample tube

An acrylic cylindrical tube with an ID of 2.5cm, and a length of 21 cm is used
as a mold during sample preparation and as a sample holder during the transient
coupled flow tests. The acrylic tube permits easy instrumentation for temperature
and pressure measurements (Figure 2.2).

The thermocouple locations are drilled and plugged with silicon glue to prevent
their clogging during soil placement. The pressure sensor connections are 0.25in
Swagelog quick connects which are leak proof. The front end surface of the quick

connects are covered with Nylon filters with an opening size of 5 or 10 um, prior to

10
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Figure 2.1: Particle size distribution curve of the soil mixture.
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Thermocouple installation stations

ZERRRRRRRRRNEER

(O Heater (O Heater Heater(O)

Pressure Sensor and de-aeration connection

Figure 2.2: Cylindrical sample test tube.

their installation. Initially, porous stones were used as interfaces between the soil
and the transducers. However, porous stones used at different pressure measurement
stations had variable resistances and response rates owing to slight differences in
their thicknesses. They caused an undesirable pressure drop across the two faces.
Therefore, the Nylon filter with a thickness of few microns is adapted instead. This
replacement proved to correct the response magnitude and the lag time problem
caused by the earlier use of the porous stones.

The empty tube with all the connections installed and securely plugged, is
mounted on a one-dimensional consolidometer (Figure 2.3) base. Porous stones
and filter papers are used as separators at both ends of the sample. The soil is
filled from top and compacted in four layers. The extension segment and the piston
within the top platen is connected and an initial seating pressure of 5psi is applied
to the sample.

At this point the specimen is ready for consolidation. Prior to the initial satu-
ration and pressure increments for consolidation, the thermocouples are inserted to

assure good contact with soil.

12
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Figure 2.3: One-dimensional consolidometer

2.2.3 Sensor installation

Alumel-Chromel type fine wire thermocouples are initially guided into 1/8in teflon
tubes which are sealed with silicon on the inner surface to eliminate leakage. A metal
pin of same diameter as the thermocouple is then used to provide an insertion hole
for the thermocouple head that is to be positioned at the center of the specimen.
The surrounding of the thermocouple location is sealed with several applications of
water resistant silicon glue.

After the glue is set, de-aired water is connected to every quick connect along
the sample tube to fill their housing with water. Pre-filling the housings with water
helped to avoid back flush of soil particles into the quick connects during consolida-
tion. Then the back saturation valve at the bottom of the consolidometer is opened.
Following this step, an initial pressure of 5psi is applied to drive water up along the

sample while pushing the air out of the pores.
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2.2.4 Sample consolidation

The one-dimensional consolidation set-up is shown in Figure 2.3. Back pressure was
applied to replace the air from the pores with de-aired water. The back pressure
was applied in steps of 1psi up to 5psi. The back pressure application is terminated
when a constant rate of flow is measured at the top platen drainage for a period of
24h. Then the bottom platen drainage valve is closed and consolidation pressure
applied with drainage allowed at the top only.

Step wise pressure increments are applied over several periods of hours to achieve
the desired consolidation level. The end of each consolidation step is reached when
the out flow at the top ceases. The consolidation pressure is applied in the following
sequence: 5, 10, 15, 20, 40 and 80psi as required to achieve the targeted permeability
range. The non-standard length of the sample tube and the granular nature of the
soil reduced the overall effectiveness of the consolidation owing to increased wall
friction. Therefore, the tube is tapped several times at the beginning of each pressure
increment to help to overcome the initial wall resistance between the acrylic surface
and the particles.

At the completion of consolidation, the sample tube is detached from the con-

solidometer base and placed in the coupled flow test set-up.

2.2.5 Initial measurements

The soil sample weight and volume measurements are taken before and after consol-
idation. The acrylic tube dimensions and the weight are measured prior to each test
including the porous stone and the filter papers. Water content measurements are
made for the initial soil mixture and the soil sample after the consolidation period.

Density, porosity, void ratio and other relevant soil properties are calculated from
these measurements.

Additional measurements include the particle size distribution and hydraulic
conductivity. Furthermore, conventional consolidation tests are performed on soil
samples of the initial mixture and a segment of the consolidated test soil trimmed

from the extension section of the one-dimensional consolidometer.
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2.3. EXPERIMENTAL SET-UP

2.3 Experimental set-up

A coupled flow test apparatus is constructed to obtain experimentally the pressure
and temperature response of the system under applied gradients. Three different
set-ups are constructed: one triaxial and two one-dimensional set-ups. The triaxial
set-up components were the first to be designed and constructed which conformed
to the testing requirements under the applied hydraulic and thermal gradients. Two
variations of the one-dimensional set-up were constructed. The second generation
test equipment had improved control over the two end boundaries of the soil sample.

In this chapter, the final form of the one-dimensional set-up and testing protocol
used with this set-up will be covered in detail and the relevant improvements will
be discussed. Although the triaxial set-up was not used for testing purposes in this
work, its system design and various components were utilized in the one-dimensional

tests. Therefore the triaxial set-up will be described briefly for future use purposes.

2.3.1 One-dimensional set-up

The design and construction of the second generation set-up was done to improve
the control of boundary conditions and to capture detailed transient response mea-
surements. A picture of the test station is shown in Figure 2.4.

One major advantage of this equipment is the use of the same sample tube in
sample preparation and testing as well, without the need of extraction or further
handling of the soil sample. Another advantage is the ability to apply either single or
combined gradients on the same sample. The design of the system permits flexibility
on the type and combination of the tests to be run without changing the physical

or sensorial arrangements.
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Figure 2.4: Coupled flow complete test station.

The items numbered on figure 2.4 are:

No. Description

Test cell

Reservoir

Pressure block
Boundary pressure

Pressure gauge

(=) BN B G R

Hydraulic control panel

No.

10
11
12

16

Description

Heater control unit

Heater power unit

Pressure transducer power supply
Thermocouple connection board
Thermocouple cold junctions

PC - Data acquisition
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The test equipment, consists of the following components: 1) sample tube, 2) two
water reservoirs, 3) instrumentation, 4) heat sources at the boundaries and within
the sample, and 5) flow control panel. The inflow, outflow and the hydraulic gradient
controls are performed from the control panel via burettes and pressure regulators.
A pressure and de-aeration control unit is used during the initial de-aeration of the
system. It is a rigid aluminum block for pressure sensor connections.

As shown in Figure 2.4, the system is made of different components. Next the
whole system is described in detail in the following sequence of components: the
test cell unit, the measurement and sensory environment, boundary conditions and

their control, and the data acquisition.

Coupled flow test cell

The coupled flow test cell shown as 1 in Figure 2.4, is detailed in Figure 2.5. Three
different views of the cell and an actual image is included to show its various parts.
The center unit has the soil sample and it is instrumented for temperature and
pressure measurements at stations along its length. This unit also has three ports
for internal heat source. There are a total of seven pressure transducers, five on the
sample tube and one at each boundary. The ends of the sample tube is connected
to two end plates and each plate is connected to a reservoir with a ball valve. The
separation of the sample tube from the reservoir was necessary in order to control
the material boundary conditions without introducing volume change effects due to
the adjustments made in fluid reservoirs. Thermocouple stations are conveniently
placed across the pressure ports, on the other side of the sampling tube where the

temperature along the center line of the sample is measured.
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Figure 2.5: One-dimensional setup, a) front, b) top, c) side view, d) picture of setup.
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Pressure connections The pressure transducers are connected to the sample
tube by means of T connectors and quick connects (Figure 2.6a) via the pressure

transfer block (Figure 2.6b). The T-shaped connections are necessary to allow de-

E
Tconnection —

uick connects

Hw

Pressure transfer block

IR RS S

Figure 2.6: Pressure measurement stations, a) quick connects, b) pressure transfer
block.

aeration at the connection and to eliminate the entrapped bubbles that effect the
fluid pressure measurements. The transfer block is also used as the de-aeration

station of the pressure transducers prior to attaching them to the test apparatus.

Thermocouple connections The thermocouples are inserted from the opposite
side of the sample tube (Figure 2.7) to the sample center line at 19 locations (in-
cluding the boundaries). Thermocouple wires were mounted in 1/8in teflon tubes
and sealed with water resistance silicon adhesive. The fixture was then used as a
stance and to prevent the leakage by the wires which was installed prior to the con-

solidation phase as described before. Figure 2.7a, shows three additional locations
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Pressure
Transducer
Connections

“{Thermocouple
Connections

Figure 2.7: Temperature system, a) measurement stations, b) intermediate panel.

along the sample tube where rod type heaters would be embedded into the sam-
ple prior to consolidation. Figure 2.7b, is the intermediate connection panel where
the thermocouples, and transducers’ wiring are plugged for connection to the cold

junction or the daughter boards of the data acquisition system.

Sensoral system

The various sensors, their types, specifications, justification for their selection and
their relevant usage are described in this section. In this study, only two types
of physical measurements were made for simulation purposes: pressure and tem-
perature. Thermocouples and pressure transducers were selected to obtain on-line,

real-time measurements.

Pressure transducers A total number of eight pressure transducers were used
with two of them located at the boundaries, five along the length of the sample
and one to monitor the applied hydraulic pressure. Five different liquid filled type
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transducers are used. These transducers sense through diaphragm action with out-
put ranges of 15 — 150psi. The output of the self-amplified transducers were from
0—6 to 0— 10V in full-range.

The applied pressure is measured by one pressure transducer and monitored
through a readout box and recorded along with others via the data acquisition
system. The boundary and the other sensors along the sample provided the transient
state measurements.

Three levels of calibration were applied to these sensors. First, each sensor
was calibrated individually. Prior to sample preparation, the empty sample tube
equipped with transducers was set-up in the apparatus and filled with de-aired
water. The response of all the sensors were recorded and the system was calibrated
as a whole to account for losses at connections and other system induced effects
with respect to the pressure at the application point. The third level was conducted
at the end of each test when equilibrium was reached and the signals obtained from
all sensors were again checked relative to the input signal to account for drift and

other sources of measurement errors.

Thermocouples 36in long, fine wire (D = 0.010in) gauge= 30, Alumel-Chromel
type (5TC-TT-K-30-36), teflon coated K-type thermocouples, were selected for their
size, range and durability. A maximum number of 22 installed thermocouples were
available for use, but due to the channel limitations on the data acquisition system,

only 9 were related from the remaining of the 16 total channels at a time.

Data acquisition system

A PC based data acquisition and supporting peripheral was constructed to measure
and control the parameters of the system. A high resolution 16 bit digital 1/0O,
multi-function, 16 channel card with inputs for: T/C, mV, V, mA, was selected
for this purpose. The WB-FAI-B PC-card based data acquisition module were
supplemented with external terminal boards with isothermal plates, (item 11 on

Figure 2.4), for the thermocouple measurements. Other specifications of this card
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are listed in Table 2.1. The 16 available channels were allocated to the measurement

Table 2.1: Data acquisition card specifications

Board Channels Resolution Input Type Max. Rate
8 and . mV, V, mA
WB-AAI-B 16 diff. 16 bit T/C, RTD 225 Hz

of the pressure and temperature response. In general 7 to 8 channels were allocated
to pressure measurements with the rest assigned to thermocouple stations. When
all 16 channels were in use the lowest effective sampling rate was about 20 — 25 Hz.

A quick-log PC acquisition interface software was used to design the measure-
ment system and the data acquisition parameters for each test. A graphical output
of the system was configured to permit on-line monitoring of the sensors in charts
and tables. The output from the sensors were also logged into files for post process-

ing of the data.

Input devices

The input devices were used to implement the desired form and level of input during
a test scheme. Hydraulic gradients in variable frequencies and rates were applied
and maintained by use of pressure regulators transmitting air pressure to a water
column with a very finite diameter (ID=1cm?, item 6 in Figure 2.4).

The temperature increase was achieved using 1in immersible electric rod type
heaters (Watlow Firerod cartridge heaters) located inside the soil sample and in the
reservoirs. The heater used in the reservoirs were larger in diameter (1/2in), while
the others inserted in the soil were 1/8in in diameter to act as point sources. The

characteristics of the heaters are listed in Table 2.2.

Control and power sources

The hydraulic pressure was maintained by means of pressure regulators. The heat
was applied via the rod heaters. The control of these potentials were most critical

at the boundaries.
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Table 2.2: Heater characteristics

Diam. Length Volts Amp Min. Watts Max. Watts

inch inch Max. Max. at 120V at 120V
1/8 1-1/4 240 3.1 - 360
1/4 1 240 4.4 100 525

The pressure was maintained via a pressure regulator and monitored with a
transducer and a digital readout. These measurements were later integrated to the
post processing of the data. The system heat loss required an automated control
system to regulate the power input to the heater and maintain the desired tempera-
ture increase within a given bandwidth. Figure 2.8 shows the two separate units for
heater control (Figure 2.8a), and the close-up (Figure 2.8b) of the power unit and
the controller. The power unit is capable of applying variable voltage input to the
heater and the controller (CN310-JC) is attached to a thermocouple. This creates
a closed-loop control environment by setting the desired value of temperature and
a lower and upper limit of variation, such that the voltage input from power source
can easily be controlled for particular requirements of a test. The controller’s digi-
tal read out, and a hand held digital thermometer readout (HH-81) attached to the

same thermocouple were used for system check and confirmation.

2.3.2 Triaxial set-up

The original experimental study was intended to use a triaxial set-up. The one-
dimensional test equipment was designed and constructed to reduce the number of
test parameters for closer simulation of the system. Therefore, the triaxial set-up
although constructed, was not verified in this work. Nevertheless, a brief discussion
of the system is provided here for future reference.

The triaxial set-up was designed to be compatible with thermal requirements of
the system: including minimizing heat loss and accommodating a number of sensoral
and input devices within its components. The sample caps for the top and bottom

of the sample are shown in Figure 2.9. The bottom cap (Figure 2.9a) accommodates
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Heater control system a

Figure 2.8: Heater control and power source units.

two pressure transducer connections for the bottom and mid height of the sample.
Connections for several thermocouples, a heater and in flow and de-aeration are
included in the cap housing also. The segments a.l to a.4 in Figure 2.9a, illustrate
various dimensions and views for the bottom cap. Similar notations are used for the
top cap where only one pressure transducer and heater with several thermocouples,
and fluid out flow connections are shown. Figure 2.9c¢ illustrates the assembled soil
sample and the caps. The caps were constructed from Micarta’® a Nema grade
C, cloth based material from Westinghouse Electric Corporation, Micarta division,
Hampton, S.C. 29924. The physical properties of the material are listed in Table

2.3. A gas impermeable membrane was selected to embody the soil specimen such

Table 2.3: Physical properties for Micartat

Thermal Strength (psi)
Conduct. Expansion Tensile C Fl Sh
°F /in in / (in°C) ensile Compress. ex. ear

7.0E — 04 3.95E — 05 11,000 40,000 19,000 11,000
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that the confining fluid (water) could be replaced with air to minimize the heat
loss through the sample surface and the membrane to the surrounding. Figure 2.10
shows the actual caps and platens made for the triaxial coupled flow test set-up.
A control panel capable of handling two cells simultaneously is also constructed.
This panel supports two test set-ups and allows consolidation of one sample while
test may progress for the other. The panel is designed to measure inflow-outflow,
controlled application of confining pressure, the top and bottom internal pressures

and vacuum (Figure 2.11).

2.4 One-dimensional coupled flow test procedure

One-dimensional test set-up and components are all described with the particular
specifications and utilization. The general protocol for the transient state coupled
flow testing is described here. Discussion of testing under particular boundary con-

ditions will follow in the next section.

2.4.1 Test procedure

The sample tube mounted between the reservoirs is equipped with the thermocou-
ples, heaters and quick connects to the pressure transducer. The pressure block,
shown in Figure 2.6b, is now connected to the de-aired water chamber and the
block is de-aired. This is done by flushing each channel through the teflon tube the
top of which is capped by the male end of a quick connect itself. The male end is
then connected with the matching female pressure station along the sample tube.
The flushing of each channel with de-aired water is performed once again between
the pressure block and the T-shaped connection at the sample tube, resulting in full
de-aeration of each measurement channel.

The sample is then oriented vertically and submitted to initial pressure gradi-
ent to assure high degree of saturation prior to testing. The inflow and outflow
measurements are taken during this period and the process is terminated at equi-

librium. This method was initially applied to every sample to assure saturation,
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Figure 2.9: Triaxial cap design, a) bottom, b) top, c¢) assemby.
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Figure 2.11: System, fluid and pressure control panel.
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however was not carried on after it was determined that the initial saturation pro-
cess in the consolidometer and the following consolidation was sufficient to achieve
fluid phase continuity within the interconnected pores.

The near fully saturated sample is then tested under the desired hydraulic and
thermal gradients and the transient pressure and temperature response of the system
recorded. Prior to the application of the gradients a hydraulic conductivity test is
conducted to obtain the coefficient of hydraulic conductivity of the soil specimen.
This determination is used to evaluate the degree of disturbance that might occur
due to repeated testing under various gradient applications. The initial conductivity
is compared to final conductivity determined after the completion of the gradient
tests. The hydraulic conductivity tests require in-flow and out-flow measurements

along with the applied gradient measurement.

2.4.2 Data processing

The transient pressure and temperature response of the system can be recorded in
a file either as the raw sensor output (voltage) or converted to desired units (i.e.
pressure units). The experimental data collected in this study was recorded in raw
sensor signal output and post processed later to handle the drift and other possible
causes of variations. Several post processing codes were developed in Fortran90, and
combined to form the two final programs, one for each output type; pressure and
temperature.

The raw experimental data is first processed to convert to the desired units of
the physical phenomena measured (Figure 2.12b). This conversion is performed by a
single file that contains the latest calibration factors for each pressure sensor. Figure
2.12, presents a series of graphical outputs at different stages of the data processing

subject to the ”loading stage of step-function” gradient application.
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Figure 2.12: Step-wise data conversion and post-processing.
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Figure 2.12a shows the set-up and the initial distribution of water pressure:
u (z,0) = Uy, and the applied constant value at one boundary u (0,¢) = U, while U >
Up and the other boundary is kept under no flow (closed) conditions (Ou/dx = 0).
Figure 2.12b is the plot of transient pressure distribution (U = 5psi and Uy = 2.5psi)
at consecutive stations adjusted for initial point variation and converted to pressure
units using the most recent calibration data. However, it was observed that the
behavior of the pressure under this conversion did not properly handle the variations
in sensors, and the particular drifts that could have occurred during the test period.
The data plotted in Figure 2.12b is the adjusted data for the drift with respect to
the measured and recorded signal at the original input. The entire post processing
is carried out with two separate files, designed to handle pressure and temperature
separately.

The calibrated sensor data for sensor ¢ in Figure 2.12b is first reduced by U}
(initial pressure value for sensor or station ), and then normalized with respect
to (U — U¢) and the final time. The resulting normalized distribution is given in
Figure 2.12c.

The normalized experimental data can be used for comparison to the numer-
ical response of a non-dimensional system in parameter estimation routines. The
numerical solution of a non-dimensional (normalized) set of governing equations is
relatively simple owing to the control of numerical stability and better understanding
of the error magnitude. These issues are discussed in detail in Chapter 4. However,
any system non-linearity or dependence might easily be lost and overlooked in a
non-dimensional normalized system analysis. Therefore original experimental and
governing equations are preferred rather than their normalized forms.

Consequently, the corrected normalized data format (Figure 2.12¢), which de-
scribes the initial segment in post processing for loading stage of step-function is
converted back to give the appropriate response of Uy, U, and the final time distribu-
tion. This next stage of post processing is carried out by multiplying each pressure

value with Uy, U, which results in the final form of the output shown in Figure 2.12d.
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Figure 2.12: (continuing) Step-wise data conversion and post-processing.
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2.5 Boundary conditions and system response

Different forms of gradients are applied by controlling the pressure and temperature
at the boundaries. Hydraulic gradient tests, for instance, are conducted under closed
and open boundaries at various pressure levels. Thermal gradients are also applied
initially at the boundaries by using the heaters located in the reservoirs. However,
for a given power (wattage) of the heater, the temperature increase takes a long time
due to the large water volume in the reservoir and its heat capacity. It is therefore
preferred to use the heat sources within the soil sample. This arrangement also
permits testing under completely closed material boundary conditions. The disad-
vantage of the arrangement is that it results in lengthy and complicated numerical
manipulation of the experimental data, simulation and the parameter identification
of the system.

Various forms of gradients such as; constant, transient or step-function type with
closed or open material boundaries are considered. Thermal gradient is controlled by
the heater power therefore does not lend to variations easily. This lack of flexibility
limits the testing schemes and the possibility of different scenarios. However, still
various configurations are considered to aid the verification of the experimental-
numerical-optimization system. Some of these are based on the responses obtained
for such cases as: changing the location of the heater within the sample, the insulated
sample as opposed to the default case of un-insulated sample, and also opening and

closing the material boundaries.

