AN EULERIAN PARTNER FOR INVERSIONS

Mark Skandera

(Massachusetts Institute of Technology)

Outline

- 1. Permutations
- 2. Permutation Statistics
- 3. Bijections
- 4. A New Statistic
- 5. Equidistribution Results

Permutations

alexander perlin (T. Mrowka, '99)

richard ^p stanley shipyard central DRY SPINACH ALERT hip trendy rascal SPRAY AT CHILDREN

RELAXED NAN PILER

DANA **ANDA**

akworm (A. Perlin, '98)

MROWKA

Definition. Let S_n be the symmetric group on n letters. A permutation statistic is a function $\phi : S_n \to \mathbb{N}$.

Two important examples are "des" (descents) and "exc" (excedances).

Descents

Let $\pi = \pi_1, \ldots, \pi_n$ be a permutation in S_n and define position *i* to be a *descent* in π if $\pi_i > \pi_{i+1}.$

Example: S_4 with marked descents.

Excedances

Let $\pi = \pi_1, \ldots, \pi_n$ be a permutation in S_n and define position *i* to be an *excedance* in π if $\pi_i > i$.

Example: S_4 with marked excedances.

Distribution of des and exc on S_n

The permutation statistics des and exc are called Eulerian because the Eulerian numbers count permutations π in S_n with

> $\text{des}(\pi) = k$ (or $\operatorname{exc}(\pi) = k$).

Descent set and major index

To each permutation with k descents, we associate a *descent set* $D(\pi)$.

 $D(\pi) = \{i | i \text{ is a descent in } \pi\}.$

We define the statistic MAJ (major index) to be the sum of the descents of π .

$$
MAJ(\pi) = \sum_{i \in D(\pi)} i.
$$

Descent set and major index of some permutations

Inversions

Definition. An *inversion* in a permutation is a pair $(\pi_i > \pi_j)$ such that $i < j$.

 $INV(\pi)$ counts the number of inversions in π .

Example. $\pi = 45123$ has six inversions: $(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3).$

Distribution of MAJ and INV on S_n

The statistics MAJ and INV are called Mahonian, after MacMahon. Numbers of permutations π in S_1, \ldots, S_5 with

$$
MAJ(\pi) = k
$$

(or $INV(\pi) = k$).

 $n\ k$ 0 1 2 3 4 5 6 7 8 9 10 $\mathbb{1}$ $\mathbf{1}$ $\overline{2}$ $\mathbf{1}$ $\mathbf{1}$ 3 1 2 2 1 4 1 3 5 6 5 3 1 $\overline{4}$ 1 4 9 15 20 22 20 15 9 4 1 $\overline{5}$

Substair vectors

Definition. Let E_n be the set of all vectors v in is a which are less than or equal to the \it{star} vector of length n

$$
(n-1,n-2,\ldots,1,0).
$$

Note that $|E_n| = n!$.

The code of a permutation

A well known bijection maps a permutation to its code.

$$
\gamma: S_n \to E_n
$$

$$
\pi \mapsto \text{code}(\pi).
$$

We define $\text{code}(\pi) = c_1, \ldots, c_n$, where c_i counts letters to the *right* of position i and *smaller* than π_i .

Example.

$$
\pi = 3 \ 5 \ 4 \ 2 \ 6 \ 1
$$

$$
\text{code}(\pi) = 2 \ 3 \ 2 \ 1 \ 1 \ 0.
$$

Note that
$$
\sum_{i}^{n} c_i = \text{INV}(\pi).
$$

The major index table

Let $\pi^{(i)}$ be the restriction of π to the letters i, \ldots, n .

Construct the sequence $\pi^{(n)}, \ldots, \pi^{(1)}$, and set

$$
m_i = \begin{cases} \text{MAJ}(\pi^{(i)}) - \text{MAJ}(\pi^{(i+1)}) & \text{if } i < n, \\ 0 & \text{if } i = n. \end{cases}
$$

Define majtable $(\pi) = (m_1, \ldots, m_n)$.

Note that
$$
\sum_{i}^{n} m_i = \text{MAJ}(\pi)
$$
.

