
COMBINATORIAL INTERPRETATION OF KAZHDAN–LUSZTIG BASIS
ELEMENTS INDEXED BY 45312-AVOIDING PERMUTATIONS IN S6
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Abstract. Deodhar [Geom. Dedicata 36, no. 1 (1990)] introduced the defect statistic on
subexpressions of reduced expressions in the symmetric group Sn to construct an algo-
rithmic description of the Kazhdan–Lusztig basis of the Hecke algebra Hn(q). This led
Billey–Warrington [J. Algebraic Combin. 13, no. 2 (2001)] and the second author [J. Pure
Appl. Algebra 212 (2008)] to state very explicit combinatorial descriptions of the basis el-
ements indexed by permutations avoiding certain patterns. We extend the above work to
Kazhdan–Lusztig basis elements indexed by w ∈ S5,S6 that avoid the pattern 45312.

1. Introduction

Define the symmetric group algebra Z[Sn] and the (type A Iwahori-) Hecke algebra Hn(q)
to be the algebras with multiplicative identity elements e and Te, respectively, generated
over Z and Z[q

1
2 , q¯

1
2 ] by elements s1, . . . , sn−1 and Ts1 , . . . , Tsn−1 , subject to the relations

(1.1)

s2
i = e T 2

si
= (q − 1)Tsi + qTe for i = 1, . . . , n− 1,

sisjsi = sjsisj TsiTsjTsi = TsjTsiTsj for |i− j| = 1,

sisj = sjsi TsiTsj = TsjTsi for |i− j| ≥ 2.

Analogous to the natural basis {w |w ∈ Sn} of Z[Sn] is the natural basis {Tw |w ∈ Sn} of
Hn(q), where we define Tw = Tsi1· · ·Tsi` whenever si1· · · si` is a reduced (short as possible)

expression for w in Sn. We call ` the length of w and write ` = `(w). Specializing at q
1
2 = 1

we have Tw 7→ w and Hn(1) ∼= Z[Sn].
To each element w = si1 · · · si` ∈ Sn, we associate a one-line notation by viewing the

generator si as a map on words that swaps the letters in positions i and i+1, and by defining
w1 · · ·wn = si1(si2(· · · si`(12 · · ·n) · · · )). For each subinterval [a, b] of [n] := {1, . . . , n}, we
let s[a,b] denote the element of Sn having one-line notation 1 · · · (a − 1)b · · · a(b + 1) · · ·n,
and call such an element a reversal. The reversal s[n] is usually denoted w0. Given a word
a = a1 · · · ak in Sk, and a word b = b1 · · · bk having k distinct letters, we say that b matches
the pattern a if the letters of b appear in the same relative order as those of a; that is, if we
have ai < aj if and only if bi < bj for all i, j ∈ [k]. Given w ∈ Sn we say that w avoids the
pattern a if no subword wi1 · · ·wik of w matches the pattern a.

A second basis {C̃w(q) |w ∈ Sn} of Hn(q) due to Kahzdan and Lusztig [7] expands in the
natural basis as

(1.2) C̃w(q) =
∑
v≤w

Pv,w(q)Tv,
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where ≤ is the Bruhat order, and where the coefficients Pv,w(q) belong to N[q] and are called
Kazhdan–Lusztig polynomials. While the Kazhdan–Lusztig basis is important in various
areas of mathematics, we don’t have a very simple description of it or of the polynomials
which relate it to the natural basis of Hn(q). On the other hand, when w ∈ Sn avoids

certain patterns, we can factor C̃w(q) as a product of simpler Kazhdan–Lusztig basis elements
indexed by reversals. Such a product then produces a directed graph called a planar network,
which in turn provides combinatorial interpretations of the coefficients in each polynomial
Pv,w(q) for v ≤ w.

In Section 2 we review planar networks and classes of these used by Billey–Warrington
and the second author to represent certain Kazhdan–Lusztig basis elements. In Section 3
we present our main results which suggest a common generalization of the results in the
previous section.