2.5.1 Hydraulic gradient application

The hydraulic gradients include use of closed and open boundaries, and load-unload
stages of a transient gradient in the form of a step-function.

Open material boundary

Open material boundary conditions are those when the flow through boundaries are

permitted and various flux and pressure measurements are recorded. A constant
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gradient is maintained across the boundaries during the test. This is similar to a
conventional constant-head hydraulic conductivity test of soils, with the additional
recording of the transient pressure distribution.

Two types of open boundary tests are described here: loading and unloading.
The loading case is when the applied gradient at the boundary (U) is larger than
the initial condition (Up), and in reverse, the initial state is greater than the applied
boundary for the unloading case. Note that other variations are also possible, de-
pending on the initial state distribution along the sample and the applied form of
the gradient. Some examples of possible variations are also briefly illustrated.

Typically, the loading stage for an open boundary is applied at the beginning of
a test, while the unloading stage is conducted at the end. These two tests are also
considered as means to help identify any possible changes in the soil structure due

to the gradient applications.

Pressure increase - loading A loading stage for an open material type boundary
condition can be represented by a step function as the combination of the initial
state of uniform pressure distribution in soil, and the pressure at increase of one of

its boundaries:
u(z,0) =Up

w(O,t)=U  U>Uy (2.1)
’U,(L, Uo

t)
t)
The graphical representation of the loading stage of step-function pressure distribu-
tion is shown in Figure 2.13:

The actual system response under the loading stage is given for a typical soil
sample in Figure 2.14. The transient pressure distribution for Uy = 0 and U = 5psi
are illustrated. An intermediate state of water pressure profile for the given pressure
gradient above is shown in Figure 2.15.

The resulting hydraulic conductivity of the system is obtained from the in and
out-flow measurements taken under the loading stage for the open system, as shown
in Figure 2.16.

It is observed that the loading stage under the open boundary conditions results
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Figure 2.13: Loading stage of step-function type gradient application
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Figure 2.14: Pressure response of an open system for loading stage of a step-function.
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Figure 2.15: Pressure distribution at t = 3000 sec (assumed to be at steady state).
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Figure 2.16: Hydraulic conductivity for the same open system at loading stage.
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in an almost linear pressure distribution close to steady state (Figure 2.15). The
non-uniform pressure drop along the soil sample is due to the internal resistance to
the flow under open boundary conditions. Later on, it is shown that under closed
boundary conditions the response becomes completely reversible with no loss such

that pressure equilibrium is reached faster for all stations.

Pressure drop - unloading The unloading stage of a step-function type pressure

can be expressed as:

u(z,0) = U,
’U,(O,t)=U0 U < U (2 2)
u(L,t) =U

Ay ! u ! Ay !
u(x,0)=Uo | | u(0,t)=Uo u(x,0)=Uo |
| : |
| | |
| | |
[ ULD=U ru(L,t)=U

-+ L = ‘

X X CX

x=0 x=L o x=0 x=L o x=0 x=L o

Initial distribution Applied at the boundary Unloading stage, step-function

Figure 2.17: Unloading stage of step-function type gradient application.

The transient pressure distribution under the applied unloading stage, with Uy =
5psi and U = Opsi is shown in Figure 2.18. Similarly, the pressure profile along the
length of the specimen near steady state is shown in Figure 2.19. The unloading
segment, of the open boundary test is conducted after all the other nondestructive
gradient tests were completed. This information was used as a check to verify the
constancy of the hydraulic conductivity of the media. The hydraulic conductivity
variation during the unloading stage is presented in Figure 2.20.

Comparison of the Figures 2.15 and 2.19, shows similar patterns and magni-

tudes for the final pressure distribution of each case. The Figures 2.16 and 2.19
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Figure 2.18: Pressure response of an open system for unloading stage of a step-
function.
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Figure 2.19: Pressure distribution at t = 2500 sec (assumed to be at steady state).
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Figure 2.20: Hydraulic conductivity for the same open system at unloading stage.
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represent the pre- and post-test hydraulic conductivity behavior and its magni-
tude. As observed, the hydraulic conductivity of the media was preserved at about
K=15x10""cm/s.

Closed material boundary

A set of closed-boundary (no-flow allowed) test results for the same soil sample is
described here. The pressure loading and unloading stages of were again applied in

the form of step-function at the boundaries.

Pressure increase - loading Conditions as stated in the expressions for an open
system (2.1) are valid for the closed system as well, except where no flow conditions
(%‘CE:L = 0) are maintained at the boundaries. = The loading stage response is
shown in Figure 2.21. This figure illustrates a relatively well behaved response
compared to the pressure responses observed in Figures 2.14 and 2.18 for the open
system. It is also observed that pressure equilibrium is reached at every station
values at steady state due to absence of irreversible losses. As observed in Figure
2.21, the pressure response at stations 6 and 7 are very close, almost identical
in value. This validates that no flow boundary condition was maintained at the
far end (%\m: L= 0), requiring the variation of the pressure along the soil at that
neighborhood to be minimum. The variation of the pressure profile at selected times
of Figure 2.21 is shown as snap shots in Figure 2.22. The time to reach steady state
is observed from Figure 2.21 as, t; = 1000s. The pressure profile shown as snap
shots were selected for time steps of ¢ = 0,0.1¢7,0.2t,0.4¢; and ¢y.

As observed, the initial pressure distribution along the sample is uniform at
5psi. The sample is then loaded at a constant 8psi on one boundary (1) under
closed boundary conditions.

The slope of the pressure profile curves at the z = L are all zero (%h:L = 0),
as expected for closed boundary conditions. It is also observed that the majority of
change (increase) in pressure values occur at a time period less than the first half

of the time required for steady state conditions and equilibrium to be reached.
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Figure 2.21: Closed system pressure response under loading stage.
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Pressure drop - unloading The unloading stage expressions stated in the re-
lationship (2.2) are also valid under closed boundary conditions. The system is

initially at equilibrium with uniform pressure distribution of Uy = 8psi.

Ay | n0 On
| ux0)=8psi | I WL ] I
: ® o o o o e @
u(@n=5psi| |du/dx=0 (% (% (% (% (%
k%)
Z
o
-
)]
D6 o s R By
Q
o - O N
—_———
4 T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Time (sec)

Figure 2.23: Closed system pressure response at unloading stage.

To unload the pressure at x = 0 boundary is set to U = 5psi and the pressure
response is recorded as shown in Figure 2.23. The snap shots of the pressure profiles
are given in Figure 2.24 at the similar time steps as before. It is again observed
that majority of the pressure variation occurs before the first half of the time period
required to achieve steady state and equilibrium.

The tests described above were conducted using the same soil sample. It should
be noted that numerous tests similar to these were conducted on dissimilar soil
samples to fine tune the experimental procedure. The experimental responses for

various soil samples are then used in conjunction with the simulated response to
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Figure 2.24: Pressure profile for unloading stage under closed boundaries.
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obtain the desired soil parameters as described in the following chapters. The tran-
sient response of the system is used in this manner to compensate for the lack of

ability to measure flux measurements under the closed boundary conditions.

2.5.2 Temperature gradient application

The transient distribution of the temperature in soil under the applied thermal
gradients is discussed and typical behaviors are demonstrated. These experimental
data are also used in conjunction with the numerical simulation to obtain the desired

soil properties.

Temperature increase - loading

Temperature increase is applied by means of rod type electrical heaters as discussed
previously in this chapter. The heat controller and the power units are calibrated
to achieve consistent and smooth rise with little fluctuation about the target tem-
perature. The temperature profiles presented in this section are obtained with heat
sources embedded in the soil specimen. The power input is calibrated to obtain
30°C at 20V input. Larger voltages, shorten the temperature rise time but result
in an oscillation about the target temperature within the set bounds.

The embedded Firerod heaters are the smaller in diameter (1/8in) than the
reservoir heaters. They are rated at 120V for Wispy = 25 W. Using the relationship

between the powers and the applied voltages, as shown in equation (2.3) below:

2

Wy = W, (%) (2.3)
the corresponding power for the applied 20V is obtained as Wyyy = 0.6944 W. This
corresponds to a Watt density of approximately 3.4532 W /cm?® using the effective
dimensions of the heater (the watt density of the heater at 120V is 13 W / cm?).
The applied Watt density or total wattage has no particular significance in the
experimental stage except to obtain a stable temperature control with minimal

oscillations. Recording steady temperature data is important since it is collocated
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Figure 2.25: Closed system temperature response for applied 20V.
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with the numerical solution and undesired oscillations can affect the subsequent
analysis.

The typical response from loading stage tests of soil samples with two different
heater locations are presented. The location of heater and the orientation and
numbering of measurement stations (thermocouples) for each test are provided on
each graph.

The number of available data acquisition channels limited the number of temper-
ature measurements along a sample, resulting in 8 to 9 thermocouple measurement
locations. These locations were strategically selected and placed to obtain contin-
uous temperature profiles with the available number of measurement channels for
each test.

One of the heater locations was selected as the left end of the soil specimen
coinciding with the first pressure station along the sample (Figure 2.25). The 8
thermocouples are placed as shown in Figure 2.25. The number 2 thermocouple
coincides with the heater location and measures the heater temperature and also
provides feedback for the closed loop control of the heater.

The second internal heat source location is shown to be at the center of the
soil sample to take advantage of the symmetry and the relative ease in numerical
discretization and collocation of the experimental and numerical responses.

The thermocouple locations with the heat source placed at the center of the
specimen are illustrated in Figure 2.27. The temperature distributions with time
under the loading stage of the heater are shown in this figure also.

Figure 2.26 shows the temperature profile along the soil sample (measurement
stations) at the same time intervals used previously in the hydraulic gradient appli-
cations. Since the sample is un-insulated, convective heat loss on the surface does
not allow uniform distribution of the temperature. The steady state is approxi-
mated as the time when little or no changes occurs in the temperature at a given
point. It is estimated around 200 min as observed in Figure 2.25.

Figure 2.27 shows the transient temperature profiles of the soil, where the heater
is located at the center of the sample and the thermocouples cover only the left half

portion starting from the heater location. The temperature profile along the left
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Figure 2.26: Temperature profile for t ;= 200 min, loading stage under closed bound-
aries.
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half of the sample is shown in Figure 2.28. The time steps are selected again as
t=0,0.1¢7,0.2t;,0.4t; and t; are used as the rest of the cases shown before. Steady

state is observed at approximately ¢; = 150 min.
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Figure 2.27: Closed system temperature response for heater located at center.

The two test cases above demonstrated the robustness of the system to changing
initial conditions. The following section provides typical responses for the cool-down

(unloading) stage of temperature gradient.
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Figure 2.28: Temperature profile for tf=150 min, loading stage with heater located
at center under closed boundary conditions.
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Temperature decrease - unloading

The cool-down period is initiated by turning off the heater after a uniform distribu-
tion of temperature along the sample is obtained. The transient temperature distri-
bution with the case of heater close to left end of the sample is recorded as shown in

Figure 2.29. Free convection over the un-insulated cylindrical surface causes the soil
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Figure 2.29: Closed system temperature response for cool-down (unloading) stage.

system to come to equilibrium with room temperature at approximately 200 min.
The corresponding temperature decay profile along the sample for the stated time
steps is shown in Figure 2.30. Figure 2.31 represents the cool-down period of the
sample with the heater located at the center. The corresponding profiles at selected

time steps is shown in Figure 2.32.
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Figure 2.30: Temperature profile for t;=200 min, cool-down stage with heater lo-
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Figure 2.31: Closed system temperature response for cool-down stage with heater
located at center.
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2.6 Concluding remarks

The experimental set-up and components are described in this chapter. The vari-
ous test types and their relevance are mentioned. Other non-destructive tests are
conducted under various boundary conditions. The experimental measurements are
used in conjunction with the numerical results for the parameter identification pur-

poses in the coming chapters.
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Chapter 3

Analytical Formulations and
Model

The conservation equations for the transient response and the coupled flow under
thermal and hydraulic gradients are derived. In this chapter the conservation equa-
tions are obtained for a two-phase porous medium. They include mass, linear and
angular momentum, and energy conservation of the system.

First, the thermodynamics expressions such as the Gibbs and Helmholtz free en-
ergy are used to obtain the relationships between the entropy, internal energy, work,
and the other conservation expressions. The entropy conservation equation together
with the internal energy equation is used to separate the rate of entropy change and
the entropy flux, which typically allows expressing the fluxes and gradients (forces)
of coupled flow components in an open system. This method of determining fluxes
and forces by the use of the entropy source term generates a set of coupled flow
expressions where the coupled coefficient matrix is symmetric.

The remainder of the chapter states the constitutive laws governing the stress-
strain relationships for the porous media and the fluid flux expressions for a Newto-
nian fluid. Finally, a simplified set of governing equations based on a list of stated
assumptions are obtained. The boundary conditions are discussed briefly and left

for further discussion in the numerical methods section. Following is a list of the
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3.1. GENERAL FORM OF CONSERVATION EQUATIONS

notations used in the analytical equations (table 3.1).

ﬁa? ‘704

PV
pz’aﬁfaﬁs
pz"ﬂ pfa ps

o' ol o

’

RS
-

[V

12 0 0 8wl

Jo
‘z;iajfajs
i
Ja
K

n;,n, (]‘ - TL)

Table 3.1: List of notations

Isothermal compressibility

Thermal expansion

Volumetric strain

Chemical potential
Component density, velocity
Total density, Velocity
Partial phase density,
Pi = Nip;
Material density, fluid, solid
Phase stress components

Effective stress
Fluid phase shear stress

Dissipation function

Soil skeleton compressibilty
Volumetric heat capacity
Void ratio

External body force/mass
Gravitational constant
Component flux in a phase
Diffusive phase flux
Conductive energy flux
Heat Flux

Hydraulic conductivity
Phase porosity, fluid, solid

Fluid hydrostatic pressure
Fluid flux (an)

Energy production rate
per volume
Entropy, specific entropy

Phase temperature

Specific internal energy

Phase mass avg velocity

Relative velocity, flux
Solid displacement vector

Coupled forces, gradients

3.1 General form of conservation equations

The general form of conservation equations are presented below. These equations

are later used in formulating the pertinent conservation equations for the two-phase

deformable porous media. The general conservation forms for a scalar (a) and a
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3.1. GENERAL FORM OF CONSERVATION EQUATIONS

vector quantity (ff), are used to describe the governing processes.
General form of the conservation law (Figure 3.1) for a scalar density (a) of a
quantity per unit volume is [13]:

@dV=—/aVa.dfT+/Iadv (3.1.1)
v Ot A v

where [, is the source term per unit volume per unit time. Applying Green’s

transformation to the surface integral term in equation (3.1.1):

Oda -
SV = /V [—v (V) + Ia} v (3.1.2)

For the arbitrary volume the local form becomes:
8 —
LoV aV)+ 1, (3.1.3)
ot

The substantial derivative of (a) in terms of the time derivative at a fixed point is

expressed as:
da  Oa

dat ot
The flux term (divergence term on the RHS) in equation (3.1.3) can be separated

+V.-Va (3.1.4)

in to its conductive (diffusion) and convective terms, so that:

Oa

5 ="V (V) =V o+ 1, (3.1.5)
or ;

d—j:—av-V—vjﬁIa (3.1.6)
Where the diffusive flux for component a, j, = a(Va — 17), can be expressed relative

to the velocity of the center of mass (17 = ZZ“;/G)

Similarly, the conservation equation for a vector quantity ff, takes the following

form: .
— = V- (AV)=V-j + 1. (3.1.7)
ot 2

or .
A (vv) =V o+ 1 (3.1.8)



3.2. CONSERVATION OF MASS

0 Flow of @ (-direction)
av, +a—(avz)¢ ) 3
y | /gvy +a_(avy) av, —av, — ﬂ(aVX)de dz
av, y Flow of @ (y-direction)
— -
A av, +—(aVv
) % @v)  [av,-av, 3y (av, )}dx dz
/aVy Flow of @ (z-direction)
av, 3
aVv,—aV,——I(aV, )de dy
0z
3a Rate of production of @
[=2dv=—]aV,-dA+ I, dv |, dxdydz
Vv Jt A Y %ate of accumulation of @
dV=dz.dy.dz Jda
dA is the surface area element. ot dxdy dz

Figure 3.1: Elemental control volume for conservation of a scalar quantity ”a”.

3.2 Conservation of mass

General form for the conservation of mass of a multi-phase system, where the pro-
duction term for the phases (I; = 0, for solid and fluid phases) is neglected, can be
expressed similar to equation (3.1.3) [11]:

9p;
ot

where p; is the mass of a phase in a given volume, expressed as: p, = p;n;, and n;

=—V-(p,V}) (3.2.1)

is the ratio of the phase volume to total volume (i.e. porosity of solid phase). The
following volumetric relationships valid for the saturated two-phase porous system

are considered:

ng=mn=Vy/Vyp Fluid phase fraction
ns = Vy/Vr = (1 —n) Solid phase fraction (porosity)

Doispsni=1 Phase fractions, summed over the multi-phase system
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A continuity equation for a component («) that might be present in the phase i:

o _
ot

where I,,;, is the production rate of the component («) in phase i which may be due

V- (BV) =V o+ L (3.2.2)

to its interaction with the rest of the mixture. Equation (3.2.2) can be expressed in

terms of the substantial derivatives:

dp - >

d_ta =0,V Vi=V-jo,+ 1y (3.2.3)
The 7, is the mass density of a component («) that may be present in phase i,

j’a = ﬁa(Va — ‘Z) is the diffusive flux for component « in phase i, where V, is the

velocity of component («) in phase i.

3.2.1 Conservation of mass for solid and fluid phases

The continuity equations for solid and the fluid phases are expressed as follows,

where p, = p,(1 —n) and p; = p;n are the partial masses for each phase.

W = v [p 0 =)V (3.2.4)
a(g;n) =_V. (pfn,‘?f) (3.2.5)

The balance of mass for the entire system (p =%, =3 pm; and pV = 2@17;)
can be obtained by summing the equations (3.2.4) and (3.2.5):

XYV =0 (3.2.6)

The solid phase conservation equation (3.2.4) can be further simplified if the solid
phase density (p,) is assumed to be a constant. This is based on the assumption
that the changes in density of the solid particles subject to stresses and temperature
fields are negligible compared to the changes realized by the overall soil skeleton.

Then:
d(1—n)

=V [(1 —n) V} (3.2.7)
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Figure 3.2: Balance of mass diagram for fluid and solid phase.

The balance equation for fluid phase can also be modified in terms of relative
velocity V, = n(‘?f — ‘75), which is identical to Darcy’s flux term as shown in Figure

3.2 and the equation below:

O _ 00
o~ ot
Solid phase mass balance equation (3.2.7) also represents the porous medium’s rate

~ V- (pVe) = V- (np, V) (3.2.8)

of dilatation. A typical form of the mass conservation equation for all the compo-
nents (which will be referenced later in the entropy equations) is in terms of the
mass fraction of a component (a): w, = %‘, where p,, is the mass of component «

per unit volume and ) w, = 1 for all the components present:

dw,
Pt

=V Ju (3.2.9)

3.3 Conservation of linear momentum

Conservation of the linear momentum describes the forces acting on a body which

cause it to accelerate. Under the equilibrium conditions, the acceleration of the
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3.3. CONSERVATION OF LINEAR MOMENTUM

body will be zero. Using equation (3.1.7), where the vector quantities are A = ,Z)ZVZ-,
I = piﬁ ; and F; is the resultant external body force per unit mass of the phase,

the conservation for the multi-phase system can be written as follows [13]:

% —V - (5,V;V™) + p,F; + Internal Forces (3.3.1)
3(;(;}‘/2) =-V- @VZ‘Z — @Vi (‘72 — Vm)} + pZF + Int.Forces (3.3.2)
% = V- (p,ViV; — n; o') + 2, F; + Int. Forces (3.3.3)

2 7, ”

where is used to represent the diffusive flux of a phase 7 and, ]:m = ,0172(172 — ‘72’”)

of the momentum equation . The internal forces between the phases per unit volume
are [, o' dA+p,F7
The use of mass balance equation (3.2.1) in reducing the momentum balance

equation (3.3.3) is shown in Figure 3.3.

a(/(_;‘\7‘)=—V~(pi\7i\7i—nioi)erilfi+Int.For<:as

7 240 2P V() -7+ )+ F +intForces
P.aa\: —\Z[aaft)'+v(p,\7,)] oV, - (VV )+ V- (ng)+plF +Int.Forces
aa”t +V-(5,V)=0 Mass conservation equation for phase i
pi)\z— -pV, (VV)+V (na)+p,F|+IntForces

Figure 3.3: Linear momentum conservation for phase i.

oV, 5 o o :
ﬁiﬁ = —p;Vi- VVi+ 0, F; + V - (n,0") +Int.Forces (3.3.4)
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The equation (3.3.4) is expressed in terms of the indical notation as below by ne-

glecting the internal forces between the two phases:

~0(Ve), O (npoh, B 0 (Vi)

+ Pr (Fk),

J

(3.3.5)

where the index k represents the k' phase, (k=1,2).
The conservation of linear momentum, equation (3.3.5), can be expressed as the
total derivative given below:
v, _ -

i ar piFi+V - (o) (3.3.6)

As a result, the linear momentum equation for each phase becomes:

_dv, _ 4 .

sy = pFs +V - ((1 —n) o ) (3.3.7)
_dV; =
Pyl =7 Fy+ V- (no) (3.3.8)

It is more appropriate to obtain the conservation of momentum equations based
on the average motion of each phase, as in equations (3.3.7) and (3.3.8), rather
than the constituents (components) in each phase. In general, identifiable interfaces
between different phases do exist, but seldom such a physical interface is present
under miscible conditions for the components in each phase. Furthermore, the
dynamics of component motion is primarily influenced by the bulk phase kinematics
and not the motion of different components relative to one another within each
phase. Also, components in a phase are assumed to exist only in trace quantities
and the constitutive rate laws relating the diffusion of the components with respect
to the average motion of each phase are often used to express their transfer. This
justifies the expression of the linear momentum equation in terms of the phase

velocities alone.
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3.4 Conservation of angular momentum

The conservation of the angular momentum is a measure of unbalanced forces and
couples which cause the body to rotate. This representation for simple bodies with-
out couples reduces to a statement of a symmetric stress tensor at a point. In the
two- and three-dimensional analysis of mixtures, interaction of phases within an
element may result in the development of unbalanced stress tensors and vorticity
for each phase [11]. However, a macroscopic one-dimensional flow does not account
specifically for vorticity. The effects may still exist as a microscopic phenomenon
but will not effect the symmetric nature of the stress sensor at the macroscopic level.
Therefore the angular momentum conservation expressions will not be developed in

here.