Example. Let $\pi = 413265$. Inserting the letters in the order $6, 5, \ldots, 1$, we obtain

> $\pi^{(i)}=\text{MAJ}(\pi^{(i)}) \enskip m_i$ 6 0 0

Thus, majtable(413265) = 232110.

Theorem. (Carlitz, 1975) The map $\mu : S_n \to E_n,$

taking ^a permutation to its major index table, is ^a bijection.

Proof. We invert μ by writing the partial permutations $\pi^{(n)} = n, \ldots, \pi^{(1)} = \pi$ such that the insertion of each letter i increases MAJ by m_i . This is possible by the following lemma.

Let π be a word on the letters $\{i+1, \ldots, n\}$, and suppose π has k descents. Call the $n - i - k$ ascent positions

 $a_1 < \cdots < a_{n-i-k}$

call the k descent positions

$$
d_{k-1} < \cdots < d_0,
$$

and define $d_k = 0$.

Lemma.

- 1. The insertion of i into position $d_{\ell} + 1$ of π creates no new descent, and increases maj by ℓ , for $\ell = 0, \ldots, k$.
- 2. The insertion of i into position $a_{\ell} + 1$ of π creates one new descent and increases maj by $k + \ell$, for $\ell = 1, \ldots, n - i - k$.

Example. We insert the letter 1 into 43265 and calculate MAJ.

Proof. (1.) Insertion of i into position $d_{\ell} + 1$ increments ℓ descents.

(2.) Suppose there are p descents before a_{ℓ} , and $k - p$ descents after. Then, $a_{\ell} = p + \ell$.

Insertion of i into position $a_{\ell} + 1$ creates a new descent at a_ℓ and increments $k - p$ descents.

$$
p + \ell + k - p = k + \ell.
$$

Corollary. The permutation statistics inv and MAJ are equally distributed on S_n .

Proof. The map
$$
\phi : S_n \to S_n
$$
 defined by
\n $\phi = \gamma^{-1} \mu$ is a bijection satisfying
\n $MAJ(\pi) = INV(\phi(\pi)).$

majtable(π) = code(ρ)

Example. $\phi(413265) = 354261$, since

majtable(413265) = $232110 = \text{code}(354261)$.

Eulerian - Mahonian pairs

The *joint* distribution on S_n of (des, MAJ) has nice symmetries which the pairs (des, INV), (exc, MAJ) , and (exc, INV) lack.

Consider the distribution of (des, MAJ) on S_5 .

Question: For what natural Mahonian statistic x is (exc, x) distributed on S_n like (des, MAJ) ?

Answer: $X = DEN$ (FZ '89, H '95).

Question: For what natural Eulerian statistic z is (z, INV) distributed on S_n like $(des, MAJ)?$

Begin at the right of $code(\pi)$, and moving left, circle the first letter which is at least 1, the next which is at least 2, etc., until this is no longer possible. Set

 $\operatorname{stc}(\pi) = \text{ number of circles.}$

Example.

 π = 4 6 2 3 5 1 $code(\pi) = 3 4 1 1 1 0.$

$$
stc(462351) = 3.
$$

Definitions of st, stc, stm

Let $v = v_1, \ldots, v_n$ be a sub-stair vector of length n . Define the function $st : E_n \to \mathbb{N}$ by mapping v to the length ℓ of the longest super-stair subsequence of v .

Define the permutation statistics stc and stm by

$$
stc(\pi) = st(code(\pi)),
$$

$$
stm(\pi) = st(majtable(\pi)).
$$

Theorem. The pairs of permutation statistics (des, MAJ) and (stc, INV) are equally distributed on S_n .

Proof. Let $\phi : S_n \to S_n$ be the bijection proving the equidistribution of maj and inv. We show that $\text{des}(\pi) = \text{stc}(\phi(\pi)).$ Since majtable(π) = code($\phi(\pi)$), it suffices to show that $\text{des}(\pi) = \text{stm}(\pi)$.

Let π be a permutation in S_n with major index table $m = m_1, \ldots, m_n$. Suppose that we have circled positions of m in calculating stm.

Fix *i* and assume that the number of circles in positions $i + 1, \ldots, n$ is precisely $\deg(\pi^{(i+1)})$. Call this number k_i .

