
Submitted to:
GASCom 2024

© A. H. Morales, M. A. Skandera & J. Wang
This work is licensed under the
Creative Commons Attribution License.

LLT polynomials and Hecke algebra traces

Alejandro H. Morales*

LACIM
Université du Québec à Montréal

Montréal QC, Canada
morales_borrero.alejandro@uqam.ca

Mark A. Skandera Jiayuan Wang†

Department of Mathematics
Lehigh University

Bethlehem PA, USA
mas906@lehigh.edu jiw922@lehigh.edu

We show that coefficients in unicellular LLT polynomials are evaluations of Hecke algebra traces at
Kazhdan–Lusztig basis elements. We express these in terms of traditional trace bases, induction, and
Kazhdan–Lusztig R-polynomials.

1 Introduction

The study of proper colorings of a graph G is a fundamental topic in discrete mathematics. Stanley
[9] defined the chromatic symmetric function XG,q which is a symmetric function generalization of the
chromatic polynomial. This function was generalized by Shareshian and Wachs [8]: for a graph G =
(V,E) let XG,q := ∑κ qasc(κ)xκ(1)xκ(2) · · · , where the sum is over all proper colorings κ : V (G) → N of
G and asc(κ) denotes the number of ascents of κ , pairs (i, j) with i < j such that κ(i) < κ( j). When
G = inc(P) is an incomparability graph of a unit interval order P, XG,q is a symmetric function. There are
important positivity conjectures about Xinc(P),q like the e-positivity conjecture of Stanley–Stembridge–
Shareshian–Wachs.

In another context, the functions Xinc(P),q appeared in the study of the space of diagonal harmon-
ics. Let LLTinc(P),q := ∑κ qasc(κ)xκ(1)xκ(2) · · · , where the sum is over arbitrary vertex colorings of inc(P).
This is also a symmetric function called a unicellular LLT polynomial, a special case of a family of sym-
metric functions introduced by Lascoux–Leclerc–Thibon in 1997 in a different context. These functions
LLTinc(P),q appear in the Shuffle conjecture of diagonal harmonics [6] proved by Carlsson–Mellit [2].
In their proof of the shuffle conjecture, they show that both these symmetric functions are related by a
plethystic substitution:

Xinc(P),q[X ] = (q−1)−nLLTinc(P),q[(q−1)X ],

where n is the size of P. From work of Grojnowski and Haiman [5], LLTinc(P) are Schur positive and it
is an open question to find a combinatorial interpretation for this expansion.

An important basis of the Hecke algebra Hn(q) is the (modified, signless) Kazhdan–Lusztig basis
defined by C̃w(q) := q

ℓ(w)
2 C′

w(q) = ∑u≤v Pu,w(q)Tw, where {Tw | w ∈ Sn} is the natural basis of Hn(q),
Pv,w(q) are the Kazhdan–Lusztig polynomials and ≤ denotes the Bruhat order of Sn. It is known [3] that
the various expansions of the chromatic quasi-symmetric function Xinc(P),q can be viewed as evaluations
of traces at {C̃w(q) | w avoiding 312}, when P = P(w) is a unit interval order corresponding to w,

Xinc(P(w)),q = ∑
λ⊢n

ε
λ
q (C̃w(q))mλ = ∑

λ⊢n
η

λ
q (C̃w(q)) fλ = ∑

λ⊢n
χ

λ⊤
q (C̃w(q))sλ = · · · ,
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where ελ
q , ηλ

q , χλ⊤
q are induced sign, induced trivial, and irreducible characters of Hn(q). In this context,

the e-positivity conjecture of Xinc(P),q is part of a more general conjecture of Haiman [7] for symmetric
functions associated to C̃w(q) for any w in the context of immanants. In [1, §11.3], Abreu and Nigro used
the plethystic relation to define analogs of unicellular LLT polynomials for all permutations.

The coefficients of various expansions of LLT polynomials can also be viewed as evaluations of
traces at {C̃w(q) | w avoiding 312}.