3.5 Conservation of energy

The heat energy is associated with the temperature and it is distinct from the
kinetic or the potential energies. Heat energy flows from one neighboring element to
another when the temperatures are different. Internal energy expressions in terms
of local thermodynamics state are used to express the heat energy of the medium.
The energy conservation and the corresponding components of internal energy are
obtained for a representative unit volume.

The specific energy density per unit volume of a phase ¢ comprises of two parts:
the specific internal energy and the specific kinetic energy. The total energy balance
equation [39], [25], [32] for an arbitrary volume are derived using equation (3.1.3)

in terms of partial specific quantities:

a _ ‘_/;-2 — ‘7;2 s ~E

v {17 (ﬁiﬁé) +V. (Fj 17) +ﬁz~rE} (3.5.1)

where the components are:
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conductive energy flux (due to heat conduction and molecular diffusion)

7B .
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r . rate of energy production per unit volume.
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Figure 3.4: Conservation of internal energy diagram for phase i.

The conservation of energy equation (3.5.1) is reduced by combining it with
the mass balance (3.2.1) and the momentum balance (3.3.6) equations as shown in
(3.5.2)

Figure 3.4.
ﬁi% = —p.Vi Vu; =V - j+ 5" (VV;) + 5"
The rate of change of internal energy of the phase can also be expressed in terms of
the total derivatives as shown below:
_ du; -5 _i > - E
Pt ==V it ot (VW) + 7 (3.5.3)
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3.6. THERMODYNAMICAL PROPERTIES

Furthermore, if desired, the Ff term for the fluid phase can be broken down into
shear and hydrostatic terms and expressed as 5/=7/ —p §. Then the internal energy

equation for the fluid phase can be rewritten as:

du = _ 3 _ 3 —
ﬁfd—tf =-V- jf-ﬁ- 7':f: VV;—pV - Vi + pfrE (3.5.4)
The advantage of representing the rate of internal energy as in equation (3.5.4) is
the separation of its two components; the irreversible rate of internal energy gain
by shear, and the reversible rate of gain by compression.
The total internal energy balance of the system is obtained in equation (3.5.5)

by summing the energy terms for each phase (solid and fluid):

du

P = A VAY a: vV + pr? (3.5.5)

3.6 Thermodynamical properties

The basic concepts of the theory of irreversible thermodynamics, as they apply to
the problem at hand, are outlined in this section. The coupled flow laws in the
form of proportionalities that describe the irreversible processes are also discussed.
When two or more of these irreversible processes occur simultaneously within the
same system they lead to coupled effects. The following sections will illustrate the
use of the irreversible thermodynamics laws in expressing these coupled processes

in porous media.

3.6.1 Thermodynamic potentials and internal energy

Gibbs, Helmholtz free energy and Gibbs-Duhem equations [35], [9], [24], [13], [36]
are the main relations used in obtaining the final form of the governing equations.
The Gibbs equation stated here represents the internal energy in terms of changes

in total entropy, volume and mass of an open system:

dU = TdS +6dV + Y _ pdm, (3.6.1)
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3.6. THERMODYNAMICAL PROPERTIES

The specific quantities (per unit mass) can be obtained for each of the variables in
equation (3.6.1). These can then be used to express the Gibbs equation in terms of

the specific quantities, as follows:

U=mu % =5F =pu
S =ms % = =ps
m; =mw; == pw;
pdu = pT'ds + %dV—l—pZ,uidwi (3.6.2)

Figure 3.5 shows the relationship between the volume ratio change and the void ratio
change, which are used in replacing the volume terms on right hand side (RHS) of
the equation (3.6.2):

o
(1 + 60)

or, re-expressing the equation (3.6.3) per unit mass of an open system:

pdu = pl'ds +

de + p Z w;dw; (3.6.3)

1 o
du =Tds + —
p(1+eo)

The Helmholtz free energy is expressed in terms of the specific quantities as

de + Z p;dw; (3.6.4)

following:
F=u—sT (3.6.5)

The differential form of equation (3.6.5) is used to express the cross relations between
the partial derivatives with respect to the independent variables (s,e,w;), often

referred to as the Maxwell’s relations [8]:
dF = du — sdT — Tds (3.6.6)

Another representation for the Helmholtz free energy is obtained by substituting

equations (3.6.4) in equation (3.6.6):

dF = —sdT + +—C

de + 3 pydw; 3.6.7
p(1+ep) Z : ( )
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Ratios, In terms of :
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Vs = Volume of solid phase 1 1-n

V.= Volume of void space e =(V./Vs) n=(V/ Vi)
Vi = Volume of fluid phase e
Vr = Total volume 1l+e 1

Relationship between dV, de and dn:
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V: 7 1+eo
Vr 1+eo, 1 or
4V _ gn
\

Figure 3.5: Two phase, saturated porous media volume change diagram.
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3.6. THERMODYNAMICAL PROPERTIES

The differential forms of the F' = F(T,e,w;), u = u(s,e,w;) and s = s(7' ¢)

terms are expressed as:

ou ou ou
AU = g0, d5 + |5 i e oz d; 6.
u 88\,7,s+ae\,ze+§jjawj|,,k,k# w; (36.8)
OF OF oF
AF = o0, dT + |7 wid e e d; 6.
8T| y + ae |T7 (3 €+;aw‘7‘yy k:kj#] w] (369)
ds — g—;\edT + %Tde (3.6.10)

Note that the contribution of the component fractions (9s/0w,) to the entropy
change are neglected in equation (3.6.10). The following relationships are obtained
by combining the equations (3.6.7) and (3.6.9):

oF OF 1 & oF
a—T|e,wi = =5 %|T,wi = ST+ <o) aT‘s,e,wk,k::,éj = 1 (3.6.11)

The first term on the RHS of the equation (3.6.10), which is the expression for

J

the variation of entropy with respect to temperature, can be re-written following

Os Os or
= = (a_T‘e> (%|e> (3.6.12)

Equation (3.6.12) can be used here to introduce the two coefficients for isothermal

the chain rule:

compressibility () and thermal expansion (k) [13], where & is positive in tension:

B = % (g—pa) = (17160) (g—;la) (3.6.13)

) (E) e

The property of the exact differentials is used to combine equations (3.6.10) and
(3.6.11) to obtain the cross (Maxwell) relationships:

0*F Os 1 90(a/p)

0Tde™ ~ e (1+e) OT (3:6.15)

The variation of the internal energy with change in temperature can also be ex-

pressed in terms of the specific heat (¢,) [13]:
ou T Os
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3.6. THERMODYNAMICAL PROPERTIES

The Maxwell relationships in equations (3.6.15) and (3.6.16) are used in the
differential form of entropy equation (3.6.10) to obtain the following:

_ L G/
Tds = ¢, dT T(1 e OT de (3.6.17)

Introducing the expression obtained for T'ds in equation (3.6.17), into the internal

energy expression for an open system, (equation 3.6.3):

o pT 0(a/p)
pdu = pc,dT + {(1 t o) (ter) or de + p; w;dw; (3.6.18)

The time derivative of the equation (3.6.18) is:

du T o pT 8((7/,0 dw;
_ e _ 3.6.19
Pa = Par {(1—#60) (1+ eo) + Z Hiat (3.6.19)

Another form of expression for rate of change of internal energy for a porous

system was given in equation (3.5.5):

Combining equations (3.5.5) and (3.6.19) and rearranging:

~V-jP4 5 VV+pr? =

dT o pT  0(a/p) dw;
Pear {(1 te) (Lte) OT |t +p22:“2 dt (36.20)
Then:
ar _
ST
“B - e 5 o pT  0(a/p) dw;
. : _ Wi 3691
Vet a Y A |:(1+€0) (14+e€) 0T dt pzi:uz dt (3.6.21)

The equation (3.6.21) can be further reduced to equation (3.6.22) by taking advan-

tage of the nature of the symmetry of the stress term (6), and the replacement of

the divergence VV term as shown in the diagram in Figure 3.6:
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0
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Figure 3.6: A void ratio change diagram obtained from the symmetrical stress tensor

and volumetric strain rate of porous media.
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T - pT (a/p) de dw;
pev—r ==V + <(1+60)) o a TP —pZm (3.6.22)

Equation (3.6.22) is the heat balance equation. The last term on the RHS can
be replaced with V - jz using the conservation of mass of a component (equation
3.2.9), resulting in Y, V- jz The subscripts k£ and « are added to the heat balance
equation above representing a particular phase, and the components within that

phase, respectively, so that:

3 dT, . 2T \ 0(c “/p,f) de 3 dw,
’ = _V- E (3.6.23

Note that the interphase conduction of heat is neglected in equation (3.6.23). It
is also assumed that the solid and the fluid phases are at the same temperature at
the same time and location, T, = Ty = T' . The assumption of equilibrium for the
temperature of the two phases at a given time and space results in a heat balance

equation for the entire system, (equation 3.6.22). The lumped parameters (averaged

coefficients); p = 37, = np; + (1—n)p, or pe, = X7, (c2); = npye, + (1= n)p,ca,.
are used to characterize the medium.

3.6.2 Entropy balance

The balance equation for the total entropy in an arbitrary volume is:

[, 209 2(ps)

ot
where j’s is the entropy flux and ¢, is the entropy production rate term for an

V=—/[,j-dA+ [, ¢,dV and — _V.j 40, (36.24)

arbitrary volume. The partial derivative on the LHS of equation (3.6.24) can be

reduced to the following expression, as shown in the diagram in Figure 3.7, as well:

d (ps) ds -
5 P V- (,OSV) (3.6.25)

Equation (3.6.25) is obtained from d(ps)/dt = pds/dt + sdp/dt and by replacing the
second term on the RHS of equation (3.6.24) by the RHS term in the conservation
of mass equation to obtain —V - (psV).
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Figure 3.7: Entropy balance diagram

The time derivative of the Gibbs equation (3.6.2) for an open system is expressed

as:
ds du &adV dw;
o =ry —va P : i (3.6.26)
ds du g de dw;

T = p— — — — — 6.27
Pae P (14 ep)dt pi Pt (3:6.27)
The VV term in the internal energy balance equation (3.5.5): pdu/dt = —V -

jE +prP 4 : vV , represents the symmetric part of the time derivative of the strain

tensor (d e/ dt), as was given in the Figure 3.6 earlier. The expression of the rate
of entropy change is obtained by incorporating equations (3.6.27) and (3.5.5) in to
equation (3.6.28) and using the property illustrated in Figure 3.6, so that:

ds - oR— o de dw;
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3.6. THERMODYNAMICAL PROPERTIES

ds

dw;
pTa = V-4 prf - PZNZ (3.6.29)

The separation of the entropy equation and the flux components enables a clear
definition and determination of the valid forms of the flux and the corresponding
gradients (forces) for an open system. Such a separation becomes possible when the

expression for pds/dT" by equation (3.6.25) is replaced in equation (3.6.29):

ag-z)JFV ( v) r}[ v-jPtpr® —pZuzdw’] (3.6.30)

The last term in equation (3.6.30) is replaced by the conservation of mass expression
(equation 3.2.9):

o= () + 7

Equation (3.6.31) can be rearranged to take the form of the entropy balance equation

—V - FE 4 prt Z“ (—v - j)] (3.6.31)

(3.6.24). The RHS terms are rearranged such that they can be expressed in terms

of the divergence of a flux and the rate of entropy production term.

vt "\ 5"

= -V <? T2 -(VT) (3.6.32)

i (55 - pidi\ L = (%)
Blov.7)=-v. (B 4+7 v(& 3.6.33
T J ( T > +7i- V(7 (3.6.33)
Replacing the expressions (3.6.32) and (3.6.33) in the entropy equation (3.6.31) and

rearranging:
d(ps) . g paji | J° pr?

o~V T | R (-0 () +  (08)

This form of the equation helps to define the entropy flux, j’s and the rate of entropy

production ¢, for an open system (neglecting the internal rate of energy production
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term pr” /T)) as follows:

_.’E e
- o 1Y e Madi
Js=psV + Z - (3.6.35)

The dissipation function ®; = T'¢,, has the dimensions of free energy per unit time
and is the measure of the rate of local dissipation of free energy by the irreversible
processes. The dissipation function can also be used to express the sum of the
products of flows (fluxes) and forces (gradients), (<I>S =S, Jk- X k)

-

]- i > - i
czﬁs=fzkjyk'xk=—JTT-(VT)—;%-V(%) (3.6.36)
and o
2 J = My
O, =T¢, = ijyk X = =7 (VT) - Z] TV (?) (3.6.37)

3.7 Phenomenological relations

The dissipation function, or as stated previously, the rate of entropy generation
equation (3.6.37), obtained for an open system, provides the proper form of the
flux and the corresponding forces. This is the basic requirement for validity of
Onsager’s reciprocal relationships in expressing the phenomenological relationships
for a two-phase multi-component system [29], [31], [36], [19], [24]. In here, linear
relationships between fluxes and forces are assumed and they are illustrated by a
symmetric coupled coefficient matrix.

The flux and force terms for an open, two-phase, multi-component system are:

j;- = Zszch + Lz’EXE

k=1
Jr = Z LewXy + LepXe (3.7.1)
k=1
where the fluxes are:
j; = material fluxes of the species

jr = energy flux
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3.7 PHENOMENOLOGICAL RELATIONS

and the force terms (X'Z) are obtained from the dissipation function equation
(3.6.37).

3 ) T
X, =TV (%) and  Xp= —VT (3.7.2)

The material fluxes for species can be expressed in terms of n — 1 independent flows:

n—1
J: = ZLik ()Zk - Xn) + LiEXE
k=1

n—1
jo =3 L (K = %) + L Xy (3.7.3)
k=1
where j, = — 327" /i is the expression for the n flux term.

The two-phase multi-component flux and force relationships can be reduced fur-
ther to obtain the relationships in terms of the fluid and energy flux. This process
of heat and fluid flow in a two phase system is called ”"thermo-osmosis”, which is a
special case of thermal diffusion. The dissipation function for a single component

system, indicating that no species are present in the fluid phase (two phase system):
®, = ji - X+ jr - X;

Je - (—%) + (—Tv (%)) (3.7.4)

The thermodynamic energy flux ]E can be replaced with the calorimetric heat flow
[31]:

D,

Ja =38 = hyls (3.7.5)
where
Jjq = the heat flux
jr = the energy flux
hy = the specific enthalpy of fluid (water)

jr = the fluid flux
The transformation presented above requires the gradients (forces) also be changed

since the dissipation must remain invariant in the transformation. The substitution

required in this case [19] is:

o, =7, (—g) +hyy- (—g) +7p- (-TV (%)) (3.7.6)
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Expanding the fluid chemical potential term (p/) [8]:

X = (-1v (%)) — by (%) — VYl (3.7.7)

where the subscript 7" indicates constant temperature conditions. The dissipation

function for the fluid and heat flux reduces to its final form as follows:
- vT -
Qs =Jg- (‘7) +3r - (=Vaylr) (3.7.8)

The resulting fluid and heat flow equations are then obtained in the form of coupled

flow expressions:

3 VT
g =—Lss-Vpglr — Lyq - (7>

- vT
Jq=—Lgs - Viiglr = Lgq - (T) (3.7.9)

The change in chemical potential of fluid (water) at constant temperature can be
evaluated from the Gibbs equation. The transfer of a single component, fluid, is
equivalent to:

Viglr =vyVp (3.7.10)

The substitution of the equation (3.7.10) for the chemical potential of fluid in the

coupled flow expressions (3.7.9) results in the following set of equations:

- vT
Jr =Ly - (=vsVp) + Lyg - <—7)
- vT
Jq=Lqs - (=v§Vp) + Lgq - (_T> (3.7.11)
where
vy = specific volume of the soil fluid (water at saturation is i)
p=  soil fluid (water) pressure resulting in fluid flow
T = absolute temperature value

The coefficient (L,,/T') is equivalent to the Fourier thermal conductivity (\)
and L,; = Ly, is the coupling coefficient between fluid and heat flow. The term
on the LHS of the fluid flux equation (3.7.11) is the relative fluid flux due to the
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application of hydraulic gradient, (identical to ¢. of equation 3.9.8, ¢, = — K

5
-V (%) ). Equating the expressions for the fluid flux under hydraulic gradient for

a homogeneous isotropic medium will result in:

_ K _ k
Lypvp =5 o Lyvp=o

where K is the hydraulic conductivity, k the permeability coefficient of the porous
media ( K = k22), and p, is the viscosity of the fluid.
Ky f
The coupling coefficient Ly, can be expressed as [12]:

Ly, =-DT* (%) (3.7.12)

where D is the isothermal soil water diffusivity and n represents the volumetric
moisture content (identical to porosity for a saturated two-phase system). At nor-
mal temperature levels the term (g—;ﬁ) is negative, thus making Ly, positive. This
indicates the presence of positive coupling where, the contributions of two gradients
are added causing an increased fluid and heat flux.

The potential fluid flux can also be expressed for hydraulic flow in terms of
transient pressure distribution (and hydraulic conductivity) in a deformable porous
media via the mass and linear momentum conservation equations. However, it is
more appropriate to first define the stress components of the two-phase system,
followed by the pertinent assumptions and simplifications made in expressing the

potential fluid flux term.

3.8 Stresses in porous media

The stress components of a deformable two-phase porous medium are derived for
each phase using the strain producing effective stress.
The stress o (macroscopic total stress) used in the conservation of linear mo-

mentum can be expressed in terms of the contribution of each phase stress[2]:

o= an o'=n gf +(1—n)o® (3.8.1)
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where (_)'f and o*are the stresses in the fluid and the solid phase. For the fluid phase:

gf:zf —ps 0 (3.8.2)

zf represents the viscous stress, and p; the compressive pressure. Note that the
stresses in both phases are expressed as positive for tension and the fluid pressure
term positive for compression.

In the mechanics of a porous media of particulate matter, the stress in solids
(gs), is not the strain producing stress based on the assumption that the deforma-
tion is produced by the rearrangement of grains, due to slipping or rolling which is
much larger than the compression of the solid material itself. The intergranular, or
effective stress is introduced by subtracting the pressure in fluid from the stress in
solid (neglecting 7/).

) o= (1—n)o® —np; 6

o= (1—n)|o® +py 5} —py o

c_r:gs/ —ps 6 (3.8.3)

and the effective stress is obtained:

7

$=(1-n) [gs +py ﬂ (3.8.4)

[BS]

where again, the stresses are positive in tension and the pressure is positive in
compression. In here, the conventional soil mechanics notation will be used for
stress terms where both are taken as positive in compression, and the negative sign

before the pressure term in equation (3.8.3) is replaced as:

!

:gs +pf

[BS]

(3.8.5)

I

A two phase (saturated) deformable porous system under constant applied total
stress, o, requires that the change in the fluid phase pressure is equal in magnitude to
the cha_nge in effective stress of the porous skeleton. One-dimensional consolidation
theory takes advantage of this by replacing the change in effective stress term by

the equivalent change in fluid phase hydrostatic pressure term.
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3.9 Constitutive relations

Constitutive relationships for the stress-strain and the relative fluid flux are derived

for a deformable porous media.