2. Planar networks and graphical representation of elements of Hn(q)

Define a planar network of order n to be a directed, planar, acyclic graph which can be
embedded in a disc so that 2n boundary vertices can be labeled counterclockwise as source
1, . . . , source n, sink n, . . . , sink 1. We will assume that all sources have indegree 0 and all
sinks have outdegree 0. Let Gn denote the set of such networks. For each subinterval [a, b]
of [n] we define a simple star network G[a,b] ∈ Gn by

(1) An interior vertex z lies between the sources and sinks.
(2) For i ∈ [a, b] we have directed edges (source i, z) and (z, sink i).
(3) For i 6∈ [a, b] we have directed edges (source i, sink i).

For zero- and one-element subintervals we define the trivial network G∅ = G[1,1] = · · · = G[n,n]

to have no interior vertex, and n edges, each from source i to sink i, for i = 1, . . . , n. In
figures, we will draw sources on the left and sinks on the right, both numbered from bottom
to top. To economize figures, we will omit vertices and edge orientations (always left to
right). The (infinite) set G4 contains seven simple star networks: G[1,4], G[2,4], G[1,3], G[3,4],
G[2,3], G[1,2], G∅ = G[1,1] = · · · = G[4,4], respectively,

(2.1)
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where we have drawn G[1,4] in full detail and other networks in economical form.
We write G◦H for concatenation of G and H, formed by identifying sink i of G with source

i of H to form an internal vertex, for i = 1, . . . , n. The sources of G ◦H are those of G, and
the sinks of G◦H are those of H. Sometimes a concatenation G◦H may be a multi-digraph,
because for some vertices x ∈ G, y ∈ H, a collection of m(x, y) > 1 edges are incident upon
both. Define G •H to be the simple subgraph of G ◦H obtained by removing, for all such
pairs (x, y), all but one of the m(x, y) edges incident upon both, and by marking this edge
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with the multiplicity m(x, y). For example, in G4 we have the nonisomorphic graphs

(2.2) G[1,3] ◦G[2,4] ◦G[1,3] =

4

3

2

1

4

3

2

1

, G[1,3] •G[2,4] •G[1,3] =

4
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1

(2)(2)
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,

in which two pairs of edges are replaced by two single edges marked with multiplicity 2.
Define a star network to be the concatenation of finitely many simple star networks, using
any combination of the ◦ and • operations.

The graphical representation of Hn(q)-elements depends upon families of paths in star
networks, and upon a function on these paths called the defect statistic. Let π = (π1, . . . , πn)
be a sequence of source-to-sink paths in a star network G. We call π a path family if there
exists a permutation w = w1 · · ·wn ∈ Sn such that πi is a path from source i to sink wi. In
this case, we say more specifically that π has type w. We say that the path family covers G
if it contains every edge with exactly the multiplicity of that edge. For example, the stars
in the star network G[1,2] ◦G[2,4] ◦G[1,2] imply that there are 2 · 6 · 2 = 24 path families that
cover it. Four of these are

(2.3)

π4
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π1

,

type(π) = 1234
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,
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,
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ω4
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ω1

.

type(ω) = 3142

Suppose that path family π covers a star network G = GJ1 ◦ · · · ◦ GJm . If two paths πi,
πj intersect at the central vertex of GJp , call the triple (πi, πj, p) defective or a defect if the
paths have previously crossed an odd number of times (i.e., in GJ1 , . . . , GJip−1

). Let dfct(π)

denote the number of defects of π,

(2.4) dfct(π) = #{(πi, πj, p) | (πi, πj, p) defective}.
For example, in (2.3) we have dfct(ρ) = dfct(τ) = 1, since ρ1, ρ2 cross and meet again later,
as do τ1, τ2, and we have dfct(π) = dfct(ω) = 0.

To a planar network G we associate an Hn(q) element

(2.5) βq(G) =
∑
π

qdfct(π)Ttype(π),

where the sum is over all path families that cover G, and we say that G graphically represents
βq(G), i.e., G gives an explicit expansion of βq(G) in the natural basis of Hn(q). Deodhar [4]
showed that for each expression si1 · · · sim , the wiring diagram G[i1,i1+1]◦· · ·◦G[im,im+1] satisfies
βq(G[i1,i1+1]◦· · ·◦G[im,im+1]) = C̃si1(q) · · · C̃sim(q). Billey–Warrington [1, Thm. 1] showed that
for some w ∈ Sn, each reduced expression si1 · · · si` for w satisfies C̃si1(q) · · · C̃sim(q) = C̃w(q).
This implies the following graphical representation result.

