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Abstract

We de�ne Dumont's statistic on the symmetric group S

n

to be the function

dmc: S

n

! N which maps a permutation � to the number of distinct nonzero

letters in code(�). Dumont showed that this statistic is Eulerian [6]. Naturally

extending Dumont's statistic to the rearrangement classes of arbitrary words,

we create a generalized statistic which is again Eulerian. As a consequence,

we show that for each distributive lattice J(P ) which is a product of chains,

there is a poset Q such that the f -vector of Q is the h-vector of J(P ). This

strengthens for products of chains a result of Stanley concerning the ag h-

vectors of Cohen-Macaulay complexes [9, Cor. 4.5]. We conjecture that the

result holds for all �nite distributive lattices.
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1 Introduction

Let S

n

be the symmetric group on n letters, and let us write each permutation � in

S

n

in one line notation: � = �

1

� � ��

n

. We call position i a descent in � if �

i

> �

i+1

,

and an excedance in � if �

i

> i. Counting descents and excedances, we de�ne two

permutation statistics des : S

n

! N and exc : S

n

! N by

des(�) = #fi j �

i

> �

i+1

g;

exc(�) = #fi j �

i

> ig:

It is well known that the number of permutations in S

n

with k descents equals the

number of permutations in S

n

with k excedances. This number is often denoted

A(n; k + 1) and the generating function

A

n

(x) =

n�1

X

k=0

A(n; k + 1)x

k+1

=

X

�2S

n

x

1+des(�)

=

X

�2S

n

x

1+exc(�)

is called the nth Eulerian polynomial. Any permutation statistic stat : S

n

! N

satisfying

A

n

(x) =

X

�2S

n

x

1+stat(�)

;

�
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or equivalently,

#f� 2 S

n

j stat(�) = kg = #f� 2 S

n

j des(�) = kg; for k = 0; : : : ; n� 1

is called Eulerian.

A third Eulerian statistic, essentially de�ned by Dumont [6], counts the number

of distinct nonzero letters in the code of a permutation. We de�ne code(�) to be the

word c

1

� � � c

n

, where

c

i

= #fj > i j �

j

< �

i

g:

Denoting Dumont's statistic by dmc, we have

dmc(�) = #f` 6= 0 j ` appears in code(�)g:

Example 1.1.

� = 2 8 4 3 6 7 9 5 1;

code(�) = 1 6 2 1 2 2 2 1 0:

The distinct nonzero letters in code(�) are f1; 2; 6g. Thus, dmc(�) = 3.

Dumont showed bijectively that the statistic dmc is Eulerian. While few re-

searchers have found an application for Dumont's statistic since [6], Foata [8] proved

the following equidistribution result involving the statistics inv (inversions) and maj

(major index). These two statistics belong to the class of Mahonian statistics. (See

[8] for further information.)

Theorem 1.1. The Eulerian-Mahonian statistic pairs (des, inv) and (dmc, maj)

are equally distributed on S

n

, i.e.

#f� 2 S

n

j des(�) = k; inv(�) = pg = #f� 2 S

n

j dmc(�) = k;maj(�) = pg:

Note that each of the statistics des, exc, and dmc is de�ned in terms of set car-

dinalities. We denote the descent set and excedance set of a permutation � by D(�)

and E(�), respectively. We de�ne the letter set of an arbitrary word to be the set of

its nonzero letters, and denote the letter set of code(�) by LC(�). Thus,

des(�) = jD(�)j;

exc(�) = jE(�)j;

dmc(�) = jLC(�)j:
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It is easy to see that for every subset T of [n� 1] = f1; : : : ; n� 1g, there are permu-

tations �; �, and � in S

n

satisfying

T = D(�) = E(�) = LC(�):

In fact, Dumont's original bijection [6] shows that for each such subset T we have

#f� 2 S

n

jE(�) = Tg = #f� 2 S

n

jLC(�) = Tg:

However, the analogous statement involving D(�) is not true.

Generalizing permutations on n letters are words w = w

1

� � �w

m

on n letters,

where m � n. We will assume that each letter in [n] appears at least once in w.

Generalizing the symmetric group S

n

, we de�ne the rearrangement class of w by

R(w) = fw

�

�1

(1)

� � �w

�

�1

(m)

j � 2 S

m

g:

Each element of R(w) is called a rearrangement of w.

Many de�nitions pertaining to S

n

generalize immediately to the rearrangement

class of any word. In particular, the de�nitions of descent, descent set, code, letter

set of a code, and Dumont's statistic remain the same for words as for permutations.

Generalization of excedances requires only a bit of e�ort.