3.9.1 Compressibility

The deformation in porous media is due to the realized effective stress and the

change in the porosity of the medium due to this stress value:

n=n (O'Sl) (3.9.1)

The macroscopic displacement vector for solids ,, and the non-zero velocity of the

soil particles ‘75 for a deformable medium are related as:

l

dii

g 3.9.2
o (3.9.2)

The solid phase mass balance equation (3.2.7) obtained earlier can be rearranged

as: 0. )
~ 1 1—n
V. -Vy=— - 3.9.3
(1—-n) dt ( )
ds 0 ~
here — (...) = — (...) + Vs - V (...).
where 5 () = g5 () + V2- V()

The V - V; term is equivalent to the volumetric rate of strain (e = €, + €, + €
and ef= %), which is equivalent to that of the soil skeleton (f: %), since the
deformation of the skeleton is considered as the re-arrangement of the solid particles:

-~ d 1 ds(1—
v =E o (1=n) (3.9.4)

dt (1—-=n) dt
The mass balance equation (3.2.8) for the fluid phase is also re-arranged in five steps
as shown in Figure 3.8. As a result of this re-arrangement, the fluid phase balance
equation takes the following form:

dspf pf de —
= +{1+60 %'FV'(pf‘/T)—O (3.9.5)
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Figure 3.8: Step-by-step reduction of the fluid phase mass conservation equation
diagram.
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Figure 3.9: Fluid phase density and skeleton deformation dependence on pressure
and temperature diagram.

Equation (3.9.5) can further be simplified when it is reorganized as shown in
Figure 3.9.The coefficients 3,, 8, and a, used in Figure 3.9 are the isothermal
compressibility and the thermal expansion coefficient of the fluid phase, and the co-
efficient of compressibility of the porous medium, respectively. The effect of thermal
expansion of the solid skeleton (void space) is not included in this derivation. The
typical values of compressibility and expansion coefficients for water at 20 °C and
atmospheric pressure are, 3, = 4.6x107'°Pa™" and 3, = 2.1x10~* K~ [17]. Using
the relations shown in Figure 3.9, the equation (3.9.5) can be expressed in terms of

the coefficients above, where the fluid phase density, p;, is replaced as follows:

orT

Ay 8p B
<nﬁp+ 1+6o> 5~ OtV V. =0 (3.9.6)

3.9.2 Advective flux

The expression for the advective flux within the porous medium is derived. The

relative flux in the two phase fluid saturated porous media is:

g =V,=n (Vf -~ 17) (3.9.7)
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The expressions for fluxes are used in the conservation of linear momentum equa-
tion to obtain the dominating components of the potential flow regime. The mo-
mentum conservation equations (3.3.4) and (3.3.6) show the momentum transfer in
each phase. The external force contribution to momentum of each phase can be
neglected since the porous medium orientation is horizontal assumed to span the
same elevation. A Newtonian fluid phase is considered where the shear terms in
the fluid phase are related to the gradient of the velocity components. The rate of
change of momentum for fluid phase is expressed in terms of the momentum transfer
due to the pressure gradient, and the resistance to flow within the fluid and porous
medium.

There are two particular cases of simplified momentum equations. The first case
results in the typical form of the Darcy’s law by neglecting the inertial effects and

the viscous resistance in the fluid phase itself [2]:

; pé
G=V,=—K - V|— (3.9.8)
Prd

where the coefficient K is the hydraulic conductivity, a second rank symmetrical
tensor, and the RHS term in the parenthesis represents the required pressure head
() to drive the fluid with a specified relative flux.

The other case represents the flow regime following the immediate onset of the
flow, where the inertial effects are larger than the viscous effects at fluid-solid inter-

face and inside the fluid, resulting in:

_av,

pfd—tf =-V. (np 2) (3.9.9)
The particular form of equation representing the physical state of the phenomena,
either at the onset or afterwards, is to be adapted in the final form of the fluid phase
mass balance equation as stated in equation (3.9.6). A summary of constitutive

equations are listed in Table 3.2.
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Balance

Mass

Momentum

Energy

Fluxes

Open

Single component

Constitutive

Effective
Stress

Volumetric

Strain rate

Compressibility of
Soil Skeleton

Phase
Solid
(3.2.7)
Fluid
(3.9.6)
Solid
(3.3.7)
Fluid
(3.9.8)
System
(3.6.22)

Component

Heat
(3.7.3)

Fluid

Heat
(3.7.11)

(3.8.5)

Figures
34 & 3.5

Figure 3.8

Equation
of State

Table 3.2: A set of system governing equations

Equation

Wz_v.[(l—n)vg}

(1, 25) %

Pl =pF+ V- (1=n) o)

V.= KV (pfg)

dr 0(/p) de
Pevigr = =V - 77+ ((1+eo)) oG o’

— B 4V .V, =0

Ji =kt Lk ()Zk - Xn) + LigX,
Jq p —1 Lk (Xk? - Xn) + qu)?q

. VT
g = Lygs - (—=vsVp) + Lyq - (—7

S vT
Jq = Lqy - (=vyVp) + Lyg - (_T>

o’ —(f—pfé
de_ 1 @
dt 1+€0dt
. = e
v T ap
py=p; (0, T)
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3.10 Simplified model

The governing equations listed above represent the physical processes in the porous
media due to the application of hydraulic and thermal gradients. The simplified
forms of these relations are used in the numerical simulations to obtain the numerical
thermal and hydraulic response of a physical system.

The simplifying assumptions were selected so that the experimental verification
of the processes were possible which included the measurement of a number of these
desired responses. These assumptions were selected to minimize the number of

unknown parameters required by the parameter identification process.

3.10.1 Simplifying assumptions

A number of simplifying assumptions pertinent to the system in hand were required
to allow for a realistic modeling and simulation of the processes. The variation of
some parameters were negligible compared to others in terms of their contribution
to the overall magnitude of the responses. In some cases individual parameters were
combined, to be represented in a compound form under a single parameter, which
provided a better control on the entire simulation and the subsequent parameter

identification process.

Assumptions

A.1 The solid phase particles are assumed to be incompressible, p, is constant.

A.2 The effect of Vp, is assumed to be much smaller than the time rate of change
of the fluid density.

A.3 The compressibility of the porous skeleton is much larger that the compress-
ibility of the fluid phase due to pressure (ﬁp) and temperature () in ground-water

problems.
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3.10. SIMPLIFIED MODEL

A.4 The two phase porous media under constant applied total stress requires that
the incremental change in the effective stress be identical to the change in the

hydrostatic pressure term in the fluid phase.

A.5 The inertial effects in the equation of motion (momentum balance) are ne-
glected compared to the viscous resistance for the cases with advective flow compo-

nents.

A.6 The viscosity effects within the fluid itself in the equation of motion are ne-

glected.

A.7 The hydraulic conductivity coefficient (K) is assumed to be independent of

location and is assumed constant for a homogeneous isotropic porous media.

A.8 The heat flux term fq is placed in the energy flux term (molecular) jE , ne-

glecting the energy transfer due to local molecular activities.

A.9 The conductive heat flux term for a closed system is represented by Fourier’s
law: fq = qu)?q, where X'q is the temperature gradient and the coefficient Ly, /T = A

for the thermal conductivity of the system.

A.10 The temperature values for both phases in one location are assumed to
be identical Ty = Ty = T'. This is based on the assumption of the relatively small
granular solid particles having high thermal conductivity and the fluid phase velocity
being relatively small, which causes the averaged temperature of the two phases to

be equivalent.
A.11 The single energy equation representing the energy balance for both phases is

expressed in terms of lumped parameters: p = np;+(1 —n) p,, A = nA;+(1 —n) A,
and pc, = npsc,p + (1 —n) pycys.
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3.10. SIMPLIFIED MODEL

A.12 One dimensional system along the long dimension of the physical set-up and

the direction of the applied gradients.

3.10.2 A simplified system

The simplified system of the governing equations is presented. As was discussed pre-
viously, in the experimental methodology segment, the elimination of material fluxes
under the closed boundaries minimized the disturbance to the original structure of
the soil skeleton.

In the following set of equations, the assumption number (A.3) is already applied,
where the deformation of the two phase porous system is only due to the potential
compressibility of the soil skeleton, which is used to obtain the strain inducing
(effective) stress. The assumptions number (A.1) and (A.2) are also in effect in the
current form of the equation (3.9.6). The compressibility of the fluid phase itself can
be ignored from the same equation under assumption number (A.3). The advective
fluid flux equation (3.9.8) is a simplified form of the momentum balance of the fluid

phase in the light of the assumptions number (A.5) and (A.6).

Uncoupled expressions

The fluid phase mass balance equation (3.9.6) for hydraulic flux case makes use of

the relative advective flux representation in equation (3.9.8) and the assumptions

number (A.7) and (A.2):
()3
1+ey) Ot Prg

@_ K(1+€0) 9
&_<_Z@7va (3.10.1)

The energy balance equation (3.6.22) is reduced to the form below by using the

compressibility coefficients for the fluid phase and the assumption number (A.1):

drT - T B\ de
— = —V ¥ i 10.2
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The volumetric compressibility of the soil skeleton used in the above equation is

replaced by the pressure term, so that:

d1 - Br a, dp "
v— = —V -5 =T — — .10.
pe dt J (ﬁp> (14 ep) dt pr (3.10.3)

Introduction of the heat flux expression for the energy flux term (assumption number

A.8) results in:

dr

-2 BT Ay dp E
e v SN o (e & o 10.4
Peo gy = V" Ja <ﬁp (te)a 7 (3.10.4)

Substituting the Fourier heat flux expression, and neglecting the contribution of the

fluid expansion term for an uncoupled expression, the energy balance equation takes

the following form:

pCvE = —V . (quXq) + pr
or
dT o

Coupled expressions

The coupled form for the simultaneous flow of fluid and heat in porous media is
obtained by substituting the coupled flux equations (3.7.11) in the mass and the
energy balance equations. Then the fluid phase mass balance equation (3.9.6) can
be written as, with assumption number (A.3):

(1 iveo> % =V {Lff (viVp) + Lgq - (g)} (3.10.6)

and, using the hydraulic conductivity coefficient K for a homogeneous isotropic

porous medium, and assuming a constant coupling coefficient L ,:

0 N _ (K vr
()2 (E)ewins ()

Similarly, the energy balance equation (3.10.4) is reduced using the coupled heat

flux expression in equation (3.7.11):

ar _ VIN] (B e dp
oy =V {qu (vyVD) + Lgq (T )} T(@;) (Lt o) dt + pr (3.10.8)
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By assuming constant values of L,; and L4, and replacing L,, with the conduction
coefficient A:

ar _ : VN (B b
ooy = (Lgpvy) V p-l—)\TV( - ) T(ﬁp> 0+ co) dt + pr (3.10.9)

The above two equations (3.10.7) and (3.10.9), integrated with the expression for
the coupled fluxes (equation 3.7.11) form the simplified set of governing equations

for the porous system.

3.10.3 Boundary conditions

The boundary conditions are considered in terms of the material and heat fluxes.
The control of these are achieved by the manipulation of the pressure and temper-
ature values, at the boundaries, as discussed in Chapter 2.

The material boundaries can either be closed or open. The value of pressure or
its gradient can either be set to a constant, or varied as required. The temperature
values are controlled at the boundaries by application of the heat sources at these
locations. The surface heat loss can be allowed or minimized by use of a thermal
insulation. Heat sources within the body of the sample may also be permitted. As
a result, various combinations of boundary conditions were considered in this study.

The actual boundary conditions applied on experimental and numerical simula-

tions are discussed in the experimental and numerical sections of this dissertation.

3.10.4 Concluding remarks

The pertinent analytical background and the derivation of the governing equations of
a multi-phase multi-component, deformable open porous system were presented. The
coupled flow equations representing the irreversible fluxes and their corresponding
gradients are obtained from the entropy production rate which preserves the symme-
try of the coefficient matrix indicated in Onsager’s reciprocal theorem [8]. The gov-
erning equations representing a closed system were then obtained from these generic
forms. The numerical solution of the equations generated the transient pressure and

temperature distributions due to the applied boundary and initial conditions.
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3.10. SIMPLIFIED MODEL

The numerical simulations were carried out mostly for the closed system where
no material flux was allowed through the boundaries. A simulation model could
also be generated easily for an open multi-phase, multi-component system using
the following set of governing equations: (3.2.7), (3.2.9), (3.3.7), (3.7.3), (3.9.6),
(3.9.9), (3.6.22), and (3.8.5). In this work, however, the development of the closed
boundary experimental procedure dictated the final simplified form of the model.

The experiments were intended to address two basic issues:

e To develop a non-destructive approach achieved under no material flux and

small stress increments to minimize disturbance to the soil structure.

e To develop a simple experimental system that would allow accurate transient

measurements of the desired responses along the specimen.

The issue of accurate real-time experimental measurements were crucial to val-
idate the simulation and parameter identification approaches for the model. As a
result of these considerations, an inert closed two-phase system was selected. This
selection eliminated the inclusion of chemical components within each phase and
subsequently the need for the non-trivial measurement of the transient values of the
chemical concentrations.

However, the governing equations are derived to handle multi-component cases
of as well as open boundary conditions, as discussed in the earlier sections of this
chapter. Validation of these equations were not included with in the scope of this

dissertation.
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Chapter 4

Numerical Solution of Partial

Differential Equations

4.1 Numerical Engine

Mathematical formulations that represent a physical phenomena are often in the
form of partial differential equations (PDEs). The analytical solutions for the for-
mulated PDEs are often not possible, and except for a few known forms, the solution
of the PDEs are presented in the numerical form. One common numerical solution
technique of PDEs is the ”"Method of Lines” (MOL). In application of MOL, the
PDEs are converted to Ordinary Differential Equations (ODEs) or Differential Al-
gebraic Equations (DAEs) by approximating the spatial derivatives with algebraic
approximations. This results in equations with derivatives with respect to the initial
value variable, ¢, which are then integrated over time.

The MOL approach is used in formulating a simulation environment for the
PDESs representing the coupled flow in porous media derived in the previous chapter.
The purpose of such simulation is to permit a dynamic environment for parameter
identification and implement the estimator tool. The requirements considered for
such a simulation is modularity, flexibility, ease of use and modification, stability

and computational quality. The computational speed of the numerical construct
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4.2. METHOD OF LINES

will highly depend on the size and the properties of the initial value problem, the
spatial discretization and the efficiency of the time integrators.

Available quality mathematical software (routines) are utilized whenever appli-
cable. The numerical methods and schemes involved in the design of the simulation
program and their implementation to the PDEs representing the coupled flow in

porous media will be described in this chapter.

4.2 Method of lines (MOL)

The method of lines is a well recognized generic procedure for solving partial differ-
ential equations [33]. A typical application of MOL to the well known second-order
PDEs in terms of dependent variable w(z,t) is considered below for illustration
purposes, where T = [z,y,2]". A system of n-degree PDEs with corresponding
boundary and initial conditions are shown here:

Wi = (T, 1,0, Wy, W) t>0,7€(0,L) (4.1)

applicable boundary condition functions (BCs)

9 (T, 1, W, Wy, Way) = 0 t>0,72=0 (4.2)
9, (T, 6, W, Wy, Wyy) = 0 t>0,T=1L (4.3)

with given initial condition functions (ICs)

w(z,0) = wy(T) x €0, L] (4.4)
where
W = [wy,.....,w,)|" is the dependent variable vector for the system of PDEs,
Wo = [W1,0, .-ery Wpyo] " is the initial condition vector,

w; = 0w/0t = [Ow, /0, ....., 0w, /Ot] is the time derivative vector,

w, = 0w/0T = [Qw, /0T, ...., 0w, /0T| is the spatial first derivative vector,
f=1f1, fn]", g, and g, denote the linear or nonlinear functions.

As a first step in the numerical solution with MOL, the spatial derivatives are

replaced with their algebraic approximations, which results in a set of ordinary
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Figure 4.1: The Numerical Method of Lines (NUMOL)

differential equations (ODEs) or differential-algebraic equations (DAEs). The PDEs
may reduce to DAEs if the derivatives with respect to t are zero. A typical set of

explicit ODEs is shown below:
w; = h(w, ) t>0 (4.5)

where the h(,t) are the derivative vectors of the resulting set of ODEs. The above

set of ODEs are only subject to the initial condition vector:
(7, 0) = o () (4.6)

The second part of MOL implementation is the time integration of the resulting
set of ODEs (initial-value problem). The boundary value, independent variable T
is defined between the boundaries on a spatial grid. The ODEs (approximating the
PDEs) are defined at each point in the spatial grid. The second stage of the MOL
method is then implemented and the ODEs are integrated simultaneously along the
spatial grid, "numerical method of lines”, Figure 4.1.

The two step approach of MOL provides flexibility in order to handle differ-
ent classes of PDEs: elliptic, parabolic, hyperbolic, or a combination, linear and

nonlinear, in one or multi-dimensional coordinate system.
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The efficiency of the MOL is a function of the spatial discretization and use
of quality DAE or ODE solvers. Variety of methods (finite elements and finite
difference) are available for spatial discretization, some are briefly described and the
implementation of finite difference discretization based on Taylor series expansion is
discussed in this chapter. The time integration, selection of appropriate algorithm,
time steps, order of the method which directly effect the accuracy and the stability
issues that determine the attainability of a solution are discussed and the automatic

implementation in the solvers are illustrated.

4.3 Spatial approximation

The approximation of the spatial derivatives is the first step in implementation of
the MOL method for solution of the PDEs. This can be carried out using several
methods; splines, finite element methods, weighted residuals and polynomial approx-
imations. The accuracy of the MOL solution is highly dependent on the accuracy
of the spatial approximations [33]. The implementation of the algorithm should
also be reasonably flexible to allow straight forward modifications to accommodate
various orders and attributes of the spatial derivative terms in the PDEs.

The accuracy of each approximation method is based on the order and degree
of the algorithm and the number of terms used to approximate a given spatial
derivative. The flexibility requirement can be easily geared into the algorithm of
the method by envisioning possible creative manners that the code might be used

in the future.

4.3.1 Use of splines for spatial discretization

Splines can be used as a form of functional approximation method to approximate

the spatial derivatives. Use of splines to establish functional approximation to the
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spatial terms offers several advantages; a) splines allow nonuniform grid approxima-
tion in z, b) use of spline of degree n assures continuity to the n — 1 order deriva-
tive terms (based on selection of the spline coefficients), ¢) splines are well estab-
lished functional approximations, therefore library subroutines are readily available
to compute the spline coefficients. A cubic spline is considered below to illustrate

the application to the spatial (one-dimensional) PDE derivatives:
w (z,t) & w(z,t) + a1 (t)(z — z;) + as(t)(x — 2:)* + as(t) (z — x;)° (4.7)

where a1,as and ag are the cubic spline coefficients and w(z;,t) is the dependent
variable at grid point = z;. The approximations to the spatial partial derivatives

for the first and second-order derivatives can be expressed as:

ow (z,t)

5 ~ ay(t) + 2ay (t) (z — ;) + 3as () (x — z;)° (4.8)
% ~ 2ay (1) + 6as (1) (z — 2,) (4.9)

The goal in use of a cubic spline is to obtain a smooth first derivative term,
and a continuous second derivative term within and at the boundaries. The spline
coefficients above can be determined easily from the w (z,t) values at some time t.
The w (z, t) values are obtained from MOL solutions and are also used for calculation
of spatial derivatives which, are used for the next step of MOL application.

Fortran and C++ codes for determination of spline coefficients are available in

IMSL or math libraries or Numerical Recipes [1].

4.3.2 Use of weighted residuals for spatial discretization

The weighted residuals method is a procedural approach that approximates the exact
solution by a set of N basis functions and progresses by minimizing the residuals
resulting from this approximation. The N basis functions ¢, (z) are selected such

that the approximation (trial solution) is obtained [34]:
N
@ (z,t) =) e (t)pi() (4.10)
i=1

94



4.3. SPATIAL APPROXIMATION

The expression of the approximation in terms of two functions dependent on time
¢; (t), and space g, (z) is preferred separately since it eases certain mathematical
manipulations, but at the same time is not the only possibility. The functions are
selected priori and should constitute a complete set in a given space S, allowing
any non-zero function to be expanded in terms of the basis functions ¢, (). The
time and spatial derivatives of the PDEs can be easily obtained using the separated
form of the trial solution. The approximations to the time and second-order spatial

partial derivatives can be obtained as in the case of discretization with splines:

SIACERE (4.11)

Wao (T Z ¢ () ¢} (4.12)

The equations above can be put together in demonstration of the application of the

method to the one-dimensional parabolic problem (Fourier’s second law):

ow 0*w
— =D— 4.1
ot Ox? (4.13)
with typical initial and boundary conditions:
w(xo,t) =0 (4.14)
ow (xp,t)
—_— 4-1
T 0 (4.15)
w(z,0) =1 (4.16)

Using expressions obtained in equations (4.11) and (4.12) for time and second-order

spatial derivatives in the Fourier’s second law (equation 4.13):

Z ¢ (), (z) =~ D Z ¢ (t) ¢! (4.17)

The approximate relationship in equation (4.17) can be expressed in terms of the
residual R (z,t).