By the definition of stc, position i is circled if and only if $m_i > k_i$.

if the insertion of i into $\pi^{(i+1)}$ creates a new descent.

Proceeding by induction, we prove the theorem.

A descent set analog for stc

To a permutation with k descents, we associate a descent set of k numbers which sum to MAJ.

Similarly, to a permutation with $\text{stc} = k$ we will associate a $stc\text{-}set$ of k numbers which sum to inv.

Let $H = \{\eta_1, \ldots, \eta_{n-2}\}$ be a set of operators on E_n .

 η_i acts on v by modifying only its *i*th and $(i + 1)$ st components. These become

$$
\begin{cases}\n(v_{i+1} + 1, v_i - 1) & \text{if } v_i \le v_{i+1} \text{ and } v_i \neq 0, \\
(v_{i+1}, v_i) & \text{if } v_i = 0 \text{ and } v_{i+1} > 0, \\
(v_i, v_{i+1}) & \text{otherwise.} \n\end{cases}
$$

Example. Consider the action of η_1 on five different vectors in E_4 .

$$
\eta_1(3200) = 3200,
$$

\n
$$
\eta_1(0010) = 0010,
$$

\n
$$
\eta_1(1200) = 3000,
$$

\n
$$
\eta_1(2200) = 3100,
$$

\n
$$
\eta_1(0110) = 1010.
$$

It is not difficult to see that the operators in the set H satisfy the relations of $H_{n-2}(0)$, the 0-Hecke algebra on $n-2$ generators:

$$
\eta_i \eta_j = \eta_j \eta_i, \text{ for } |i - j| \ge 2;
$$

$$
\eta_i \eta_{i+1} \eta_i = \eta_{i+1} \eta_i \eta_{i+1};
$$

$$
\eta_i^2 = \eta_i.
$$

Let us introduce notation for several elements of $H_{n-2}(0)$.

For
$$
i = 1, ..., n - 2
$$
, define
\n
$$
\omega_i = \eta_{n-2}\eta_{n-3}\cdots \eta_i,
$$

and let ω be the product of these $n-2$ elements, $\omega = \omega_1 \cdots \omega_{n-2}.$

Example. We compute ω in $H_4(0)$.

$$
\omega_1 = \eta_4 \eta_3 \eta_2 \eta_1,
$$

$$
\omega_2 = \eta_4 \eta_3 \eta_2,
$$

$$
\omega_3=\eta_4\eta_3,
$$

$$
\omega_4=\eta_4,
$$

$$
\omega = \omega_1 \omega_2 \omega_3 \omega_4
$$

=
$$
(\eta_4 \eta_3 \eta_2 \eta_1)(\eta_4 \eta_3 \eta_2)(\eta_4 \eta_3)(\eta_4).
$$

st sets

Definition. The *st-set* of a substair vector v, denoted $ST(v)$, is the set of distinct, nonzero letters in $\omega(v)$.

The stc-set of a permutation π , denoted $STC(\pi)$, is $ST(\text{code}(\pi))$.

The stm-set of a permutation, denoted $STM(\pi)$, is $ST(majtable(\pi))$.

Theorem.

1. Given a permutation π with $stc(\pi) = k$, then the stc-set of π has cardinality k, and its elements sum to $INV(\pi)$.

2. For any subset T of $[n-1]$, the number of permutations ρ with stc-set T equals the number of permutations π with descent set T.

Proof. By the following lemma, descent set and stm-set are equivalent. Thus, stc-sets and descent sets are in bijective correspondence.

$$
STC(\pi) = ST(\text{code}(\pi))
$$

= ST(majtable($\phi^{-1}(\pi)$))
= STM($\phi^{-1}(\pi)$).

Let π be a permutation in S_n , let m be its major index table, and let $H_{n-2}(0)$ act on E_n as defined earlier.

Lemma. For $i = 1, \ldots, n-2$, the last $n-i+1$ 1 components of $\omega_i \cdots \omega_{n-2}m$ are the descent set of $\pi^{(i)}$, arranged in decreasing order, and followed by zeros.