For any word w, denote by �w = �w

1

� � � �w

m

the unique nondecreasing rearrangement

of w. We de�ne position i to be an excedance in w if w

i

> �w

i

. Thus,

exc(w) = #fi jw

i

> �w

i

g:

If position i is an excedance in word w, we will refer to the letter w

i

as the value of

excedance i. One can see word excedances most easily by associating to the word w

the biword

�

�w

w

�

=

�

�w

1

� � � �w

m

w

1

� � �w

m

�

Example 1.2. Let w = 312312311. Then,

�

�w

w

�

=

�

1 1 1 1 2 2 3 3 3

3 1 2 3 1 2 3 1 1

�

:

Thus, E(w) = f1; 3; 4g and exc(w) = 3. The corresponding excedance values are 3,

2, and 3.

4



We will use biwords not only to expose excedances, but to de�ne and justify maps

in Sections 3 and 4. In particular, if u = u

1

� � �u

m

and v = v

1

� � �v

m

are words and y

is the biword

y =

�

u

v

�

;

then we will de�ne biletters y

1

; : : : ; y

m

by

y

i

=

�

u

i

v

i

�

;

and will de�ne the rearrangement class of y by

R(y) = fy

�

�1

(1)

� � � y

�

�1

(m)

j � 2 S

m

g:

A well known result concerning word statistics is that the statistics des and exc

are equally distributed on the rearrangement class of any word w,

#fy 2 R(w) j exc(y) = kg = #fy 2 R(w) j des(y) = kg:

Analogously to the case of permutation statistics, a word statistic stat is called Eule-

rian if it satis�es

#fy 2 R(w) j stat(y) = kg = #fy 2 R(w) j des(y) = kg

for any word w and any nonnegative integer k.

In Section 2, we state and prove our main result: that dmc is Eulerian as a

word statistic. Our bijection is di�erent than that of Dumont [6], which doesn't

generalize obviously to the case of arbitrary words. Applying the main theorem to a

problem involving f -vectors and h-vectors of partially ordered sets, we state a second

theorem in Section 3. This result strengthens a special case of a result of Stanley [9]

concerning the ag h-vectors of balanced Cohen-Macaulay complexes. We prove the

second theorem in Sections 4 and 5, and �nish with some related open questions in

Section 6.

2 Main theorem

As implied in Section 1, we de�ne Dumont's statistic on an arbitrary word w to be

the number of distinct nonzero letters in code(w).

dmc(w) = jLC(w)j:

This generalized statistic is Eulerian.
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Theorem 2.1. If R(w) is the rearrangement class of an arbitrary word w and k is

any nonnegative integer, then

#fv 2 R(w) j dmc(v) = kg = #fv 2 R(w) j exc(v) = kg:

Our bijective proof of the theorem depends upon an encoding of a word which we

call the excedance table.

De�nition 2.1. Let v = v

1

� � � v

m

be an arbitrary word and let let c = c

1

� � � c

m

be

its code. De�ne the excedance table of v to be the unique word etab(v) = e

1

� � � e

m

satisfying

1. If i is an excedance in v, then e

i

= i.

2. If c

i

= 0, then e

i

= 0.

3. Otherwise, e

i

is the c

i

th excedance of v having value at least v

i

.

Note that etab(v) is well de�ned for any word v. In particular, if i is not an

excedance in v and if c

i

> 0, then there are at least c

i

excedances in v having value

at least v

i

. To see this, de�ne

k = #fj 2 [m] j v

j

< v

i

g:

Since c

i

of the letters �v

1

; : : : ; �v

k

appear to the right of position i in v, then at least c

i

of the letters �v

k+1

; : : : ; �v

m

must appear in the �rst k positions of v. The positions of

these letters are necessarily excedances in v. An important property of the excedance

table is that the letter set of etab(v) is precisely the excedance set of v.

Example 2.2. Let v = 514514532, and de�ne c = code(v). Using v, �v, and c, we

calculate e = etab(v),

�v = 1 1 2 3 4 4 5 5 5;

v = 5 1 4 5 1 4 5 3 2;

c = 6 0 3 4 0 2 2 1 0;

e = 1 0 3 4 0 3 4 1 0:

Calculation of e

1

; : : : ; e

5

and e

9

is straightforward since the positions i = 1; : : : ; 5 and

9 are excedances in v or satisfy c

i

= 0. We calculate e

6

, e

7

, and e

8

as follows. Since

c

6

= 2, and the second excedance in v with value at least v

6

= 4 is 3, we set e

6

= 3.