Z ¢ (t)g; (z) — D Z ¢i () ¢! (x) = R(x,t) (4.18)
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The ideal case for the approximation is reached when the residual is zero for all
values of z and ¢. The method of weighted residuals forces the R (x,t) to zero
to achieve minimization in an integral form making it orthogonal to the weighting

function w (x):

/IL w(z)R(z,t)de =0 (4.19)

Zo

Multiplying the equation (4.18) with a basis function ¢, (z), and integrating
between the boundaries (zg,xr) , is the basics of the Galerkin method (making the
residual orthogonal to the basis functions). The selection of the basis functions are
necessary to evaluate the integral. In general the basis functions are chosen to satisfy
the accompanying boundary conditions for convenience (in this case sine and cosine
functions satisfy the typical boundary conditions). There after the system is reduced
analytically to a set of ODEs and the coefficients, ¢; (), are determined at this point
and a solution is obtained. Yet, the described approach to this residual method re-
quires the analytical derivation and integration of components which might indicate
some difficulties. Often a semi-analytical solution is preferred, in which the integrals
are evaluated numerically, where the weighting function, w(z,t), can be selected as
a delta function, resulting in a collocation form (w;(x,t) =6 (x — z;)) of residual
method, or as the basis functions and result in the Galerkin’s method. As indicated
earlier, selection of basis function to satisfy the boundary conditions were preferred.
Another possibility would be the use of weighting function that has local support
(non-zero only over a small interval of z). This choice is the basis of the finite

elements method.

4.3.3 Use of finite elements for spatial discretization

The development of the series solution in terms of sine and cosine basis functions
was briefly described in the previous section. The use of a basis function with local
support, being non-zero in a given interval (Az) of z, is the fundamental of the finite
element method. Various forms of elements (splines, polynomials etc.) are available

for discretization of different PDEs. A linear finite element is illustrated here (Figure
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2a). The ¢, (z) is centered at x = z; and has two linear segments between x; — Ax
and z; + Az, with ¢, (z;) = 1, and ¢, (z; — Ax) = ¢, (x; + Ax) = 0.

The differentiation and integration of such a linear element in the weighted
residual method is relatively easy, and the differentiation of the linear finite element

illustrated in figure 2b, d¢, (z) /dz, is piecewise constant.

. ¢:(x) d¢,(x)/dx
1/ Ax
Xir1=
/[ Ax | Ax \ AX X+ AX
Xiu=X;—AX X Xu= X+ AX >§(:fo X AX
-1/Ax
a) The Linear Finite Element. b) The First Derivative of the Linear Finite Element.

Figure 4.2: The Linear Finite Element Representation.

The basis function in figure 2a is then substituted into the assumed basic series
solution, equation (4.10), and from there to generate the terms of PDEs represent-
ing the physical system in question. The expression for the residual term R (z,t),
is then obtained and the weighted residual method is implemented to obtain the
representative ODE form of the equations.

The determination of new integrals is required each time for a new PDE, which
can be solved by numerical quadrature. This can be time consuming, especially for

cases with complicated basis functions.
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4.3.4 Use of polynomials for spatial discretization

Typical polynomial expansion and use of Taylor series to obtain the relevant finite
difference expressions for spatial approximations to convert the system PDEs to
the desired ODEs is illustrated in this segment. The widely used polynomial ap-
proximations of various orders for the first and second order derivatives, for one or
more dimensional expressions are given below [33].

The dependent variable w (z), with respect to the spatial independent variable
x, discussed earlier is used here (as a function of space alone) to demonstrate the

typical polynomial expression and spatial approximation applied to the PDE terms.
w (J?) =ag+ a1 (ZIJ — l’z) + as (ZIJ — JIZ')Q + as (ZIJ — l’i)g + e (420)

where z; is a value of x to be specified and ag, a1, as, as, .... are constants to be
determined using the Taylor series expansion of w (z) at = z;. The first constant
ag, can be determined by setting x = x;, ayp = w (z;). Differentiating equation (4.20)

with respect to x,
dw (z) /dx = ay + 2ay (x — ;) + 3as (x — ;)" + ... (4.21)

and setting = x;, a1 = dw (z;) /dx is obtained. Consecutive differentiations with
respect to x at z = x; gives; as = (1/2!) d*w (z;) /dx?, a3 = (1/3!) d*w (z;) /dz?, ...

with a general expression for i = n'" term:

a, = (1/n!)d"w (x;) /dx" (4.22)

Formulas for first derivatives

Second-order approximation The use of Taylor series is demonstrated with an
expression approximating the first derivative (dw (z;) /dz) of w (z;)[33], which is
obtained in terms of values w (x;11), w (z;) and w (x;_1):
w(Tip1) = w(z)+ (dw (2:) /de) (21 — 2:)
+(1/2) (d*w () /da®) (w1 — 33)°
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(

(

(dPw (z;) /dz?) (Ax)*

(dw () /dz®) (Ax)® + ... (4.23)

D (FPw (x;) /da®) (—Az)® + ... (4.24)

where Az = (2;41 — ;) and —Ax = (z;_; — z;). The first derivative term is ob-
tained by subtracting equation (4.24) from (4.23)

W (1) — w (zim1) = (2Az) dw (z;) /dz + (2/3!) (PPw (z;) /d2”) (—Az)* + ..

or

_ W (Tig1) — w (i) 2
dw (x;) /dx = AL + O (Ax) (4.25)

The equation (4.25) is the second order central difference expression for first deriva-
tive evaluated at x; which can be applied to w (x;) for i = 2,3,..., N — 1 terms on
the spatial grid. The boundary terms at ¢ = 1 and N need the terms before ¢ = 0

and i = N + 1 to evaluate the first derivative with respect to x.

Handling boundary conditions Boundary conditions for finite difference for-
mulation can be dealt with in various ways. The analytical methods for approximat-
ing boundary conditions of Dirichlet type (w (z,t) specified) are easily incorporated
into the discretization formula. The Neumann (dw (x,t) /dx specified) or combined
(Dirichlet and Neumann) type of boundary conditions can also be handled by us-
ing the method of fictitious boundaries, which is the introduction of fictitious grid
points outside the spatial domain of interest. However, these are mostly problem-
specific, which require the mathematical formulation of boundary conditions for
every new PDE problem. The problem-specific nature of the analytical approaches

above makes it difficult to have a general purpose algorithm capable of handling
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any type of boundary condition. Furthermore the method should be robust and
straightforward and flexible with minimum amount of effort to allow handling of
various PDE problems.

The desired robustness and order of accuracy are achieved by eliminating the
fictitious point approach and instead formulating the boundary conditions using
biased discretization formulas near the boundaries. This approach expresses the
dw (x1) /dz in terms of w(x1), w(z2) and w (z3), and dw (zy) /dz in terms of
w(xy_2), w(zy_1) and w (zy) for a second-order approximation described here.

The first derivative term at x, is obtained by using the Taylor series for w (x3) and

w (z3):
w(z2) = w(r1)+ (dw (1) /dr) (Ax)
+(1/2!) (Pw (1) /dz®) (Az)®
+(1/3) (Pw (21) /da®) (Az)” + (4.26)
w(zs) = w(z)+ (dw(z1) /dr) (2A7)
+(1/2) (d*w (1) /da?) (2A2)°
+(1/3Y) (dPw (21) Jdz®) (2A2)" + .. (4.27)

The maximum accuracy for the first derivative term is obtained by dropping out as
many of the higher-order terms as possible. Multiplying equation (4.26) by 4, and

subtracting equation (4.27), the second derivative terms are dropped:

4w (z2) — 3w (z1) —w (x3) = (2Az) (dw (z1) /dx)
— (4/3) (d*w (z1) /da®) (Ax)® +

o 3w (1) + 4w (z2) — w (z3)
w (xq) /dx = AL

Similarly, the Taylor series written for w (zy_1) and w (xy_2) are used to obtain

+ O (Az?) (4.28)

the second-order derivative term, dw (zy) /dz:

3w (zy) — 4w (zy_1) + w (TN 2)

2Ax

dw (zy) /dx = + O (Az?) (4.29)
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The equations (4.28), (4.25) and (4.29) represent the second-order expressions for
the first derivative. The first derivative expression at the boundaries and interior
points can be further generalized and expressed in terms of a differential matrix

which consists of the weighting coefficients obtained in the above equations[33]:

-3 4 -1
dw/de =[1/(2Az)] | =1 0 1 |w+ O (Az?) (4.30)
1 -4 3

The above representation is sufficiently general to be coded in a general purpose
subroutine (DSS002). The coefficient matrix has the following properties [33]: 1)
the coefficients in a row sum to zero, which is a required in order for the matrix
to differentiate a constant to zero, 2) the matrix is antisymmetric, with respect to
a line drawn through center which connects members with same magnitude, but
opposite signs, which occurs only for the odd-order derivatives, 3) the multiplier (%)
includes the grid spacing, Az, in the denominator.

Another typical problem that might occur based on the model assumptions, is
the inconsistency in the initial and boundary conditions. This type of problem
occurs when there is no smooth transition from one state to the other, meaning that
the initial conditions do not satisfy the boundary conditions state for the problem
at t = 0, for x; where ¢ = 1 and/or N. The discontinuity caused is numerically
damped out in the parabolic PDESs, but are propagated further in hyperbolic PDEs.

Problematic PDEs should be reformulated to assure consistency in these conditions.

Accuracy of the approximation The equation (4.30) is implemented in sub-
routine DSS002 [33]. It can be shown that (4.30) is accurate for differentiating
a constant and a first-order polynomial. Furthermore, the accuracy for a second
degree polynomial:

w(z) = ap + a1x + asx’ (4.31)
can be shown by substituting into equation (4.25) and illustrate that the expression

is accurate for zero-, first-, and second-order polynomials:

ap + a1 (z; + Az) + as (v; + Ax)’
2Az

dw (z;) /dx =
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ao + ay (z; — Az) + ag (z; — Ax)®
—(0 : Ay = >+O(A:c2)

= a; + 2a97 (4.32)

Similar check is performed for a third degree polynomial of the form:
w(z) = ag + a1x + agz?® + azr? (4.33)

by inserting equation (4.33) in (4.25) and repeating a similar calculation performed
in equation (4.32). The result obtained from differentiating equation (4.33) with a

second-order polynomial is:
dw (x;) /dx = ay + 2asz + 3azz® + azAz® (4.34)

It is clear that the expression is not exact for third and higher order polynomials
[33]. The error term involved in equation (4.34) decreases with Az. Furthermore,
substitution of the third degree polynomial equation (4.33) into first-derivative ex-
pressions at the boundaries, equations (4.28) and (4.29), indicates that the error in
these equations is larger than the expression for the interior grid points, equation
(4.25). The magnitude of the obtained error at the boundaries, —2a3Az?, is twice
of the interior error term, yet it is second-order correct.

The use of polynomials is limited for discretization since spatial variation of
PDEs can hardly be duplicated by polynomials. Yet the solution will improve with
the decreasing value of Az (use of more grid points). Another approach to improve

the accuracy of the application is to use a higher-order differentiation formula [33].

Fourth-order approximation The second-order derivation for approximating
the first derivative uses three points for differentiation. Approximation of the deriva-
tive at point x;, using five grid points (x; 2, 2; 1,%i,Tit1,Tit2) in terms of Taylor
series will result in a fourth-order approximation. The generic derivation of the
required coefficients and the conditions to be satisfied are listed below [33]. The

Taylor series at these points:

w(z; o) = w(z)+ (dw(z;) /dr) (—2Ax)
+(1/2Y) (d*w (z;) /dz?) (—2A1)° + ... (4.35)
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w(zi) = w(z;) + (dw(x;) /dx) (—Ax)
+(1/2) (d*w (z;) Jda?) (—Az)* + ... (4.36)

w (@) = w(w)+ (dw(z;) /dz) (Az)
+(1/2) (dPw (2;) Jdz?) (Az)* + ... (4.37)

w(zi—e) = w(z;)+ (dw(x;) /dx) (2Ax)
+(1/2) (d*w (x;) Jda?) (2A2)* + ... (4.38)

The derivation of dw (z;) /dzx requires that we take a linear combination of equa-
tions (4.35) to (4.38) and drop most of the higher derivative terms. A systematic
approach would be multiplying each equation by coefficients a, b, ¢, and d respec-
tively (from 4.35 to 4.38) and summing the resulting equations. The first derivative

term dw (x;) /dz is to be retained resulting in the following relationship:
—2a—b+c+2d=1 (4.39)

The requirement to eliminate the second derivative terms, d?w (z;) /dx? , the third

and the fourth terms results in conditions stated as:

da+b+c+4d=0 (4.40)
—8a—b+c+81=0 (4.41)
16a+ b+ ¢+ 16d =0 (4.42)

Solving linear equations (4.39) to (4.42) for the four coefficients gives: a = 2/4!,
b= —16/4!, ¢ = 16/4!, d = —2/4!, which placed as multipliers of equations (4.35)
to (4.38) and summed will result in the expression for the first derivative:
dw (z;) /de = (1/(4!Az)) (2w (z;_2) — 16w (z;_1) + Ow (x;)
+16w (zi41) — 2w (wi42)) + O (Az?) (4.43)

The obtained central difference approximation equation is fourth-order correct and

sum of its coefficients is zero, indicating that it will differentiate a constant to
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zero. However, the central difference equation (4.43) can not be used for grid points
1 = 1,2)N — 1, N. This equation requires information on two grid point values
before and after the central grid point. Therefore the Taylor series expansions at the
interior points should be used in derivation of the first derivatives for these points.
The equation for dw (z1) /dx requires the Taylor series for w (x3), w(x3), w(z4),
and w (x5) similar to equations (4.35) to (4.38). It then requires to be multiplied
by coefficients and to satisfy conditions similar to those stated in equations (4.39)
to (4.42) which will result in the values of the coefficients (a, b, ¢, d) and thereby the
expression for dw (z1) /dz. The first derivatives for the two points at each boundary

of the grid can be determined in this manner:

dw (zq) /dx = (1) (4!Az)) (=50w (z1) + 96w(z2) — 72w (x3)
+32w(z4) — 64w(zs)) + O (Az?) (4.44)

dw (zg) /dx = (1) (41Az)) (—6w (z1) — 20w(z2) + 36w (x3)
—12w(z4) + 2w(w5)) + O (Az*) (4.45)

dw(zy 1) /dx = (1) (4Az)) (—2w (zy_4) + 12w(zy_3) — 36w (TN _2)
+20w(zn_1) + 6w(zy)) + O (Az?) (4.46)

dw (zy) /dxe = (1) (41Az)) (6w (zy_4) — 32w(TN_3) + 72w (T N_2)
—96w(zy_1) + 50w(zy)) + O (Az?) (4.47)

The resulting expression and the coefficient matrix is obtained:

-50 96 -72 32 —6
—6 —20 36 —12 2
dw/de =[1/(4Az)] | 2 —16 0 16 -2 |w+O(Az") (4.48)
-2 12 =36 20 6
6 —32 72 —96 50
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The coefficient matrix is antisymmetric and its rows sum to zero each, satisfying
the previously stated conditions. This expression is implemented in the Fortran90
subroutine DSS004 [33].

Higher order expressions can be obtained and used in discretizing the spatial
derivatives, however these expressions will have derivatives with more roots, which
indicates the number of minima and maxima and the degree of oscillation between
these points. The increased number of roots causes an unrealistic oscillation in the
solution of the PDEs with method of lines. Therefore a fourth-order approximation

is good compromise between accuracy and minimization of oscillation.

Formulas for Second derivatives

Fourth-order approximation A PDE model of the physical phenomena investi-
gated here contains a combination of the first and second order spatial derivatives of
the independent variables. In general PDEs obtained might include various orders
of derivatives with linear and non-linear terms involved, which are all easily handled
via this approach. MOL is a flexible method due to the straightforward application
to any combination of derivatives with almost no modification to the initial code
produced during programming.

MOL will permit step wise differentiation using the first-order derivative com-
putation. Yet, it is desirable to have a direct derivation which will be applicable
to all forms of problems. The central difference expression for the interior points is
obtained by writing Taylor series for w(x;) at z;_o, x;_1, T;y1, and z;,9, and mul-
tiplying with coefficients. The equations are summed and the term d*w(z;)/dz is

retained and the higher derivatives are eliminated:

dw® (z;) Jdz® = (1/ (41Az%)) (—2w (@;_2) + 32w(w;_1) — 60w (z;)
+32w(x41) — 2w(Ti42)) + O (Az?) (4.49)

The fourth-order expressions for the second derivative at the pointsi =1,2, N—1, N
are obtained based on [33], such that the first derivation includes the Neumann

type and next the Dirichlet type boundary condition effects at ¢ = 1, N. The
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derivative at ¢+ = 2, N — 1 are obtained taking linear combinations at : = 1,3,4,5,6
for d*w(xs)/dz? and at i = N —5,N —4, N —3, N — 2, N for d*w(zy_1)/dz?. The
coefficients are summed to retain the second and to drop the first, third, fourth
and fifth order derivative terms and achieve the required accuracy. The solution of
the simultaneous linear equations for the coefficients is then obtained and used in

obtaining the expression for the second derivative terms:
dw® (z5) /da® = (1/ (41A2%)) (20w (z1) — 30w(z2) — 8w (z3)
+28w(z4) — 12w(z5) + 2w(zg)) + O (Az?) (4.50)

dw? (xy_1) [dz* = (1/ (41A27)) (20w (zy) — 30w(zn_1) — 8w (zy_2)
+28w(zy_3) — 12w(xy_4)
+2w(zy_5)) + O (Az?) (4.51)
The remaining expressions for the second derivative at ¢ = 1, N are obtained in
two sets as stated above. The first set incorporates the Neumann (dw(z)/dx) and
the second set incorporates the Dirichlet (w(x)) type boundary conditions into the
expressions for the second derivative at the boundaries. The linear combination of
the coefficients and equations are written for w(zx;) at ¢ = 2, 3,4, 5 and for dw(z;)/dx
at ¢ = 1. Similar linear combination is applied for the boundary at N, at points
1=N—-1,N—2 N —3, N —4 and the first derivative at : = N. The simultane-
ous equations of the coefficients are formed by retaining the second and dropping
the first, third, fourth and fifth order derivative terms. The solution of these equa-
tions for the coefficients will allow forming the second derivative expressions at the
boundaries where the Neumann type conditions are embedded in the formation:
dw? (z1) Jdz* = (1/ (41Ax?)) ((—415/3) w (x1) + 192w (w2) — T2w (x3)
+(64/3) w(zq) — 3w(xs) — 100(dw(xq)/dx)Ax)
+0 (Az") (4.52)

dw? (zy) Jdz* = (1) (41Az?)) ((—=415/3) w (zn) + 192w(zy_1) — T2w (T y_2)
+(64/3) w(zy_3) — 3w(zy_4) + 100(dw(zy)/dx)Az)
+0 (Az*) (4.53)
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Another set incorporating the Dirichlet BCs for ¢ = 1 and N is obtained from linear
combination of the Taylor series for five adjacent points and dropping higher order

derivative terms.

dw* (z1) Jdz® = (1/ (4!1A2?)) (90w (z1) — 308w(xs) + 428w (z3)
—312w(x4) + 122w(z5) — 20w(z6))
+0 (Az*) (4.54)

dw? (zy) Jdz* = (1/ (41Az?)) (90w (zy) — 308w(zy_1) + 428w (zy_2)
—31211}(1']\[,3) + 122(33]\],4) — 20’(1)(1']\],5))
+0 (Az") (4.55)

The fourth-order expressions for the central points and at the boundaries including
the Neumann and Dirichlet conditions are obtained and implemented in Fortran90
subroutine DSS044. One of the critical arguments of this subroutine is the type of
the boundary condition at both ends: being Neumann or Dirichlet such that the
correct expressions at these ends would be used and the MOL user would not need
to deal with defining fictitious points and coding a new formulation for each different
PDE problem.

The advantages of using expressions derived directly for the second derivative
terms are: 1) ability to handle more classes of PDEs compared to step wise differ-
entiation, 2) all types of BCs can be included without approximation. The disad-
vantages to the direct formulation are: 1) the second order derivative terms can not
handle the nonlinear term occasionally embedded after the first derivative, 2) the
implementations to more than one-dimension becomes cumbersome.

Other types of methods and implementations can also be used to develop generic
coding for MOL. Typical examples include the use of Lagrange interpolation polyno-
mials, cubic splines and orthogonal collocation. Problem specific issues, such as the
numerical oscillations developed in first-order hyperbolic problems (w; = —v.w,),

due to the advective term are also handled by using upwind approximations of the
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spatial derivative term [33]. This type of approximation will spread out the oscilla-
tion in the temporal as well as the spatial domain causing the numerical solution to
lag behind the exact solution.

This illustrates the importance of the quality of the solution to the understanding
the physical and numerical systems and thereby defining the proper representation
that allow dependable simulation of the actual process. A similar care should also be
taken in handling hyperbolic PDEs with inconsistent initial and boundary conditions

as stated earlier.

