AN EULERIAN PARTNER FOR INVERSIONS

Mark Skandera

(Massachusetts Institute of Technology)

Outline

- 1. Permutations
- 2. Permutation Statistics
- 3. Bijections
- 4. A New Statistic
- 5. Equidistribution Results

Permutations

RICHARD P STANLEY SHIPYARD CENTRAL DRY SPINACH ALERT HIP TRENDY RASCAL SPRAY AT CHILDREN

DANA ANDA

MROWKA AKWORM

(A. Perlin, '98)

RELAXED NAN PILER ALEXANDER PERLIN

(T. Mrowka, '99)

Definition. Let S_n be the symmetric group on *n* letters. A *permutation statistic* is a function $\phi: S_n \to \mathbb{N}$.

Two important examples are "des" (descents) and "exc" (excedances).

Descents

Let $\pi = \pi_1, \ldots, \pi_n$ be a permutation in S_n and define position *i* to be a *descent* in π if $\pi_i > \pi_{i+1}$.

Example: S_4 with marked descents.

4 3 2 1	3 14 2	124 3	23 14
34 2 1	3 24 1	134 2	13 24
24 3 1	2 14 3	234 1	4 123
14 3 2	4 3 12	34 12	3 124
4 13 2	4 2 13	24 13	2 134
4 23 1	3 2 14	14 23	1234

Excedances

Let $\pi = \pi_1, \ldots, \pi_n$ be a permutation in S_n and define position *i* to be an *excedance* in π if $\pi_i > i$.

Example: S_4 with marked excedances.

$\bar{2}\bar{3}\bar{4}1$	$1\overline{3}\overline{4}2$	$12\overline{4}3$	$\overline{3}214$
$\bar{4}\bar{3}21$	$\bar{3}1\bar{4}2$	$1\bar{3}42$	$\bar{4}123$
$\bar{4}\bar{3}12$	$\bar{2}\bar{4}31$	$1\bar{4}23$	$\bar{4}132$
$\bar{3}\bar{4}21$	$\bar{2}\bar{4}13$	$1\bar{4}32$	$\bar{4}213$
$\bar{3}\bar{4}12$	$\overline{2}\overline{3}14$	$\bar{2}134$	$\bar{4}231$
$\bar{3}2\bar{4}1$	$\overline{2}1\overline{4}3$	$\overline{3}124$	1234

Distribution of des and exc on S_n

The permutation statistics des and exc are called *Eulerian* because the *Eulerian numbers* count permutations π in S_n with

> $des(\pi) = k$ (or exc(\pi) = k).

Descent set and major index

To each permutation with k descents, we associate a descent set $D(\pi)$.

 $D(\pi) = \{i | i \text{ is a descent in } \pi\}.$

We define the statistic MAJ (major index) to be the sum of the descents of π .

$$MAJ(\pi) = \sum_{i \in D(\pi)} i.$$

Descent set and major index of some permutations

π	$D(\pi)$	$\mathrm{MAJ}(\pi)$			
4 3 2 1	$\{1, 2, 3\}$	6			
34 2 1	$\{2,3\}$	5			
4 13 2	$\{1,3\}$	4			
4 3 12	$\{1, 2\}$	3			
124 3	$\{3\}$	3			
34 12	$\{2\}$	2			
4 123	{1}	1			
1234	Ø	0			

Inversions

Definition. An *inversion* in a permutation is a pair $(\pi_i > \pi_j)$ such that i < j.

 $INV(\pi)$ counts the number of inversions in π .

Example. $\pi = 45123$ has six inversions: (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3).

Distribution of MAJ and INV on S_n

The statistics MAJ and INV are called *Mahonian*, after MacMahon. Numbers of permutations π in S_1, \ldots, S_5 with

$$MAJ(\pi) = k$$

(or INV(\pi) = k).

are shown below.

Substair vectors

Definition. Let E_n be the set of all vectors vin \mathbb{N}^n which are less than or equal to the *stair vector* of length n

$$(n-1, n-2, \ldots, 1, 0).$$

Note that $|E_n| = n!$.

The code of a permutation

A well known bijection maps a permutation to its *code*.

$$\gamma: S_n \to E_n$$
$$\pi \mapsto \operatorname{code}(\pi).$$

We define $\operatorname{code}(\pi) = c_1, \ldots, c_n$, where c_i counts letters to the *right* of position *i* and *smaller* than π_i .

Example.

$$\pi = 3 5 4 2 6 1$$

$$\operatorname{code}(\pi) = 2 3 2 1 1 0.$$

Note that
$$\sum_{i=1}^{n} c_i = INV(\pi)$$
.