Since c

7

= 2, and the second excedance in v with value at least v

7

= 5 is 4, we set

e

7

= 4. Since c

8

= 1, and the �rst excedance in v with value at least v

8

= 3 is 1, we

set e

8

= 1.
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We prove Theorem 2.1 with a bijection � : R(w)! R(w) which satis�es

E(v) = LC(�(v)); (2.1)

and therefore

exc(v) = dmc(�(v)): (2.2)

De�nition 2.3. Let w = w

1

� � �w

m

be any word. De�ne the map � : R(w) ! R(w)

by applying the following procedure to an arbitrary element v of R(w).

1. De�ne the biword z =

�

v

etab(v)

�

.

2. Let y be the unique rearrangement of z satisfying y =

�

u

code(u)

�

.

3. Set �(v) = u.

Construction of y is quite straightforward. Let e = e

1

� � � e

m

= etab(v), and

linearly order the biletters z

1

; : : : ; z

m

by setting z

i

< z

j

if

v

i

< v

j

; or

v

i

= v

j

and e

i

> e

j

:

Break ties arbitrarily. Considering the biletters according to this order, insert each

biletter z

i

into y to the left of e

i

previously inserted biletters.

Example 2.4. Let v and e be as in Example 2.2. To compute �(v), we de�ne

z =

�

v

e

�

=

�

5 1 4 5 1 4 5 3 2

1 0 3 4 0 3 4 1 0

�

:

We consider the biletters of z in the order

�

1

0

�

;

�

1

0

�

;

�

2

0

�

;

�

3

1

�

;

�

4

3

�

;

�

4

3

�

;

�

5

4

�

;

�

5

4

�

;

�

5

1

�

;

and insert them individually into y:

�

1

0

�

;

�

1 1

0 0

�

;

�

1 1 2

0 0 0

�

;

�

1 1 3 2

0 0 1 0

�

;

�

1 4 1 3 2

0 3 0 1 0

�

; : : :

Finally we obtain

y =

�

u

code(u)

�

=

�

1 4 5 5 4 1 3 5 2

0 3 4 4 3 0 1 1 0

�

and set �(v) = 145541352.
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It is easy to see that any biword z has at most one rearrangement y satisfying

De�nition 2.3 (2). Such a rearrangement exists if and only if we have

e

i

� #fj 2 [m] j v

j

< v

i

g; for i = 1; : : : ; m; (2.3)

or equivalently, if and only if

�v

e

i

< v

i

; for i = 1; : : : ; m; (2.4)

where we de�ne �v

0

= 0 for convenience.

Observation 2.2. Let v = v

1

� � � v

m

be any word and let e = etab(v). Then we have

e

i

� #fj 2 [m] j v

j

< v

i

g; for i = 1; : : : ; m:

Proof. If i is an excedance in v, then e

i

= i and �v

1

� � � � � �v

i

< v

i

. If c

i

= 0, then

e

i

= 0. Otherwise, de�ne

k = #fj 2 [m] j v

j

< v

i

g:

By the discussion following De�nition 2.1, at least c

i

of the positions 1; : : : ; k are

excedances in v with values at least v

i

. The letter e

i

, being one of these excedances,

is therefore at most k.

Thus the map � is well de�ned and satis�es (2.1) and (2.2). We invert � by

applying the procedure in the following proposition.

Proposition 2.3. Let y =

�

u

c

�

be a biword satisfying c = code(u). The following

procedure produces a rearrangement z =

�

v

e

�

of y satisfying e = etab(v).

1. For each letter ` in L(c), �nd the greatest index i satisfying c

i

= `, and de�ne

z

`

= y

i

. Let S be the set of such greatest indices, and de�ne T = [m]r S.

2. For each index i 2 T , de�ne

d

i

=

(

#fj 2 S j c

j

� c

i

; u

j

� u

i

g; if c

i

> 0;

0; otherwise:

3. Let (y

�

�1

(i)

)

i2T

be the unique rearrangement of (y

i

)

i2T

satisfying

(d

�

�1

(i)

)

i2T

= code((u

�

�1

(i)

)

i2T

):

4. Insert the biletters (y

�

�1

(i)

)

i2T

in order into the remaining positions of z.
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Proof. The procedure above is well de�ned. In particular, we may perform step 3

because the biword

�

u

i

d

i

�

i2T

satis�es

d

i

� #fj 2 T j u

j

< u

i

g; for each i 2 T;

as required by (2.3). To see that this is the case, let i be an index in T with c

i

> 0. In

step 1 we have placed d

i

biletters y

j

with u

j

> u

i

into positions 1; : : : ; c

i

of z. Thus, at

least d

i

biletters y

j

with u

j

� �u

c

i

have not been placed into these positions. The index

j of any such biletter belongs to S only if c

j

> c

i

. However, since �u

c

j

< u

j

� �u

c

i

< u

i

,

we have c

j

< c

i

. Thus, j belongs to T .