4.4 Time integration

The set of PDEs describing the physical system is converted to an initial value ODE
problem at this point by approximating the spatial derivative terms with a finite
difference polynomial discretization. The next step is the numerical integration of
this initial value ODE problem. A quality integrator offers accuracy and stability
in the solution of the ODEs. Both of these integrators have good accuracy and
stability within their own type; explicit vs. implicit integrators. The stiffness of
the set of ODEs effects the stability of a quality ODE integrators. Two types of
integrators: RKF45 and LSODE are considered for this purpose.

The stability conditions (separation in the eigenvalues) and the structure of the
coefficient matrix (full, dense, sparse or banded) determines the type of integrator
to be used. In general a stiff problem originates from the difference in the order
of magnitude in the eigenvalues obtained for the characteristic equation generated
from taking the determinant of a coefficient matrix (the Jacobian matrix in the
case of a nonlinear problem) and setting it to zero. Rate of stiffness, is often used
as a measure which, is the ratio of the largest to the smallest real part of the
eigenvalues. Typically stiff problems are characterized by a stiffness ratio larger
than 1000 (difference of 3 in order of magnitude). The stiff equations in general are
generated while modeling physical phenomena occurring on several different time

scales. This is specially evident while dealing with two coupled phenomena such as

108



4.4. TIME INTEGRATION

temperature and pressure which are on different time scales.

4.4.1 Stability issues

The stability of the solution can be expressed in two groups; one being the stability
of the ODE problem and the other the stability of the numerical method. The
stability of a set of linear-constant coefficient ODEs are briefly discussed here and

the nonlinear ODE stability is based on similar thought pattern [33].

Stability of the ODE problem

Stability of linear first-order ODEs with constant coefficients A typical
problem statement for w(t) is:
dw/dt = Aw (4.56)

assuming that they represent a 2X2 system:

dwl/dt . w1
w =
d’wg/dt

dw/dt = [ A=

ai; G2
a21 Q22
The assumed exponential solution vector for the system above is stated in equation

(4.57) which is then substituted into the ODE expression in equation (4.56). After

eliminating the exponential terms, a set of expressions is obtained for the coefficients,

Wa

Cl x2, which can be written in the form of equation (4.58), and its determinant set

to zero to have a nontrivial solution, (equation 4.59):

w(t) = Ce™ (4.57)
(A-X)C=0 (4.58)
det (A—XI) =0 (4.59)

Equation (4.59) is the characteristic equation, which is an n-th order polynomial
defining n eigenvalues, A\, A9, ..., A,. For the n linear first-order DEs to be stable
(for the solution 4.57 not to grow exponentially), all the eigenvalues must have

negative real parts.
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The selection of the ODE method depends on the properties of coefficient matrix
A. The separation of its eigenvalues determines the stiffness of the problem requiring
use of a stiff integrator. The structure of A matrix, being sparse, full, or banded

also effects the implementation of the integrator.

Stability of nonlinear ODEs A typical nonlinear set of ODEs and the initial
conditions:

dw/dt = f (w,t) (4.60)

w(ty) = Wo (4.61)

Expanding the RHS of equation (4.60) in Taylor series about point (ws,ts)and ig-

noring after the linear term:

dw/dt = f (Ws, ts) + J(Ws, ts) (W — W,) (4.62)
[ fle o Sl

The nXn Jacobi matrix on the RHS, represents the first derivatives of f with respect
to members of w which is constant for a linear set of ODE. J becomes a function of
w for nonlinear ODEs and is evaluated at (ws, t5) which is a constant at each time
(requiring evaluation as solution evolves in t for each new value of w). Therefore
the Jacobi matrix may act similar to the coefficient matrix in the linear form and

can play a similar role in defining the stability and type of integrator needed.

Stability of the numerical method

The stability of numerical process can be expressed based on the type of the inte-
grator: explicit vs. implicit. The explicit methods determine the solution at a given
time based on the known information at the previous time step. The implicit inte-
gration approach however requires the values at the unknown times which then have

to be solved simultaneously. The stability of each method is briefly discussed and
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the use of two industry standard integrators: RKF45 and LSODE, their structure

and application for the solution of the ODEs generated in this case are presented.

Stability of explicit method The simplest explicit integration is by Euler method.
This method uses the solution at time n, which is known as w,,, to obtain the solu-
tion at the next time step. It is first order and computes the next solution point by

the projection from ¢, to t, + At along a tangent to the solution at t,:
Wyt = Wy, + (dW, /dt) At =W, + f(W,,t,)At (4.64)

A solution for a 2X 2 linear system with constant coefficients is given by [33], in terms
of B, and f3,. Satisfying the unboundedness condition, the stability conditions for

eigenvalues \; and A\ results in:
6] = [1+MAH <1 (4.65)
|INAE < 2 (4.66)
This indicates that the explicit Euler integration is stable for a system of IV first-
order, linear, constant-coefficient ODEs if \;At, i = 1,2, ..., N fall within a unit circle
centered at the point (—1,07) (j = \/—1) in the complex plane, for all 7 [33]. It is
clear that to satisfy the stability condition, specially with ODEs having separated
eigenvalues, it requires to have very small time steps, resulting in large number

of integrations. The largest eigenvalue defines the maximum step size which is the

main limitation of the Euler’s method when the problem is sufficiently stiff.

Stability of implicit method Similarly the implicit Euler method where the

derivative term is evaluated at point n + 1:
Wiyt = Wy, + (AW, /dt) At =Wy, + (W1, tugr )AL (4.67)
and the solution in terms of 3, and 3, is [33]:
A=t B = 1oga (4.68)
indicating that the solution remains stable for all values of At¢, and implicit Euler

method is unconditionally stable. For nonlinear problems root-finding methods like

Newton’s method are applied to determine the required solution.
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4.4.2 Accuracy issues

The Euler’s methods described above are relatively inaccurate (only first-order),
yet sufficiently applicable to illustrate the problems involved in stability during
integration. The accuracy of the solution can be improved either by decreasing the
time interval At, or increasing the order of the method used. The current 32 or 64
bit computational capability allows limited decrease in time interval At, to achieve
the required accuracy. Therefore higher order terms are required to achieve the
desired accuracy in solution without creating numerical instability in the solution,
especially in the case of explicit integration methods. The higher order methods will

allow taking larger time steps without compromising the accuracy of the solution.

4.4.3 RKF45

The name of the numerical integration algorithm RKF45 [15], designates the Runge-
Kutta-Fehlberg (RKF) with a fourth-order method that is embedded in a fifth-order
method. The solution is calculated with the fourth-order RK algorithm, and also
with fifth-order RK algorithm. The two solutions are compared to estimate the
error in the numerical solution. If the error term exceeds the user defined tolerance,
the solution is repeated with a smaller step in time to improve the accuracy of the
integration in t. RKF45 is primarily designed to solve non-stiff and mildly stiff
differential equations when derivative evaluations are inexpensive. Use of fourth-
and fifth-order methods in RKF45 improves the accuracy of the solution without
the need of smaller time steps. However the stability criterion for the fourth-order
Runge-Kutta method is:

|AAE] < 2.875 (4.69)

indicating that the stability interval is only increased slightly in the price of calcu-
lation of four derivative evaluations per step. The eigenvalue A can be complex, on
both real and imaginary axes. Unlike the explicit Euler method where the stability
region was a unit circle centered at (—1,07), the region for fourth-order method is

slightly larger and irregular [33].
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RKF45 is suitable for problems where the accuracy of the solution is not very
critical [15]. The tolerance level set by the user might not be achieved in some cases
and the method will fail. The applications of this method is illustrated in the case
of simulation of pressure propagation in porous media where the physical problem
did not have stiff characteristics. However the coupled problems involve various
physical phenomena in different time scales resulting in separated eigenvalues and
naturally stiff problems. The solution of the stiff problems require a stiff integrator
based on the implicit method. Integrators based on the backward differentiation
formula (BDF) use the implicit derivative term in evaluation of the solution at the

next step thereby providing the necessary accuracy and stability as in the case of
LSODE.

4.4.4 LSODE

The implicit Euler formula, equation (4.67), is obtained from the generalized form
where; ¢ = 1 (order of the method), and oy = 3, = 1 (constants for particular

order):

q—1
W1 = Y Wy + Aty (dW,1/dl) (4.70)
=0

The BDF method in equation (4.70) is explicit due to the use of only past values
w,_1 and is implicit in one of the derivatives dw,,/dt. The BDF is a multistep
method using more than one past value in solution where as RK used only the
current for the solution at the next step. The coeflicients ay and 3, depend on the
order of the method (q) [18]. BDF starts as a first-order method initially at ¢, since
wy is the only available set of known values, and as additional points are calculated
it develops to a higher-order method. This indicates that the step size and the order
of the method are both handled making BDF a variable-step, variable-order implicit
method suitable for solution of the stiff problems.

The use of past values for the current solution requires these values to be stored.
The variation of the time step size for accuracy of the integration also requires these

previous values to be available at the current integration time step, which results in
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the requirement for interpolation of the previous values at the current time step size.
The higher-order methods (¢ > 2) are not absolutely stable, but the coefficients are
selected as such to achieve a compromise between accuracy and stability. In general
physical problems (ODEs) have real eigenvalues where the method is stable.

As a result of BDF, a set of linear algebraic equations are obtained where a form
of root finding is required for solution at the unknown time steps. Newton’s method
is used to iterate and converge starting from a solution and using conventional
linear algebra methods such as Gauss row reduction. The main computational
effort using BDF is due to the necessity for an updated Jacobian matrix at each
iteration. However it is also noted that using a Jacobian matrix that is not current
does not introduce any additional error in numerical solution as long as the Newton
iteration converges [33]. Therefore the BDF integrators are designed such that the
Jacobian gets updated only when it is required for convergence. The BDF algorithm
can also take advantage of the structure of the Jacobian matrix during numerical
manipulation. Substantial saving in computational time is possible when the matrix
is not full or is banded with a bandwidth M. The ratio of the number of operations
for an NX N Jacobian matrix at full case to a banded case using a typical gauss row
reduction is expressed as: N3/N?M. This reduces the operations by 1000 times for
a Jacobi of size N = 1000 with a bandwidth of M = 30 [33]. Since the analytical
computation of the partial derivative terms are often complicated, BDF methods
incorporate a numerical Jacobian by finite differences for large ODE problems.

The Livermore Solver for Ordinary Differential Equations, ” LSODE” was devel-
oped for integrating system of ODEs with full or banded Jacobian matrix [21].

LSODE is capable of solving problems designated as non-stiff (by Adams for-
mula) or stiff (by BDF method). The integrator states the last order of the method
used (achieved) and the number of function (dw/dt) and Jacobian evaluations. The
Jacobian evaluations can be either provided in a separate subroutine or a dummy
subroutine given and the matrix evaluated numerically.

Other applications include the solvers for the problems with; sparse Jacobian
matrix, more than one time derivative appearing in an ODE, and BDF implemen-

tations where the storage of the matrices is not required.
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4.5 Simulation environment

A simulation environment is constructed by assembling a set of various components
coded for the solution of a PDE system. The various components for the input-
output, definition of initial conditions, the derivative equations, spatial discretiza-
tion and time integration methods are prepared for modular coding. The modular
software algorithm is assembled in a fashion to permit ease of update, interchange
and modify any particular component. The modules are self-contained routines
where various segments of NUMOL are implemented and linked with the rest. This
approach allows interchangeability of the components. For instance, discretization
routines can be easily upgraded or different ones linked to permit solution of a dif-
ferent set of PDEs. The integration routines are also similarly interchangeable once
the required subroutine call is placed within the program flow. The modular assem-
bly and algorithm also permits the integration of the standard commercial quality

components whenever applicable.

4.5.1 PDE system simulator

The components/subroutines of the simulator for the numerical solution of the
ODEs, PDEs are programmed in FORTRAN90 code. Initially numerical experi-
mentation and solutions were developed using spatial discretization routines coded
in low order finite difference approximations. Subsequent to this verification, the
solutions are all developed with the use of higher-order spatial discretization of the
DSS routines.

In general a typical simulator/solver consists of several independent components:

e MAIN PROGRAM, is the unit that initially inputs the required data from
the files, communicates with various components, and coordinates multiple

activities and the output requirements.

e INITAL, defines the initial conditions (w(z,0) = w, (7)), equation (4.4), for
the ODE problem, as well as the problem constants to be set once for the

entire integration period.
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Figure 4.3: Modular component assembly diagram of the simulation environment
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e TIME INTEGRATION, is a set of routines that carry out the integration of
the ODEs using the previously described explicit or implicit methods (RKF45,
LSODE, etc.). It also generates the required form of ODEs by accessing prob-

lem definition and discretization components for the PDE system.

e DERV, defines the derivative equations, (w; = dw/dt), equation (4.1), to be
integrated in time (model equations). This routine might access other generic

components for discretization of the spatial derivatives in equation (4.1).

e SPATTAL DISCRETIZATION, are various routines that permit finite differ-
ence discretization of the spatial derivatives forming the RHS of the original

PDE system, equation (4.1).

e PRINT, is where the various output schemes for plotting or multiple 1/O

purposes are combined.

The operations are controlled by a main program which reads the data file that
defines the parameters specific to the problem (initial, final, print interval values of
time, error tolerance, etc.), calls the INITAL to define the initial conditions. The
repeated calls to ODE solver are made to step through and obtain the solution
at t = 0,t1,t2. An error check (flag) is made at each time step ¢;. The PRINT
subroutine is called to print the solution at that time step for a successful integration,
otherwise an error message is generated providing the status of the error. Program
structure is illustrated in Figure 4.3.

The general purpose discretization (DSS/2) and integration routines allow rel-
atively easy approximation to the solution of wide variety of one-, two- and three-
dimensional, adaptive grid problems. New algorithms and libraries can easily be

added and linked due to modularity of the software.
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4.5.2 Other MOL applications

Computational packages using MOL have been developed using similar modular
components. Some examples include DSS/2 [34] consisting of various discretization
and integration routines , SPRINT [3] modular open-ended software tool for one-
dimensional PDEs with discretization methods of finite differences and elements,
polynomials and adaptive meshing with integrators for stiff systems. Other sources
include mathematical libraries for numerical methods; NAG (Numerical Algorithms
Group), and IMSL (International Mathematics and Statistics Libraries) [1] which

contain PDE software with various MOL routines.

4.6 Typical applications

Typical applications of MOL to various segments of problem are illustrated in this
segment. Various set of boundary and initial conditions for the selected set of cases
and assumptions similar to those listed earlier in Chapter 3 are shown. Chapter 5
discusses use of simulation environment in conjunction with the parameter identifi-
cation routine in bringing numerical simulation and experimental responses together

to obtain the desired diffusivity coefficients.

4.6.1 Simulation under hydraulic gradient application

The pressure distribution for a typical sample is simulated under hydraulic gradient
at loading stage (Figure 4.4). The simulation is performed for a saturated sample
with a zero initial pressure distribution under closed material boundary conditions.
The diffusivity for this simulation is 0.753 cm? / sec. The initial and boundary con-

ditions for the system can be listed as:

Gradient Initial Boundary
Boundary
Type Conditions Conditions
p(0,t) = 5psi
Hydraulic Closed p(x,0) = Opsi op
E |CC:L =0
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ol
=

Gradient:  Hydraulic
Boundaries: Closed

Initial condition: p(x,0) = 0
Boundary conditions:

Pressure (psi)

17 p(0,t) = Spsi and dp(L,t)/dt=0
For a diffusivity of: 0.753 cm? sec
0 ‘ | ‘ |

Time (min)

Figure 4.4: Simulated pressure distribution under hydraulic gradient

4.6.2 Simulation under thermal gradient application

Similar simulations are performed for a one-dimensional system under applied ther-
mal gradients. A system with an internal heat source located at the left of the spec-
imen (station no.2) is simulated, which is initially at room temperature, T' (x,0) =
20°C. The temperature distribution at 9 stations along the first half of the un-
insulated specimen is plotted for comparison with experimental results. The sim-
ulation is performed for a specimen with a thermal diffusivity of 0.5678 cm? / min
(Figure 4.5).
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Gradient Initial Boundary
Boundary
Type Conditions Conditions
oT
. _‘wZO =0
Thermal ~ Un-insulated 7T (z,0) =20°C (f?fw
§|12L =0
30
2
VS 1
o 28 3
o
~— 4
[ab)
26
= 5
= 6
> 7
D 24 - 8
& Gradient: Temperature 9
|2 0o iz Initial condition: T(x,0) = 200C
Boundary conditions:
dT(0,t)/dt = 0 and dT(L,t)/dt=0
20 | For a d‘iffusivity of: 0‘.5678 cm %’mi‘n
0 50 100 150 200

Time (min)

Figure 4.5: Simulated temperature distribution for half of sample with heater at the
left end of sample

4.6.3 Simulation for multi-dimensional response

The simulation environment and various components are designed to be flexible

in handling different boundary conditions and spatial derivatives in one or more
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dimensions. Two simulations for temperature distribution in the specimen elevated
temperature values at the left end and the quarter of the specimen are shown. Figure
4.6 is plotted for a only a quarter of the cylindrical sample taking advantage of the
symmetry. Temperature profiles at 5 time segments are shown caused by the applied
temperature raise at the left boundary of the specimen. The initial and boundary
conditions used in simulation of the profiles shown in Figure 4.6 are:
Gradient Initial Boundary
Boundary
Type Conditions Conditions
T(0,7,0)=30°C
T(L,r,0)=22°C

T (z,R,0) = 22°C
oT
—‘7‘20 = 0

or

Thermal T (z,R,t) =22°C T (z,7,0)=22°C

Similarly, a specimen with initially raised temperature value at the left quarter
is shown in Figure 4.7. The heat dissipation along the specimen at 3 time segments
in terms of two-dimensional temperature profile is shown. The initial and boundary

conditions are defined as:

Gradient Initial Boundary
Boundary
Type Conditions Conditions

7(0,7,0) =22°C

T (z,7,0) = 22°C T (L,r,0)=22°C

T (L/4,r,0) =30°C T(xéR, 0) =22°C
T

& =0

or

Thermal T (z,R,t) =22°C
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=L/2

Length

radius =r

Figure 4.6: Simulated two-dimensional temperature distribution for first quarter of

the specimen
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Figure 4.7: Simulated two-dimensional temperature distribution for first quarter of

the specimen
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Chapter 5
Parameter Identification

The derivation of a distributed parameter model is based on development of a struc-
tural model and the parameter identification. The structural model is the backbone
of the entire system representing the process and the interrelationships. The re-
quired relationships in this case, were introduced in Chapter 3. The model for the
transient coupled flow process in porous media subject to thermal and hydraulic gra-
dients was derived from physical laws and the governing partial differential equations
(PDEs) were obtained. The derived governing equations have unknown parameters
that might be constants or variables of time, space or the state. Often some param-
eters used in a simplified models might lose their physical significance as they may
be combined in a manner that represent several physical processes at once. This
results in two types of parameters in the model, one being the physical parameters
known from the analysis of the system and the other the parameters that have no
direct physical interpretation and yet have to be identified.

The parameter identification is used to determine the unknown parameters such
that the output from the numerical simulations performed on the model would match
the experimentally obtained data under similar boundary and initial conditions as
close as possible [38]. The application of the parameter identification requires the
definition of an error criterion as an objective function representing the distance
between the model output and the experimental data. Another issue is the selection

of a numerical algorithm to minimize the objective function.
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The essence of the parameter estimation process is the simulation program de-
veloped in Chapter 4, which allows discretization of the equations in a suitable form
for numerical integration, solution and optimization. The selection of the error cri-
terion, and the optimization algorithm for parameter identification are described in
this chapter. The coupled flow parameters are estimated by making use of a Quasi-
Newton method with finite difference gradient of the objective function implemented

in the mathematical IMSL Fortran subroutines library [1].

5.1 Optima problem

The definition of the problem and obtaining the optimal solution by satisfying the
minimization condition defined by a function f (), is addressed here. Short discus-
sions on single variable and multiple variable optimization methods are presented.
The direct search and gradient based methods are summarized and the Newton’s,
modified Newton’s and Quasi-Newton’s methods are described in detail as part
of the quadratic gradient method. The algorithm used in Quasi-Newton Method
(QNM) [14] is also briefly discussed. Parameter identification is performed by us-
ing the optimization approach integrated with the simulated and the experimental
responses of the system, described in the previous chapters.

The problem of optimization of a given objective function f (z), is often the
problem of finding the value of x = z* that minimizes the value of the function
f (z*). A unimodal function is monotonic on either side of the single optimal point

z*. The statement for the monotonic function can be shown as:

for z; < xo, f(z1) < f(2a), or f(z1) > f(22),

5.1)
monotonically increasing monotonically decreasing (

Similarly a definition of a unimodal function for a minimum at x* can be stated as:

for z* <my <y, f(2%) < fm1) < f(22)

(5.2)
Tt > 7 219, f(2*) < f(m1) < f(22)

which indicates that the point is either a local or a global minimum.
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The definitions for identification of the stationary points, the regions, and the
estimation for local and global optimum points using different methods are described

in the subsequent segments.