LLTinc(P),q = ∑
λ

ε
λ
q,LLT (C̃w(q))mλ ,

where ελ
q,LLT (C̃w(q)) is a certain LLT-analog of the trace ελ

q .
We describe similar analogs of induced trivial characters ηλ

q,LLT and power sum traces ψλ
q,LLT. The

evaluations at C̃w(q) were known as expansions of the LLT but now we obtain evaluations at the natural
basis Tw, which were not known before.

We also give change of basis equations between ψn
q,LLT, εn

q,LLT, and ηn
q,LLT and known traces that

resemble the Cauchy identity of symmetric functions after a principal specialization.

2 Background

Symmetric functions. We mostly use the notation from [10, Ch. 7]. We denote by Λn the ring of
symmetric functions of degree n and mλ , eλ , hλ , pλ , sλ , fλ denote the monomial, elementary, complete,
power sum, Schur, and forgotten symmetric functions. Also ω denotes the standard involution in Λn.
Hecke algebra and traces. The Hecke algebra Hn(q) is a noncommutative Z[q 1

2 , q̄
1
2 ]-algebra generated

by natural generators {Tsi |1 ≤ i ≤ n−1} subject to the relations

T 2
si
= (q−1)Tsi +q, for i = 1, . . . ,n−1,

TsiTs j Tsi = Ts j TsiTs j , if |i− j|= 1,

TsiTs j = Ts j Tsi , if |i− j| ≥ 2.

Specializing Hn(q) at q
1
2 = 1, we obtain the classical group algebra Z[Sn] of the symmetric group.

Let T (Hn(q)) be the Z[q 1
2 , q̄

1
2 ]-module of Hn(q)-traces, linear functionals θq : Hn(q) → Z[q 1

2 , q̄
1
2 ]

satisfying θq(DD′) = θq(D′D) for all D,D′ ∈ Hn(q). For any trace θq : Tw 7→ a(q) in T (Hn(q)), the
q

1
2 = 1 specialization θ : w 7→ a(1) belongs to the space T (Sn) := T (Hn(1)) of Z[Sn]-traces from

Z[Sn]→ Z (Sn-class functions). Like the Z-module Λn of homogeneous degree-n symmetric functions,
the trace spaces T (Hn(q)) and T (Sn) have dimension equal to the number of integer partitions of n,
the weakly decreasing positive integer sequences λ = (λ1, . . . ,λr) satisfying λ1 + · · ·+λr = n.

It can be useful to record trace evaluations in a symmetric generating function. In particular, for
D ∈Q(q)⊗Hn(q), we record induced sign character evaluations by defining

Yq(D) := ∑
λ⊢n

ε
λ
q (D)mλ ∈Q(q)⊗Λn. (2.1)

This symmetric generating function in fact gives us all of the standard trace evaluations.
Proposition 2.1. The symmetric function Yq(D) is equal to

∑
λ⊢n

η
λ
q (D) fλ = ∑

λ⊢n

sgn(λ )ψλ
q (D)

zλ

pλ = ∑
λ⊢n

χ
λ⊤
q (D)sλ = ∑

λ⊢n
φ

λ
q (D)eλ = ∑

λ⊢n
γ

λ
q (D)hλ ,
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where sgn(λ ) := (−1)n−ℓ(λ ); equivalently, ωYq(D) is equal to

∑
λ⊢n

ε
λ
q (D) fλ = ∑

λ⊢n
η

λ
q (D)mλ = ∑

λ⊢n

ψλ
q (D)

zλ

pλ = ∑
λ⊢n

χ
λ
q (D)sλ = ∑

λ⊢n
φ

λ
q (D)hλ = ∑

λ⊢n
γ

λ
q (D)eλ .