Theorem 2.1. Let w ∈ Sn avoid the patterns 321, 56781234, 56718234, 46781235, 46718235,
and let G be the wiring diagram for any reduced expression for w. Then G graphically rep-

resents C̃w(q).

We also have the following generalization of Deodhar’s result [3, Cor. 5.3].
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Theorem 2.2. For each sequence (s[a1,b1], . . . , s[at,bt]) of reversals, we have

βq(G[a1,b1] ◦ · · · ◦G[a1,b1]) = C̃s[a1,b1](q) · · · C̃s[at,bt](q).
Some Kazhdan-Lusztig basis elements not included in Theorem 2.1 have simple graphical

representations which are generalizations of wiring diagrams. Call a star network of the form

(2.6) G = G[c1,d1] • · · · •G[ct,dt]

a zig-zag network if

(1) the sequence ([c1, d1], . . . , [ct, dt]) consists of t distinct, pairwise nonnesting intervals,
(2) for i < j < k, if [ci, di]∩ [cj, dj] 6= ∅ and [cj, dj]∩ [ck, dk] 6= ∅, then we have ci < cj < ck

(and di < dj < dk) or ci > cj > ck (and di > dj > dk).

The zig-zag networks of order 4 are

(2.7) ,

(2.8) .

It was shown in [9, Thm. 3.5, Lem. 5.3] that zig-zag networks of order n correspond
bijectively to 3412-avoiding, 4231-avoiding permutations in Sn. Letting G(w) be the zig-zag
network corresponding to w, we have the following by [9, Thm. 4.3] and Theorem 2.2.

Theorem 2.3. Let w ∈ Sn avoid the patterns 3412 and 4231. Then the zig-zag network

G(w) graphically represents C̃w(q).

For example, the second zig-zag network in (2.7) is a graphical representation of C̃3421(q).
Applying Theorem 2.3 and Theorem 2.2 to the third zig-zag network in (2.7), we have that
it is a graphical representation of C̃s[2,4](q)C̃s[1,2](q) = C̃2431(q). Applying Theorem 2.2 to the
star network in (2.3), we find that it is a graphical representation of C̃s[1,2](q)C̃s[2,4](q)C̃s[1,2](q).
This product is precisely C̃4231(q), although the equality is not implied by Theorem 2.1 or
2.3. This raises the following question.

Question 2.4. For which w ∈ Sn is there a star network G satisfying βq(G) = C̃w(q)?

3. New results

A star network G satisfying βq(G) = C̃w(q) can provide graphical representations for

Kazhdan–Lusztig basis elements C̃v(q) for v related to w. Let GR and GU be the star
networks obtained by reflecting G in a vertical line, and horizontal line, respectively, and let
GRU = GUR be the result of performing both reflections.

Lemma 3.1. Fix w ∈ Sn and let star network G satisfy βq(G) = C̃w(q). Then we have
βq(G

R) = C̃w−1(q), βq(G
U) = C̃w0ww0(q), and βq(G

UR) = C̃w0w−1w0
(q).

For example, let G be the third network in (2.7), which graphically represents C̃2431(q),
and define w = 2431. Related to w are w0ww0 = 4213, w−1 = 4132, w0w

−1w0 = 3241. The
corresponding Kazhdan–Lusztig basis elements C̃4213(q), C̃4132(q), C̃3241(q) are graphically
represented by GU , GR, GUR, which appear second and third in (2.8), and fourth in (2.7).

We now answer the special case n = 5 of Question 2.4.
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Theorem 3.2. For all w ∈ S5r{45312}, there is a star network G satisfying βq(G) = C̃w(q).