5.1.1 Single variable optima

The Taylor series expansion of a single variable function f (x), over the interval

z € (a,b), in which it is differentiable to the n'* order, is:

fx*4e)—f(z") = €dl’|$:w* IR ey b |l o= + Ony1 (€) (5.3)
At an assumed local minima (z*), there exists a neighborhood (x = z* +¢), such
that f(x) > f (z*):
ey

df
5%|m:z* + .+

where e%|z:m* is a good approximation for small values of e.

It follows that for the function f (z) to be a local minima (an optima) at z* on
an open interval (a,b), the stationary point g—];|$:m* = 0 is a necessary condition
with %\m:m* > 0. In general with the stationary point condition satisfied, the first
non-zero higher-order derivative of order n determines whether it is an inflection
point (n = odd) or a local optima (n = even) [30]. One method of determining the
global optimum for an f () bounded in an interval [a, b] (in this case of minima), is
to calculate the function values for local optima points as well as at the boundaries.

There are many rudimentary methods that require the function to be only uni-
modal within the interval of interest. In fact methods like region elimination don’t
even require the function to be differentiable and work by eliminating the subin-
tervals. Region halving and golden section search are among this group. However,
polynomial approximation (point-estimation) methods take advantage of the mag-
nitude of the difference between the consecutive function values, which require the
function to be sufficiently smooth. Quadratic estimation, successive quadratic esti-
mation are within this group, requiring the function to be unimodal and continuous.

Another group makes use of the derivatives of the function which requires continuity
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and differentiability. Typical derivative methods are: Newton-Raphson, bisection,
secant, and cubic search methods. Improper selection of the initial search point can

cause the solution to diverge with Newton-like methods.

5.1.2 Multi-variable optima

The problem statement requiring the optimization of functions of several variables
is:
Minimize  f(z), where z € RV

f: scalar objective function (5.5)
x: vector of design variables
af o ar 1"
It is assumed that the first derivative vector, Vf = [8_zfl’ a_me’ ey an , exists and
N

is continuous everywhere. Next, the optimality criteria is developed starting from

Taylor expansion:
f@) = f @) + V@) Ax+ %mTvQ (@) Az + 05 (Az) (5.6)

where Af (z) = f (z) — f (%) = Vf (@)" Az + 1Az f (T) Az and for point T to

be a minimum (local or global):

7 is global minimum Af (z) = f(z) — f(T) >0 Vz e RV
7 is local minimum  Af (z)=f(z) — f(Z) >0 ||z —7Z|| 26,6>0

where sign of Af (z) determines if its a maxima, minima or a saddle point and
with the stationary point (Vf (Z) = 0) requirement, a quadratic form is obtained
for Af (z):

Af (z) = %AzTVQ (@) Az (5.8)

The definition for determination of minima, maxima or saddle point is illustrated in
a diagram in Figure 5.1, starting from the stationary point at = and the quadratic
expression in equation (5.8). The search direction vector S (Z) and the step size
a, used in determination of the next approximation towards the minima are also

shown. The necessary conditions for the existence of a minima are: existence of a
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VE(X)=0 for stationary point X
AT(X) :%AXTVZf(X)Ax Taylor series => eqn.(5.8)
Q(x) = AX"V2f (X)Ax Quadratic form

Q2=7"Az Quadratic form (arbitrary z)

. A =V2f(X) |

" Ais positive definite if vz, Qz»o0
' Ais positive semi-definite if  Vz, Q(z)>0-+ Xis a minimum
" Ais negative definite if Vz, Q(z)<0 !

A is negative semi-definite if vz, Q(z)<0— Xis a maximum

~ Ais indefinite if for some z,  Q(z)>
| and others  Q(z)<

" S(%): descent, ascent Sx) 1

| or neither direction - @ Ascent -—

| - |
 X= X+oS(X) e Descent --—
! 2 T b /
CAT0=%S v (x)s |

! 2 stationary neighborhood !

Figure 5.1: Diagram for minimum, maximum and direction vector.
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stationary point and a positive semi-definite Hessian matrix, V2 f (7). But having a
positive definite Hessian is a sufficient condition for an isolated local minima of the
function to exist. A local minima is a global one if Az V*f (Z) Az > 0 is satisfied
for all = [14], [20]. This is identical to saying that the function is convex. First,
the Hessian matrix is constructed. Then different z = Az vectors are tried, which

ultimately result in the global minima vector.

5.1.3 Direct search methods

Direct search methods are iterative ways of producing the minima vector using the
function values alone. These are grouped in the heuristic and theoretically based
techniques. Some of the heuristics methods known are simplex search (S? method)
and Hooke-Jeeves pattern search methods [14]. Powell’s conjugate direction method
is a good example of the direct search method that are based on theory. This
method includes history of iterations and combines moves in one variable at a time
with acceleration moves. These methods are suitable when only a set of function
values are available and the search is to be performed within those and no further

information on the form of the function itself is available or used in the search.

5.1.4 Gradient based methods

Gradient based methods require the function f (z), the first derivatives V f (Z) and
the Hessian Matrix V*f (Z), to exist and be continuous [14]. The method works
by identifying the steepest descent direction and stepping in the descent direction
at each iteration. Cauchy method uses the most local descent (—V f (7)) for the
direction vector and adjusts the scale (a) at each step. Newton’s method uses a
Taylor’s expansion including a quadratic term for approximating the function for
the k' iteration point. The method uses step size of Az = —V*f (z™) vy (™),
which is obtained by setting the gradient of the approximation to the function at the
k' step to zero. Newton’s method converges with a quadratic rate however ascent
or descent is a function of the sign of the Hessian matrix with convergence depending

on the starting point. If the starting point is far from the optima the step size might
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become large causing the procedure to diverge. Modified Newton’s method includes
the scaling factor (a) to adjust for the step at each iteration. The Marquardt’s
method combines the Cauchy and the Newton’s methods and requires 2" order
information. A coefficient (\) is used in this method to control both direction and
length of step. The initial value for this constant starts from a very large number
indicating a Cauchy like approach and as A decreases it works as Newton’s method.
The value of the method is in; Cauchy’s method being effective when away from
the minima and Newton’s method is when closer to minima which is put to use in
application of the conjugate methods where the change in gradient of the function

from one iteration to the next is used in updating the search direction.

Quasi-Newton methods The disadvantage of Newton-like methods is the need
to supply derivative formulas so that the second order derivative matrix can be
calculated from it. Finite difference representations of the first derivatives can be
supplied so that the Hessian matrix can be obtained using the differences in the
gradient vectors. The Quasi-Newton method approximates the inverse of the Hessian
matrix with a symmetric definite one (metric, A(yxn)) that is corrected and updated
at each iteration [16], [14]. The typical line search process is performed for a new
value at (k4 1)" step, (z*) = 2®) + o® G (™)), where S (x¥)) is the search
direction and can be expressed in terms of the metric which will eventually approach
the inverse of the Hessian matrix, A = G=' = V*f(Z)”'. The method uses the
current metric at step k to obtain a correction (A((;k)) for it and updates the metric
with the summation of the current and the correction, which is then used to obtain

the direction of the descent to be used for step k + 1.

a) set S (z®) =AWV (z®)
b) line search along S (z™) gives z*+1) = z(*¥) 4 oK) k)
¢) update A®) to Ak by AGTD = Ak 4 AP

The initial matrix A% can be any positive definite matrix, even the identity matrix
is usable for this purpose. The difficulty of this method is calculating A®) and in

updating the A%*+1) term, the aim being to push the initial estimate matrix towards
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the inverse of the Hessian. One way is to use the difference in the values of the

optima and gradients:

50 — k1) _ (k)

¥ = Vf (D) = Vf (7))

and to use the Taylor series y*) = G®§® . where the higher terms are zero
for a quadratic function. However since A®~®) ~ §®) where (A= G1), is not

accurate, the relationship is usually better represented by:
A4 (E) ~ 5(k) (5.9)

which is referred to as the quasi-Newton condition. Different methods are used to
obtain the correction term (Agk) ) to get to A%+ Rank one or rank two methods

are available depending on the form used for the correction component.

Rank one method: A®+) = A®) + gy
Rank two method: A® ) = A®) 4+ gy + boo?

where u = 6% — G®~4®) and au?~v* = 1 are to hold for rank one formula. Similar
relationships for rank two formulas are available to obtain the components necessary
for evaluation of the correction factor. DFP method by Fletcher and Powell [14],
is a typical example for rank two formula which is more efficient than the steepest
descent method and also more efficient than the conjugate gradient methods.

The method used in the implementation of the quasi-Newton method for this
study is a rank two method given by Broyden [14] and others, referred to as the
BFGS formula. It is similar to the DFP formula, but it represents the inverse of the
matrix A®) with another matrix and interchanges 6 and . This type of approach is
referred to as dual or complementary and also preserves the quasi-Newton condition
in equation (5.9).

The DUMINF IMSL library is used for the problem solution.The FORTRAN90
subroutine DUMINTF is a double precision application of the Quasi-Newton method

with finite difference estimates of the gradient of the function.
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_. search direction is:

_. Optimality condition

min f (x)

xeR

.. Problem Statement

Positive definite _
approximation to Hessian

s(x¥)= élw (x)

X = x4 2 g(x) >0

Given initial guess at xw

“New point

such that: |

. G6S8'G yy'
5 Update if needed ;\ G grese— G- 5765 yTé‘ ,:
_ Where S M= y (k) _ (k) },(k): \Vi (X(k+l)) _Vf (X(k))

Figure 5.2: Diagram of Quasi-Newton (BFGS) method for optimization.
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5.2 Parameter identification problem

The governing equations for the coupled flow process in porous media are obtained
in terms of PDEs as given in Chapter 3. The unknown parameters appear in the
differential equations and boundary conditions. Experimental response is also ob-
tained in terms of measurements at various locations along the cylindrical saturated
porous media, collected at different sampling intervals.

The derivation of the coupled flow process described in the previous chapters
assumed parameters with constant values, which are independent of time, space
and temperature. Naturally, these assumptions are not always valid, and some
applications may require parameters expressed either as functions of space (for het-
erogeneous media) or state variables (to represent non-linearities). This requires
discretization of the unknown parameters to express their functional forms.

The parameter identification is performed by collocation of the experimental and
numerical results in terms of pressure and temperature response of the system to
the applied boundary conditions. The experimental measurements are performed
at seven locations along the porous sample as described in Chapter 2. The first
and last measurements are performed at the boundaries. Figure 5.3a, illustrates
the locations at which experimental measurements of pressure are taken. However,
temperature measurements are recorded at smaller intervals. The numerical response
simulation of the system (pressure and temperature) to the applied set of boundary
conditions are computed at various spacings denoted by dz, as shown in Figure 5.3b.
The measured values at the experimental measurement stations are then collocated
with the numerical results and checked to obtain the best possible match. This
process is described first by defining the objective function and then by the search

method previously discussed.
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Figure 5.3: a) Experimental measurement points, b) Numerical simulation result
output points, collocation.
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5.2.1 Equation error criterion

The problem of optimization for parameter identification requires the objective func-
tion, an expression for error term, to be defined. As shown in figure 5.2, the opti-
mization problem in terms of the required variable z has the form of:

min f (z) (5.10)

zeRN
Sum of squares expression of error term

The objective function, or the error expression, to be minimized is expressed in
terms of collocation of the numerical results (subscript n) with the experimental
ones (subscript e) at the measurement stations. The response of the system at these
five interior points are then combined in terms of the sum of squares to obtain a
cumulative error term. The sum of the squares expression between the two sets of
data, experimental (w,;) and numerical(w,;), is expressed as:
m
F(2) =) [we — wyil? (5.11)

i=1

The parameter m is the total time steps taken for both the experimental and nu-

merical data.

5.2.2 Error minimization

The physical sample can be represented by a discretized model, with various seg-

ments that allow modeling heterogeneous media.

A single parameter model

However a single parameter model is also capable of representing the sample here,
which requires a single form of the parameter representing the entire porous media.
This approach is suitable for homogeneous media where variations in the proper-
ties with space is insignificant. A single parameter model is shown in Figure 5.b,

where equation (5.11) is good representation of the objective function. The single

135



5.2. PARAMETER IDENTIFICATION PROBLEM

parameter model can be expressed with a single objective function which combines
the sum of squares of the terms at all five interior measurement stations, as given

in equation (5.12):

ol o ® O Q o o

BC 1 2 3 5 :BC
| | | | | |

x=0 x=0.1L x=0.3L x=0.5L X:O‘.7L X:O‘.9L L

- L
’ ®
O @ @ @ @ @ @
o 1 (single parameter) Be
\ \ \ \ \ \ \
x=0 x:q.lL x:q.SL x:q.SL x:O‘.7L x:q.gL X=L
- L %
L—» X

f(z) = ZZ [Weij — Wnis]” (5.12)

The single error term here combines all the deviations of the measured quantity

(pressure or temperature) at all stations for the required time period of the test data.
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This simply collocates the experimental and numerical values in space (five stations)
and time (at every measurement-integration step). Equation (5.12) becomes the ob-
jective/error function to be minimized. However, to have a uniform measure of error
term with respect to various tests and studies, the error term is normalized with the
total number of data points involved in the summation (E (z) = f (z)/ (5m)). The
minimization of the single parameter model then is simply in the form of equation
(5.13) with a second derivative term less than zero.

dE (z)

dz

=0 (5.13)

The single parameter model simply represents the entire (homogeneous) soil speci-
men with a single parameter. Equation (5.13) is a simple case where the unknown
parameter is in the form of a constant (single unknown). In the case of a func-
tional form for the required parameter r, say in the form of a polynomial r (x), with

unknown coefficients ag, a;, and a, (shown as second order here),
r(z) = ap + a1 + asx”® (5.14)

the error term is minimized in terms of each unknown parameter (coefficient),:

dE
dai N

0 (5.15)

which results in three equations for three unknown coefficients in the second order

polynomial equation (5.14).

A distributed parameter system

However a distributed parameter system, represents a heterogeneous system by al-
lowing various segments to be expressed by different parameters or a form of param-
eters (Figure 5.4a). A model with constant form of parameter for each five segments
will require separate error terms for each segment. This can be approximated by
assuming that each station approximates the average response at the mid point

of that section, as illustrated in Figure 5.4a. The resulting error term (objective
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function) for a constant unknown at each segment will take the form:

f(z) = Z [Weij — wnz’j]2 (5.16)
Ej = f(z)/m (5.17)
% =0 (5.18)

where 7 = 1,2,...,5, resulting in five equations, each minimizing the response in
one segment for the optimum parameter of the segment. If a form of parameter is
applied to each segment, then each segment’s error term should be minimized with
respect to the unknowns in the corresponding assumed form of the parameter.

The single and discrete parameter forms of optimization with a constant param-
eter were both carried out for the system at hand in this work. The application of
the discrete parameter model permits the check for possible inhomogeneity of the

sample.

5.3 Optimization environment

The computer implementation of the identification via optimization is shown in Fig-
ure 5.5. The process requires three components: 1) a real system generating data
from physical set-up, 2) a simulation program computing model outputs based on ap-
plied forcing function and current value of parameter z, 3) an optimization segment
to minimize the objective function and update the parameter z.The optimization
program should be iterative and be able to call the simulation routine repeatedly in
order to calculate updated numerical responses to be used in obtaining the future
values of the error components. An interface between the simulation component
and the optimization routine is required to manage the information exchange. The
coding for the simulation program is also expanded to include the computation of
the criterion value using the measured data stored in external files. The estimation
of the unknown parameters are carried out by interfacing the simulation program
explained in Chapter 4 and the optimization routine of IMSL libraries [1] imple-

menting the quasi-Newton method with numerical derivatives. The libraries are
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Forcing

Function t
———[ Real System ]—We(x"t')

+
<}—_> min f(z)

—{Simulation Program ]_Wn(xi t)
1z

Figure 5.5: Model matching with the real system thru output minimization.

all written in FORTRANO90, and the integration between the components and the
external sources is outlined in Figure 5.6. The lower half of the flow chart in Figure
5.6 is the simulation set already discussed in Chapter 4. Some modifications to
the individual modules within the simulation segment are made to allow transfer of
the optimization parameters. The two files for input and output shown within the
simulation components are: 1) the data files that provide the initial, final time and
output interval and error tolerances required for solution of ODEs by integration,
2) the numerical output files of pressure or temperature record determined at the
experimental measurement locations at the time steps identical to the experimental
time steps. The upper half of the flow chart illustrates the additional optimization

components. Those components are:

e MAIN PROGRAM, this unit inputs the required data from the files (inrkf and
inlsode), defines the size of the problem (dimension of the parameter set),
initializes the optimization variables, communicates with various components,

and coordinates multiple activities and the output requirements.

e DATAFILESs, inrkf and inlsode provide the initial starting point values for

optimization of the parameters.
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Figure 5.6: Simulation and optimization flow chart.
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e OPTIMIZATION ROUTINE, is the IMSL library DUMINF where a double
precision version of the quasi-Newton method with numerical derivatives is

implemented.

e OBJECTIVE FUNCTION, defines the sum of the squares and the error term
by accessing the simulation program to generate the numerical response and

experimental response available in a data file (experl).

The operations are controlled by the main program as stated above. The opti-
mization routine continues iteration by making subsequent calls to the simulation
routine and minimizing the sum of the squares error term to obtain the required
improved form of the parameters.

A useful feature of the components (modules) shown in Figure 5.6 is that they
all are written in FORTRANO90 and are therefore portable. These components can
easily be used on a PC allowing a fast, low cost simulation environment. However,
the system described in here was originally constructed on the computer server

machines and Unix Operating System at the Lehigh University.

5.4 Experimental and numerical systems

The appropriate form and type of input signals and measurements should be iden-
tified and selected carefully. The successful estimation of the parameters depends
on the accumulation of sufficient and quality data.

Single (Figure 5.4b) and distributed (Figure 5.4a) parameter type estimations
are performed on the responses obtained from measurement stations. Both simu-
lation routines: explicit (RKF45) and implicit (LSODE) are used for this purpose.
The soil sample is divided to various segments as illustrated in figure 5.4b for the im-
plementation of distributed parameter type estimation. Each segment is considered
homogeneous within itself, while the entire soil consists of several segments repre-
sented by different parameters. This permits a heterogeneous representation of the
soil sample. However, during the initial studies, it was observed that the variation

of parameters from different parts of the same sample are small and the parameters
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obtained from the distributed and the single type system are comparable. Therefore,
the subsequent numerical and parameter estimation studies were performed based
on the homogeneous medium assumption using the single parameter system.

A coarser spatial discretization is used for implementation of the explicit (RKF45).
This is mainly due to stability problems of the method itself, caused by the need to
match the numerical integration outputs to the experimental data in the temporal
domain, which as a result requires the use of smaller time steps in integration. The
use of explicit integration method in RKF45 for one-dimensional solution permits up
to 21 nodes in spatial discretization along the sample. The sample is then simulated
with 1cm segments, which is acceptable since the smallest pressure sensor spacing
(2.1cm) and the thermocouple spacing (1.05cm) are both larger than this value.
The LSODE and the implicit mode of numerical solution is developed further and
replaced the RKF45 for all integration purposes. Spatial discretizations up to 401
nodes, (half a millimeter), can be used with the LSODE. However, the system is
well defined spatially when discretized into 101 nodes. It was observed that further
increase in discretization beyond this number did not provide further improvements
on the quality of the solution. The further increase beyond this point would only
lengthen the solution and the time required for parameter estimation and optimiza-
tion. Although not investigated in here, further discretization is possible, to study
or model a localized feature or occurrence within the system.

The behavior of the experimental and numerical systems subject to the same
conditions are obtained and used in the search for the desired parameters. The
pressure and temperature responses of the experimental set-up stamped with loca-
tion and time are reproduced at the same spatial and temporal steps numerically
with the use of appropriately simplified form of the governing equations as described
in Chapter 3. The application of the optimization method in terms of minimiza-
tion of the objective function and error terms were described earlier in this chapter.
The pressure and temperature error terms, objective functions and the minimization

criterion for each are given in equations (5.12) and (5.13).

n m 2
Zj:l Zi:l [peij - pnz]]

m-n

Ep () = (5.19)
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23;1 221 [Teij - Tnij]2

ET (ZT) = mn (520)
By(z) _ g g Erln) _, (5.21)
dz, dzp '

The upper bounds in summation terms; m and n above are the time and spa-
tial discretization numbers. The error terms are obtained for pressure (E,) and
temperature (E7) as a function of the required parameters in each case (z,, zr).