Quantum matrix bialgebra and immanants. An important computational tool in the evaluation of
Hn(q)-traces is the quantum matrix bialgebra An(q), the noncommutative ring generated as a Z[q 1

2 , q̄
1
2 ]-

algebra by the n2 variables t = (ti, j)i, j∈[n] subject to relations

ti,ℓti,k = q
1
2 ti,kti,ℓ, t j,kti,ℓ = ti,ℓt j,k

t j,kti,k = q
1
2 ti,kt j,k t j,ℓti,k = ti,kt j,ℓ+(q

1
2 − q̄

1
2 )ti,ℓt j,k,

(2.2)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ℓ ≤ n. As a Z[q 1
2 , q̄

1
2 ]-module, An(q) has a natural basis of

monomials tℓ1,m1 · · · tℓr,mr in which index pairs appear in lexicographic order. The relations (2.2) allow
one to express other monomials in terms of this natural basis.

To state immanant generating functions for Hn(q)-traces, it will be convenient to express monomials
in An(q) as follows. Given u = u1 · · ·un, v = v1 · · ·vn ∈Sn, define

tu,v := tu1,v1 · · · tun,vn .

For any linear function θq : Hn(q)→ Z[q 1
2 , q̄

1
2 ], define the θq-immanant in An(q) to be

Immθq(t) = ∑
w∈Sn

q̄
ℓ(w)

2 θq(Tw)te,w.

Proposition 2.2. Given Hecke algebra traces

θ1 ∈ T (Hk(q)), θ2 ∈ T (Hn−k(q)), θ = (θ1 ⊗θ2)
xHn(q)

Hk(q)×Hn−k(q)
∈ T (Hn(q)),

we have
Immθ (t) = ∑

I where |I|=k
Immθ1(tI,I)Immθ2(tI,I).

Since Hecke algebra traces are determined by the values on minimum length representatives (see [4,
Cor. 8.2.6]), then the following result will be useful.
Lemma 2.3. Let w ∈Sn be of minimum length in its conjugacy class, then w avoids the patterns 3412
and 4231. Furthermore, each v ≤ w also avoids the patterns 3412 and 4231, and also is of minimum
length in its conjugacy class.

3 Plethystically defined characters

Suppose that a certain plethystic substitution transforms symmetric functions written {Yq(D) |D∈Hn(q)}
into symmetric functions {Zq(D) |D ∈ Hn(q)}, i.e.

Zq(D) := r(q)Yq(D)[s(q)X ] (3.1)

for some rational functions r(q) and s(q). This substitution yields a transformation of Hn(q) traces
θq 7→ θq,Z as well. Namely, we define ελ

q,Z to be the Hn(q)-trace that maps D to the coefficient of mλ in
the monomial expansion of Zq(D),

Zq(D) = ∑
λ⊢n

ε
λ
q,Z(D)mλ . (3.2)
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Then we extend linearly over Z[q 1
2 , q̄

1
2 ], mapping

θq = ∑
λ⊢n

bλ ε
λ
q 7→ θq,Z := ∑

λ⊢n
bλ ε

λ
q,Z. (3.3)

Observation 3.1. The symmetric function Zq(D) is equal to

∑
λ⊢n

η
λ
q,Z(D) fλ = ∑

λ⊢n

sgn(λ )ψλ
q,Z(D)

zλ

pλ = ∑
λ⊢n

χ
λ⊤
q,Z(D)sλ = ∑

λ⊢n
φ

λ
q,Z(D)eλ = ∑

λ⊢n
γ

λ
q,Z(D)hλ .

Proposition 3.2. For any plethystically defined map Y 7→ Z (3.1) of symmetric functions, if θq is a trace
function, then so is θq,Z .

Furthermore by (3.3), the change of basis matrix which relates two symmetric function bases (and
necessarily the traces which correspond by the Frobenius map), also relates the Z-analogs of those traces.

For example when Z = LLTinc(P),q and w = w(P) avoiding the patterns 3412 and 4231, we have

ε
n
q,LLT(C̃w(q)) = 1. (3.4)

This is because by Prop. 3.4 there is only one column-strict Young tableau U of shape 1n, the tableau
consisting one column with entries 1,2, . . . ,n in order, with INVP(U) = 0 where P = P(w).

It is possible to describe LLT analogs of induced sign characters, induced trivial characters, and
power sum traces in terms of character induction.

LLT analogs of power sum traces The LLT analogs of the power sum trace can be expressed simply in
terms of the ordinary power sum trace.