The major index table

Let $\pi^{(i)}$ be the restriction of π to the letters i, \ldots, n .

Construct the sequence $\pi^{(n)}, \ldots, \pi^{(1)}$, and set

$$m_{i} = \begin{cases} \max(\pi^{(i)}) - \max(\pi^{(i+1)}) & \text{if } i < n, \\ 0 & \text{if } i = n. \end{cases}$$

Define majtable $(\pi) = (m_1, \ldots, m_n).$

Note that
$$\sum_{i}^{n} m_{i} = MAJ(\pi)$$
.

Example. Let $\pi = 413265$. Inserting the letters in the order $6, 5, \ldots, 1$, we obtain

 $\pi^{(i)}$ maj $(\pi^{(i)})$ m_i

0	0
1	1
2	1
4	2
7	3
9	2
	0 1 2 4 7 9

Thus, majtable(413265) = 232110.

Theorem. (Carlitz, 1975) The map $\mu: S_n \to E_n,$ taking a permutation to its major inde

taking a permutation to its major index table, is a bijection.

Proof. We invert μ by writing the partial permutations $\pi^{(n)} = n, \ldots, \pi^{(1)} = \pi$ such that the insertion of each letter *i* increases MAJ by m_i . This is possible by the following lemma. \Box

Let π be a word on the letters $\{i+1, \ldots, n\}$, and suppose π has k descents. Call the n - i - kascent positions

 $a_1 < \cdots < a_{n-i-k},$

call the k descent positions

$$d_{k-1} < \cdots < d_0,$$

and define $d_k = 0$.

Lemma.

- 1. The insertion of *i* into position $d_{\ell} + 1$ of π creates no new descent, and increases MAJ by ℓ , for $\ell = 0, \ldots, k$.
- 2. The insertion of *i* into position $a_{\ell} + 1$ of π creates one new descent and increases MAJ by $k + \ell$, for $\ell = 1, \ldots, n i k$.

Example. We insert the letter 1 into 43265 and calculate MAJ. π MAJ (π)

	X
4 3 26 5	7
4 3 26 15	7
4 3 126 5	8
4 13 26 5	9
14 3 26 5	10
4 3 2 16 5	11
4 3 26 5 1	12

Proof. (1.) Insertion of *i* into position $d_{\ell} + 1$ increments ℓ descents.

(2.) Suppose there are p descents before a_{ℓ} , and k - p descents after. Then, $a_{\ell} = p + \ell$.

Insertion of *i* into position $a_{\ell} + 1$ creates a new descent at a_{ℓ} and increments k - p descents. The total increase is

$$p + \ell + k - p = k + \ell.$$

Corollary. The permutation statistics INV and MAJ are equally distributed on S_n .

Proof. The map
$$\phi : S_n \to S_n$$
 defined by $\phi = \gamma^{-1}\mu$ is a bijection satisfying $MAJ(\pi) = INV(\phi(\pi)).$

 $majtable(\pi) = code(\rho)$

Example. $\phi(413265) = 354261$, since

majtable(413265) = 232110 = code(354261).

Eulerian - Mahonian pairs

The *joint* distribution on S_n of (des, MAJ) has nice symmetries which the pairs (des, INV), (exc, MAJ), and (exc, INV) lack.

Consider the distribution of (des, MAJ) on S_5 .

des\MAJ	0	1	2	3	4	5	6	7	8	9	10
0	1										
1		4	9	9	4						
2				6	16	22	16	6			
3							4	9	9	4	
4											1

Question: For what natural Mahonian statistic X is (exc, X) distributed on S_n like (des, MAJ)?

Answer: X = DEN (FZ '89, H '95).

Question: For what natural Eulerian statistic z is (z, INV) distributed on S_n like (des, MAJ)?

Calculation of stc

Begin at the right of $code(\pi)$, and moving left, circle the first letter which is at least 1, the next which is at least 2, etc., until this is no longer possible. Set

 $stc(\pi) =$ number of circles.

Example.

 $\pi = 4 \ 6 \ 2 \ 3 \ 5 \ 1$ $code(\pi) = 3 \ 4 \ 1 \ 1 \ 1 \ 0.$

$$stc(462351) = 3.$$

Definitions of st, stc, stm

Let $v = v_1, \ldots, v_n$ be a sub-stair vector of length n. Define the function $st : E_n \to \mathbb{N}$ by mapping v to the length ℓ of the longest super-stair subsequence of v.

Define the permutation statistics stc and stm by

$$stc(\pi) = st(code(\pi)),$$

$$stm(\pi) = st(majtable(\pi)).$$

Theorem. The pairs of permutation statistics (des, MAJ) and (stc, INV) are equally distributed on S_n .