The governing equations stated in Chapter 3 involve many unknown parameters.
As aresult of the simplifying assumptions based on the nature of the physical model,
and the type of conducted test, or by combination of several parameters into a single
parameter, the ambiguous ”curve fit” type approach was not considered, and where
ever possible physical values and representations for the parameters involved were
utilized. Two of the important soil parameters (thermal diffusivity «, and rate of
compressibility of the media ¢,) for the thermal and hydraulic processes for a two-
phase porous media are determined as a validation of the unified system constructed
for nondestructive study of coupled. The determination of these two soil parameters

using the system are discussed below.

5.4.1 Hydraulic gradient

In Chapter 2, the application of step-function type hydraulic gradients and the cor-
responding response of the soil medium were discussed. The loading and unloading
stages for gradient applications and the corresponding transient pressure response
for the representative samples were included in the same chapter.

The numerical solution of the simplified form of the governing equations in Chap-
ter 3 are obtained using the simulation environment in Chapter 4. The numerical
solutions are obtained for various levels of discretizations as shown in Chapter 4.
The numerical responses corresponding to the experimental hydraulic gradient mea-
surement stations are then used for comparisons with the experimental results at
these locations. The responses at the measurement locations are collocated in the
form of least square type error terms as described above and minimized to obtain

parameters of interest.
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The hydraulic gradient case of the system is simply expressed as:
0 K(1
op _ [K{1+eo) Vp
ot Py g Oy
= OV (5.22)

By making use of the equation of motion for the regime immediately after the
onset, of the flow, and including the inertial effects on the continuity equation, the

transient pressure variation is represented as:

8Vm_ 1 0p

ot ps Oz

S S A (5.23)

ot (nﬁp'i'li_vc«)) Ox

Open material boundary

The experimentally obtained transient pressure response of the system under open
boundary conditions were illustrated and discussed in Figures 2.14 and 2.18 in Chap-
ter 2. A convective and conductive type of model is used to represent the pressure
response under open boundary conditions. The governing PDEs are discretized and
the generated ODEs are integrated to produce a representative pressure response
based on the initial estimate (guess) of the system parameter.

The typical open system numerical pressure responses after completion of the
parameter identification stage for various discretizations simulated with implicit
integration of the ODEs are illustrated in Figure 5.7. The numerical results are
plotted for total node numbers of: 11, 21, 101 and 401. The experimental transient
pressure of the actual system can be observed in Figure 5.7e. Almost identical pa-
rameters and pressure distributions are obtained from various spatial discretization
schemes. The simulation-optimization characteristics and the obtained parameters

are discussed and tabulated under the model validation segment of this chapter.
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Figure 5.7: Unloading stage simulation under open conditions for total node numbers
of, a) 11, b) 21, ¢) 101, d) 401, e) experimental plots.
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Closed material boundary

The typical transient experimental response of the system to loading and unload-
ing under closed boundary conditions were previously shown in Figures 2.21 and
2.33 in Chapter 2. The numerical responses of the system obtained for various
discretizations is represented in terms of the parabolic PDE, equation (5.22). The
simulated system response with an initial guess for the parameter is collocated with
the experimental response to optimize the numerical solution and obtain the desired
parameter (rate of compression).

The responses of the numerical system for different discretizations at the end of
the estimation routine under loading stage are shown in Figure 5.8. Figure 5.8a to d
are the numerical solutions obtained with optimized parameter for 11, 21, 101 and
401 node system. Figure 5.8e, is the experimental response of the system.

Similarly, Figure 5.9 illustrates the numeric responses obtained with the opti-
mized parameter (Figure 5.9a-d) and the corresponding experimental variation of

the pressure (Figure 5.9¢) along the same sample.

5.4.2 Thermal gradient

The application of thermal gradients at various locations within the cylindrical sam-
ple and the recorded measurements of system response in terms of transient tem-
perature values were discussed in Chapter 2.

Repeated heating and cool-down cycles are applied to the saturated sample via
heaters installed at the ends and inside the sample. The real time experimental
temperature variation along the specimen is shown in Figures 2.25 and 2.27 for the
heating and in Figures 2.29 and 2.31 for the cool-down segments. The plots shown
in Chapter 2 are representative experimental responses of the system to the applied
inputs.

A full coverage of the sample length with thermocouples was not possible due to
limited number of available data acquisition channels. Therefore only a total number
of 8 channels were allocated for temperature measurements. These channels were

distributed evenly along the length of the sample. However, it was not possible
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Figure 5.9: Unloading stage simulation under closed conditions for total node num-
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to capture a well representative temperature distribution along the full length of
the sample with evenly distributed thermocouples due to presence of surface heat
loss at room the temperature. As a result, a reduced spacing of the thermocouples
were used instead and only the first half of the specimen was fully monitored and the
temperature values were recorded. However, the entire sample length was monitored
for the hydraulic case and the pressure response measured along all the stations.

Making use of symmetry, the heat source was placed at the center and the
experimental response was obtained for half of the sample. The numerical solution
was obtained for a sample of half length also, with heater located at the end of the
sample.

The numerical simulations of the case with heater located at the boundary is
performed for the full length of the sample. The numerical response along the first
half of the sample is then collocated with the experimental measurements to provide
the objective function in terms of the required system parameters. This partial
system response proved to be sufficient in allowing successful parameter estimation

for the tested sample.

Equation of energy

The equation for energy conservation of the system was derived in Chapter 3. Equa-
tion (3.10.5) was simplified under a set of assumptions in Chapter 4 for simulation

purposes. Assuming constant thermal conductivity the equation for energy conser-

vation is: .
o= aV?T + G (2,9, 2,t) (5.24)
where
T : Temperature at a point

V?: Laplacian operator
. Heat generation - dissipation terms
«:  Thermal diffusivity ( )

A
PCy
Equation (5.24) above [10] can be reduced to equation (5.25) under the closed
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boundary conditions where convective transfer is eliminated due to lack of material
flow, and where the contribution from the internal heat generation and surface heat

loss terms are expressed individually.

or o h ,

i

(5.25)

where h, is the convective heat loss coefficient due to free convection around the
surface and Ty, is the surface temperature.

The numerical solution of the equation of energy (5.20) given above, is collocated
with the experimental response of the system to determine the unknown coefficients.
The thermal diffusivity, free convection coefficient, conduction and the internal heat
generation terms are all non-measurable quantities during a given test. The system
response is obtained only in terms of the transient temperature variation along the
sample. A simulation for the correct numerical temperature response is required to
be able to estimate the unknown parameters.

One of the main goals of the approach is to keep the number of unknown param-
eters to be determined at a minimum. The use of minimal number of parameters
and their constant forms are important requirements that will prevent the use of
empirical forms or the development of the method as a curve fitting process.

One common method often used by many numerical applications is to handle all
of the unknown parameters (i.e. a, A, h, and ¢ ) numerically and search for their
final form and value as part of the parameter estimation routine. This approach
however will take the form of a generic ”curve fitting” process that will match the
output of the numeric system by rearranging a set of unknown parameters based on
the assumed empirical forms.

No matter how applicable, the above procedure is, it is preferred to obtain the
parameters or their ratios from the known characteristics of the heater, or the final
temperature profile along the length of the sample, prior to the optimization routine.
This will reduce the unknown parameter to only thermal diffusivity, o, which can

be estimated in a deterministic manner.
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Heat source The applied heat is controlled via the power supply and the voltage
input. As previously discussed in Chapter 2, the internal heaters are operated at
approximately 20V to obtain a stable temperature response with minimum oscil-
lation. The power input is calculated based on the provided rating of the heater
at 120V to be Wyyy = 0.6499 W. The term ¢ in the equation is the rate of tem-
perature increase obtained from the volumetric heat input of the heater divided by
the density and the heat capacity of the media. The average mass density of the
samples used were 1.876 8 / cm?® and the range of heat capacity of 90 — 130 J / kg K,
which resulted in a heat generation rate term of ¢ = 15 — 20K /s [?], [23], [22].
The heat generation component can be eliminated from the numerical calcula-
tions completely by studying the cool-down period. The initial temperature dis-
tribution of the sample during the cool-down period is obtained from the steady
state profile at the end of the heating period. The cool-down, as a result of free
convection from the surface provides the transient state temperature distribution at
this stage, which is again used by the parameter estimation method to minimize the

error between the numerical and the experimental temperature responses.

Surface heat loss and convection coefficient The sample is tested under room
temperature conditions with no insulation. The heat loss coefficient due to free
convection on the sample surface can either be directly obtained as a parameter
set to be identified by the optimization routine, or obtained from the experimental
steady state temperature distribution. The latter is used here. This procedure
permits only the representation of the ratio of the convective heat loss coefficient to
the heat conduction coefficient. This ratio (similar to Nusselt number) can then be
used as a known system parameter within the numerical simulation of the governing
equation and conduct the required optimization for the thermal diffusivity coefficient
as previously discussed.

At steady state, the energy balance at the surface which satisfies the balance
between the heat conduction along the sample and the heat loss from its surface is

shown in Figure 5.10 and by equation (5.26).
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Figure 5.10: Steady state cylinder surface heat loss with a heat source at one end.

d°T
M— = T—-T, 2
5 =hC(T-T) (5.26)

where A = mr?

, is the cross sectional area, A is the thermal conductivity of the
medium and C' = 27r is the circumference of the cross section of the sample. In-
terchanging the temperature variables with © = T — Ty, equation (5.26) can be
re-written as: )

d
Ar? d—x(;) = h27r©

Simplifying the above equation to its final form:
d2
7o _ m’e (5.27)

dx?

The exact solution of equation (5.27) is : O (z) = C1e™ + Cye ™*. The internal
diameter (ID) of the test set-up is 2.54 cm. The steady state temperature profile
at three or more locations along the sample for every test is used to obtain the

unknown coefficients: C;, Cy and m numerically, where m? = % The desired ratio
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. . . . 2 .
of convection to conduction coefficient is then represented by % = "% and is used

as a constant parameter in the numerical solution and simulation of the energy
equation:

oT o mir ,

—=a |VT —-——(T-T,)| + 5.28

o 5 ( )| +4 (5.28)
Equation (5.28) is the generic form to be used in numerical solution under the

applied source and boundary conditions.

Loading stage - heating

The thermal gradient and the desired temperature level is achieved by the heater
and controller sets described in Chapter 2. The heaters are installed at the ends and
center of the sample. The transient temperature response is recorded as shown in
Figures 2.25, and 2.27 (Figure 5.11d). Figure 5.11 illustrates the numerical temper-
ature responses for the case with the heater at the left end of the sample. Limited
number of thermocouples (eight) were used during the test, and the parameter iden-
tification was based only on the partial set of data obtained from the first half of
the sample. The effect of discretization and the error for the estimated parame-
ters, along with the performance and characteristics of the estimation method are

discussed at the end of this chapter.

Unloading stage - cool down

The transient temperature distribution obtained experimentally for the cool-down
period of a test is handled similarly to calibrate the numerical simulation model.
The initial temperature distribution of the sample during the cool-down period is
obtained from the steady state profile at the end of heating segment. A typical
curve fit with a polynomial approximation is used on the steady state distribution
obtained at the end of the heating period; T (z,0) = ag+ a7+ asz® +azz® +asxt. A
typical initial temperature distribution for cool down is shown in Figure 5.12. This
distribution is obtained by a fourth order polynomial approximation to the steady
state distribution achieved at the end of the heating period. The initial temperature

distribution is necessary to obtain the numerical solution of the ODE system. The
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Figure 5.11: Loading stage for total number of nodes of, a) 101, b) 201, ¢) 401, d)
experimental plot.
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Figure 5.12: Initial temperature distribution for cool-down stage.

simulated temperature responses with the optimized parameter for the cool down
period are shown for various discretizations in Figure 5.13. The results for 11 and
101 node simulations and the corresponding experimental measurement are carried

up to the steady state condition (¢; = 200 mn).

155



5.4. EXPERIMENTAL AND NUMERICAL SYSTEMS

- @E@P@P@PW?.
¥

Heater

A

30 <:>
Q - 3
: ;ﬁi@??@@?té
g T Heater ¢
£

@

o o] @f@?@?@?(?(??a u?
@ Lj =,
g T Heater (‘*;_
3
[ s
20/ ‘ ‘

0 100 200

Time (min)

Figure 5.13: Unloading stage for total number of nodes of, a) 11, b) 101, ¢) experi-
mental plot.

156



5.5. MODEL VALIDATION AND PARAMETERS

5.5 Model validation and parameters

In here, the estimated parameters are listed for various types of tests and selected
soil types, and their physical significances are discussed briefly. The performance of
the parameter identification method in terms of errors, convergence and effects of
discretization on the numerical solutions with respect to the experimental response

are presented in this section also.

5.5.1 Hydraulic response related parameters

The measured transient hydraulic response of the system is used to obtain the aver-
age molecular diffusion and the velocity of the propagation of the applied hydraulic
pressure across the sample. The values of these parameters obtained for different

samples are tabulated here.

Typical values for the diffusion coefficient for pressure migration (% = D%)

under closed boundary conditions, and the velocity of the flow obtained from the

equation which includes the convective contribution (% = D% — 1)%) under open
boundary conditions were estimated. The average flow velocity values were then
used based to obtain an average value of the hydraulic conductivity for the entire

duration of test (onset - steady state), based on generalized Darcy’s law.

Table 5.1: Flow related parameters due to hydraulic gradient application

Test Load Unload Difﬁus;vity Velocity (i };1(11 Efrror
No. Stage Stage D (cm® /s) v (cm /) K (cm /s) 5(m)

Al * 0.7531984 — 0.0521
A2 * 0.7535381 — 0.0502
B1 * 0.7627432 — 0.0382
B2 * 0.7442542 — 0.0382
C1 * 0.6532783 1.34e — 03  527e—04  0.0496
C2 * 0.7335768 4.28¢ — 03  4.26e—04  0.0500

The parameters listed in Table 5.1 are obtained from optimization of the numeri-

cal and experimental data for an assumed constant form. Therefore, the table above
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represents the average value of the parameters for the entire period of transient to
steady state condition. These parameters can be estimated at different stages of the

test, representing their variation over the transient period.

5.5.2 Thermal response related parameters

The transient temperature distribution obtained for heating and cool-down stages of
the tests are used to determine the thermal diffusivity of the two-phase soil sample.
However, the ratio of the convective heat loss at the surface to the conductive
heat along the length is also obtained from the steady state distribution of the
temperature at the end of the heating segment. The average Nusselt number for
the experiment can be expressed as Nu = hTL, which is the measure of convective
heat transfer at the surface or by the same reasoning the dimensionless temperature
gradient at the surface. The average Nusselt number over the length of the sample
(L = 21 cm) under room temperature conditions is calculated as: Nu = 1.04. This
value is fairly constant for different samples due to similar heater input (power) and
similar temperature rise and room conditions.

The representative tests and the resulting thermal diffusivity values obtained
from parameter estimation routine for these tests and their heating and cool-down

segments are listed in Table 5.2.

Table 5.2: Heat flow related parameters due to thermal gradient application

Test Heater Heating Cool-down Thermal Diffusivity Error
No. Location Stage Stage a (cm? /h) %
Al Left end * 33.17 0.009
A2 Left end * 33.38 0.01
A3 Left end * 33.01 0.007
B1 Center * 27.90 0.13
B2 Center * 37.12 0.01
C1 Center * 25.81 0.03
C2 Center * 26.39 0.04

It is observed that the average diffusivity obtained for a soils did not show much
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dependence on the location of the heather or the stage of the test. The repeatability
of the measurements were checked by duplicating each test more than once and also
by comparing outputs from various stages and heater locations. Duplicate test and
application of various testing scenarios demonstrated clear repeatability trends.
The thermal diffusivity of the soil medium obtained here is a parameter indicat-
ing the rate of heat flow in the medium. The parameter identification was performed
for each experiment and it was combined with numerical solutions of various sam-
ple discretizations (11,21,101,201, and 401). Each parameter estimation process
generated an optimized form of the required parameter, output the total number
of iterations performed, the number of times the function (objective function) is
evaluated, the number of times the gradient is evaluated (to update the Jacobian
matrix) and the final magnitude of the error (objective function) obtained for the
parameter. The magnitudes of the objective (error) function corresponding to a par-
ticular iteration are also listed below. Other variations of the optimization statistics

for several tests with respect to discretization size are listed in Table 5.3.

Table 5.3: Optimization statistics

Test Total No. of No. of Fen. Gradient Objective
No. Nodes Iterations Evaluations Evaluations Function
Al 101 7 27 8 .8866e — 02
Al 201 17 46 21 .8965¢e — 02
Al 401 24 94 46 0.1018e — 01
B1 101 29 75 42 0.1392306
B1 401 8 33 12 0.1392292
B2 21 8 31 14 0.2053521
B2 401 12 33 16 0.2053557

Error and convergence

The objective function was evaluated based on a single parameter model as dis-
cussed earlier in this chapter. Preliminary studies based on a distributed parameter

model for a soil sample consisting of 5 segments resulted in very closely optimized
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parameters for each segment, thereby in the assumption of homogeneous soil sam-
ple and representation with a single parameter model as shown above. The error
term however is not normalized for the maximum magnitude of the temperature
or pressure value, therefore the comparisons of error terms between different tests
with different set points are not valid. Yet it is a good measure for the individual
test itself and for the duplicate tests performed on the same soil sample. A plot of
error variation and search for convergence during a typical optimization process is
illustrated in Figure 5.14. The error (objective function) is plotted in semi-log form
to demonstrate the full range of the convergence. The final error achieved at the

end of this convergence is 0.009593.

100

[N
o

41 61 81 101 121 141

©
[EEN

Objective function (log)

0.001

No. of Iterations

Figure 5.14: Typical convergence plot during a parameter estimation process.

Other sources of error

As illustrated in Figure 5.15, many performance measures can be obtained and

monitored to evaluate the parameter identification approach. The error between
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Figure 5.15: Typical errors; a) station 2 (401 nodes-experimental), b) all stations
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the optimized numerical solution and the experimental result is one of the most
critical measures. A typical plot of the percent error between the numerical and
experimental temperature response at one of the stations is shown in Figure 5.15a.
The overall error term for all stations is computed and printed at the end of each
parameter estimation process.

It should be noted that the parameter estimation for temperature response is
only based on partial data obtained from a segment of the sample. This partial data
is collocated with the corresponding segment of the numerical solution obtained for
the entire sample. It is also indicated that a constant single parameter is used to
represent the entire porous medium, which assumes homogeneous media and does
not, consider variations with other properties. Therefore the relatively small magni-
tude of the error and the convergence of the system to the experimental response is
a measure of success of the process.

The variations in the numerical response due to the spatial discretization and
their comparison with each other is shown in Figure 5.15b and 5.15¢ for 101 vs. 201
nodes and 101 vs. 401 nodes respectively. In all cases, the magnitude of the percent

error, is well below 2% as shown in Figure 5.15.
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Chapter 6
Summary and conclusion

A non-destructive system approach to the classical heat and mass transfer prob-
lem is studied. The goal of this study was to measure the transient response of
the saturated porous media in terms of the temperature and pressure values, and
illustrate the application of the developed system approach consisting of analytical,
experimental and numerical components in obtaining the corresponding soil param-
eters. The closed material boundaries were used with small magnitude gradient
applications to preserve the original properties of the porous media.

The ability to apply various combinations of gradients at the boundaries of the
same sample under non-destructive testing conditions provided the necessary data
to obtain the required parameters. These experimental tasks were conducted using
a one-dimensional test set-up specifically constructed for non-destructive testing.

The coupled, transient governing equations are derived and used in a numerical
simulation scheme to generate the numerical temperature and pressure distributions
along the sample with an initial set of estimated coupled coefficients. The numeri-
cally generated responses are compared to the experimental set obtained under the
similar boundary conditions. A parameter estimation routine is constructed based
on the deviation between these two data sets. This routine performs optimization
on the objective function defining the error term resulting from the collocation of
the experimental and numerical responses in the spatial and temporal planes.

The analytical model describing the transient coupled process in a multi-phase
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porous medium is applied to the particular two-phase, single component case studied
under the experimental conditions. The governing equations are then numerically
solved by methods of lines programmed in FORTRAN90.

Finally, the optimization routine was used to collocate the numerical and experi-
mental results and solve for the desired coupled coefficients related to heat and mass
transfer problem in saturated porous media. This approach was based on a sound
analytical model rather than empirical evaluation. The real-time on-line capabili-
ties of the automated test, numerical method and optimization environment could
easily be geared to handle closed-loop control based on implementations of various
feedback and prediction scenarios.

A unified system of experimental, numerical and parameter estimation method is
developed and its validity is demonstrated in solving select problems under applied
thermal and hydraulic gradients in porous media. The heat and hydraulic diffusivity
coeflicients are obtained under various conditions.

Further improvements to the experimental set-up are needed to capture the
minute contributions from the cross coupling effects. The deformation character-
istics of a two-phase saturated system can be directly included by experimental
modifications at the boundaries to include piezo-electric elements as micro actuator-
receiver components. The numerical simulation environment can be extended to
include the equations of state and conservations for multi-component system that

can address issues in three-phase unsaturated porous media.
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