Proposition 3.3. We have

ψ
λ
q,LLT = (q−1)n

∏
i

1
qλi −1

·ψλ
q .

Proof. Omitted.

LLT analogs of induced sign characters and induced trivial characters The evaluations of ελ
q,LLT and

ηλ
q,LLT at {C̃w(q) | w avoiding 312} have simple combinatorial interpretations.

Proposition 3.4. Fix w ∈Sn avoiding the pattern 312, and let P = P(w). For all λ ⊢ n we have

ε
λ
q,LLT(C̃w(q)) = ∑

U
qINVP(U),

where the sum is over all column-strict Young tableaux U of shape λ⊤, and

η
λ
q,LLT(C̃w(q)) = ∑

U
qINVP((U1◦···◦Ur)

R),

where the sum is over all row-strict Young tableaux U of shape λ and (U1 ◦ · · · ◦Ur)
R is the reversal of

the concatenation of rows in U.

Proof. Omitted.

This leads to the following generating functions for ελ
q,LLT and ηλ

q,LLT.
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Theorem 3.5. For λ = (λ1, . . . ,λr) ⊢ n we have

Imm
ελ

q,LLT
(t) = ∑

(I1,...,Ir)

(tI1,I1)
e,e · · ·(tIr,Ir)

e,e, (3.5)

where the sum is over all ordered set partitions (I1, . . . , Ir) of type λ , and e is the identity permutation in
the appropriate subgroup of Sn. And

Imm
ηλ

q,LLT
(t) = ∑

(I1,...,Ir)

(tIr,Ir)
w0,w0 · · ·(tI1,I1)

w0,w0 , (3.6)

where the sum is over all ordered set partitions of type λ and w0 is the longest permutation in the
appropriate subgroup of Sn.

Proof. Omitted.

Equivalently, we have the following.

Theorem 3.6. We have

ε
λ
q,LLT = (ελ1

q,LLT ⊗·· ·⊗ ε
λr
q,LLT)

xHn(q)
Hλ (q)

, where ε
n
q,LLT(Tw) =

{
1 if w = e,
0 otherwise.

And
η

λ
q,LLT = (ηλ1

q,LLT ⊗·· ·⊗η
λr
q,LLT)

xHn(q)
Hλ (q)

, where η
n
q,LLT(Tw) = Re,w(q).

Proof. By Theorem 3.5 and Proposition 2.2, we have Immεn
q,LLT

(t) = t1,1 · · · tn,n.

Also, we have tw0,w0 = ∑
w∈Sn

Re,w(q)q−
ℓ(w)

2 te,w, and ηn
q,LLT(T̃w) = Re,w(q)q−

ℓ(w)
2 .

We can express εn
q,LLT and ηn

q,LLT in terms of ordinary Hn(q)-characters and principal specialization
of symmetric functions.

Corollary 3.7.

εn
q,LLT

(1−q)n = ∑
λ

1
zλ

∏
i

1
1−qλi

ψ
λ
q = ∑

λ

qb(λ )

∏u∈λ (1−qh(u))
χ

λ
q

= ∑
λ

∏
i

1
(1−q)(1−q2) · · ·(1−qλi)

φ
λ
q = ∑

λ

∏
i

q(
λi
2)

(1−q)(1−q2) · · ·(1−qλi)
γ

λ
q ,

and

ηn
q,LLT

(1−q)n = ∑
λ

sgn(λ )
zλ

∏
i

1
1−qλi

ψ
λ
q = ∑

λ

qb(λ ′)

∏u∈λ ′(1−qh(u))
χ

λ
q ,

= ∑
λ

∏
i

q(
λi
2)

(1−q)(1−q2) · · ·(1−qλi)
φ

λ
q = ∑

λ

∏
i

1
(1−q)(1−q2) · · ·(1−qλi)

γ
λ
q ,

where h(u) is the hook-length of u and b(λ ) = ∑i(i−1) ·λi = ∑i
(

λ ′
i

2

)
.

Proof. Omitted.
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