Proof. Let $\phi : S_n \to S_n$ be the bijection proving the equidistribution of MAJ and INV. We show that $des(\pi) = stc(\phi(\pi))$. Since majtable $(\pi) = code(\phi(\pi))$, it suffices to show that $des(\pi) = stm(\pi)$. Let π be a permutation in S_n with major index table $m = m_1, \ldots, m_n$. Suppose that we have circled positions of m in calculating stm.

Fix *i* and assume that the number of circles in positions i + 1, ..., n is precisely $des(\pi^{(i+1)})$. Call this number k_i .

By the definition of stc, position i is circled if and only if $m_i > k_i$.

By the majtable bijection, $m_i > k_i$ if and only if the insertion of *i* into $\pi^{(i+1)}$ creates a new descent.

Proceeding by induction, we prove the theorem.

A descent set analog for stc

To a permutation with k descents, we associate a descent set of k numbers which sum to MAJ.

Similarly, to a permutation with stc = k we will associate a *stc-set* of k numbers which sum to INV.

Let $H = \{\eta_1, \dots, \eta_{n-2}\}$ be a set of operators on E_n .

 η_i acts on v by modifying only its $i {\rm th}$ and $(i+1) {\rm st}$ components. These become

$$\begin{cases} (v_{i+1} + 1, v_i - 1) & \text{if } v_i \leq v_{i+1} \text{ and } v_i \neq 0, \\ (v_{i+1}, v_i) & \text{if } v_i = 0 \text{ and } v_{i+1} > 0, \\ (v_i, v_{i+1}) & \text{otherwise.} \end{cases}$$

Example. Consider the action of η_1 on five different vectors in E_4 .

$$\eta_1(3200) = 3200,$$

$$\eta_1(0010) = 0010,$$

$$\eta_1(1200) = 3000,$$

$$\eta_1(2200) = 3100,$$

$$\eta_1(0110) = 1010.$$

It is not difficult to see that the operators in the set H satisfy the relations of $H_{n-2}(0)$, the 0-Hecke algebra on n-2 generators:

$$\eta_i \eta_j = \eta_j \eta_i, \text{ for } |i - j| \ge 2;$$

$$\eta_i \eta_{i+1} \eta_i = \eta_{i+1} \eta_i \eta_{i+1};$$

$$\eta_i^2 = \eta_i.$$

Let us introduce notation for several elements of $H_{n-2}(0)$.

For
$$i = 1, ..., n - 2$$
, define
 $\omega_i = \eta_{n-2}\eta_{n-3} \cdots \eta_i$,

and let ω be the product of these n-2 elements, $\omega = \omega_1 \cdots \omega_{n-2}$.

Example. We compute ω in $H_4(0)$.

$$\omega_1 = \eta_4 \eta_3 \eta_2 \eta_1,$$

$$\omega_2 = \eta_4 \eta_3 \eta_2,$$

$$\omega_3 = \eta_4 \eta_3,$$

$$\omega_4 = \eta_4,$$

$$\omega = \omega_1 \omega_2 \omega_3 \omega_4$$

= $(\eta_4 \eta_3 \eta_2 \eta_1) (\eta_4 \eta_3 \eta_2) (\eta_4 \eta_3) (\eta_4).$

st sets

Definition. The *st-set* of a substair vector v, denoted ST(v), is the set of distinct, nonzero letters in $\omega(v)$.

The stc-set of a permutation π , denoted $STC(\pi)$, is $ST(\text{code}(\pi))$.

The stm-set of a permutation, denoted $STM(\pi)$, is $ST(\text{majtable}(\pi))$.

Theorem.

1. Given a permutation π with $stc(\pi) = k$, then the *stc-set* of π has cardinality k, and its elements sum to $INV(\pi)$.

2. For any subset T of [n - 1], the number of permutations ρ with stc-set T equals the number of permutations π with descent set T. *Proof.* By the following lemma, descent set and stm-set are equivalent. Thus, stc-sets and descent sets are in bijective correspondence.

$$STC(\pi) = ST(\text{code}(\pi))$$

= $ST(\text{majtable}(\phi^{-1}(\pi)))$
= $STM(\phi^{-1}(\pi)).$

Let π be a permutation in S_n , let m be its major index table, and let $H_{n-2}(0)$ act on E_n as defined earlier.

Lemma. For i = 1, ..., n-2, the last n-i+1 components of $\omega_i \cdots \omega_{n-2}m$ are the descent set of $\pi^{(i)}$, arranged in decreasing order, and followed by zeros.