Proof. (Idea) By Theorems 2.1 and 2.3, we have a network G for all permutation avoiding the
patterns listed in those theorems. Partitioning the remaining elements of S5 into equivalence
classes of the form w ∼ w−1 ∼ w0ww0 ∼ w0w

−1w0, we find a zig-zag network G(w) for one
representative of each class except for the singleton class {45312}. Lemma 3.1 gives zig-zag
networks for the other elements of each class. �

We prove that in S6, an analog of Theorem 3.2 in Theorem 3.3.

Theorem 3.3. For all w ∈ S6 avoiding the pattern 45312, there is a star network G satis-
fying βq(G) = C̃w(q).

Proof. By Theorems 2.1 and 2.3, we have a network G for all permutations avoiding the
patterns listed in those theorems. Now from the remaining elements of S6, restrict attention
to those avoiding the pattern 45312 and partition these into equivalence classes of the form
w ∼ w−1 ∼ w0ww0 ∼ w0w

−1w0. We consider three (?) cases of such equivalence classes. If
the equivalence class contains an element w which satisfies X, then apply Lemma ??. If the
equivalence class contains an element w which satisfies Y , then apply Lemma ??. Finally, if
the equivalence class contains an element w which satisfies Z, then apply Lemma ??. �

Problem 3.4. Given w ∈ Sn such that C̃w(q) can be graphically represented by a star
network, explain algorithmically how to produce one such network.

Is it true that
? Continue here and include some material from the following (temporary) section.

4. Products of Kazhdan–Lusztig basis elements

Fix w ∈ Sn and an adjacent transposition s. It is known that if sw > w in the Bruhat
order then we have

(4.1) C̃s(q)C̃w(q) = C̃sw(q) +
∑
v<w
sv<v

µ(v, w)C̃v(q);

if ws > w then we have

(4.2) C̃w(q)C̃s(q) = C̃ws(q) +
∑
v<w
vs<v

µ(v, w)C̃v(q).

(See, e.g., [5, Appendix].)

(? Include other parts of the formula: C̃s(q)C̃w(q) = (1 + q)C̃w(q) if sw < w, etc.)

Lemma 4.1. Fix w ∈ S6 avoiding the patterns 3412 and 4231 and an adjacent transposition
s. If we have sw > w and no permutation v < w satisfies sv < v and `(v) = `(w)− 1, then

C̃sw(q) = C̃s(q)C̃w(q). Equivalently, if we have ws > w and no permutation v < w satisfies

vs < v and `(v) = `(w)− 1, then C̃ws(q) = C̃w(q)C̃s(q).

Proof. Recall that µ(v, w) is the coefficient of q(`(w)−`(v)−1)/2 in Pv,w(q). Since w avoids the
patterns 3412 and 4231, we have that Pv,w(q) = 1 for all v ≤ w. Thus this coefficient can be
nonzero only when (`(w)− `(v)− 1)/2 = 0, i.e., when `(v) = `(w)− 1. It follows that if no

such permutation v satisfies sv < v, then (4.1) reduces to C̃s(q)C̃w(q) = C̃sw(q). The second
claimed equality is proved similarly. �



6 ASHTON DATKO AND MARK SKANDERA

Corollary 4.2. We have C̃52431(q) = C̃s[1,2](q)C̃s[2,5](q)C̃s[1,2](q).

Proof. Observe that we have

(4.3) C̃s[2,5](q)C̃s[1,2](q) = C̃25431(q).

and that 25431 avoids the patterns 3412 and 4231. Applying Lemma 4.1, write

w = 25431 < s1w = 52431,

and look for v with `(v) = `(25431)− 1 and s1v < v < 25431. That is, v must satisfy

(i) v1 > v2 (since we want s1v < v),
(ii) v is obtainable from w = 25431 by swapping letters wi > wj in positions i < j (since we

want v < w) such that no letters wi+1, . . . , wj−1 have values between wi and wj (since
we want `(v) = `(w)− 1).

But there is no such permutation v: the only swap of a larger letter with a later smaller
letter which gives us v1 > v2 is the swap of 5 with 1. But this decreases inversions by more
than 1 because of the 4 and 3 located between the 5 and 1. Thus by Lemma 4.1 we have

C̃52431(q) = C̃s1(q)C̃25431(q),

and by (4.3) we have the desired factorization. �
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