We begin to verify that e = etab(v) by calculating the excedance set of v. We

claim that E(v) = L(c).

The positions L(c) = fc

j

j j 2 Sg are excedances in v, because for each index j in

S, we have v

c

j

= u

j

> �u

c

j

= �v

c

j

. These positions are in fact the only excedances in v.

For each index j in T , denote by �(j) the position of z into which we have placed y

j

.

Supposing that some indices f�(j) j j 2 Tg are excedances in v, choose i 2 T so that

�(i) is the leftmost of these excedances and de�ne

k = #fj 2 [m] j u

j

< u

i

g:

Then, we have

k > #fj 2 S j c

j

� kg+#fj 2 T j �(j) < �(i)g: (2.5)

Since c

i

� k by (2.3), we have

#fj 2 S j c

j

� kg = #fj 2 S j c

j

� c

i

g+#fj 2 S j c

i

< c

j

� kg;

and by the de�nition of �, we have

#fj 2 T j �(j) < �(i)g = #fj 2 T j u

j

< u

i

g � d

i

= #fj 2 T j u

j

< u

i

g �#fj 2 S j c

j

� c

i

; u

j

� u

i

g:

Using these identities to simplify (2.5), we obtain

#fj 2 S j u

j

< u

i

; c

j

> c

i

g > #fj 2 S j c

i

< c

j

� kg: (2.6)
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If j belongs to the set on the left hand side of (2.6) and satis�es c

j

> k, then we have

u

j

> �u

c

j

� �u

k

= u

i

� 1;

a contradiction. On the other hand, if each index j in this set satis�es c

j

� k, then

we have the inclusion

fj 2 S j u

j

< u

i

; c

j

> c

i

g � fj 2 S j c

i

< c

j

� kg;

which contradicts (2.6). We conlcude that the set f�(j) j j 2 Tg is precisely the set

of non-excedances in v, and that we have

E(v) = L(c) = fc

j

j j 2 Sg:

Finally, we show that e has the de�ning properites of etab(v). For each index j

in S, we have de�ned e

c

j

= c

j

so that e satis�es condition (1) of De�nition 2.1. Let

c

0

be the code of v. We claim that for each index i 2 T , we have

e

�(i)

= c

i

=

(

the c

0

�(i)

th excedance in v having value at least u

i

; if c

0

�(i)

> 0;

0; otherwise:

By our de�nition of the sequence (d

i

)

i2T

, it su�ces to show that c

0

�(i)

= d

i

for each

index i. The subword v

�(i)+1

� � � v

m

of v includes d

i

letters v

�(j)

with j 2 T and

v

�(j)

< v

�(i)

. On the other hand, any excedance in v to the right of �(i) has value

greater than v

�(i)

. We conclude that c

0

�(i)

= d

i

.

The above procedure inverts � because the biword z it produces is the unique

rearrangement of y having the desired properties.

Proposition 2.4. Let v = v

1

� � � v

m

be an arbitrary word, and de�ne

z =

�

v

e

�

=

�

v

etab(v)

�

:

If there is any rearrangement z

0

of z satisfying

z

0

=

�

v

0

e

0

�

=

�

v

0

etab(v

0

)

�

;

then z

0

= z.
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Proof. Let L be the letter set of e. By De�nition 2.1, we must have E(v) = E(v

0

) = L.

Let i be an excedance of v and v

0

. By condition (1) of De�nition 2.1 we must have

e

i

= e

0

i

= i, and by condition (3) the upper letters v

i

and v

0

i

must be as large as

possible. Thus, (z

i

)

i2L

= (z

0

i

)

i2L

.

Let T = [m] r L be the set of non-excedance positions of v and v

0

, and consider

the corresponding subsequences of biletters (z

i

)

i2T

and (z

0

i

)

i2T

. By condition (3) of

De�nition 2.1, the codes of (v

i

)

i2T

and (v

0

i

)

i2T

are determined by the excedances and

excedance values in v and v

0

. Thus, the two codes must be identical. Applying the

argument following Example 2.4, we conclude that (z

i

)

i2T

= (z

0

i

)

i2T

.

3 An application of Dumont's statistic

As an application of Dumont's (generalized) statistic, we will strengthen a special case

of a result of Stanley [9, Cor. 4.5] concerning f -vectors and h-vectors of simplicial

complexes.

Given a (d� 1) dimensional simplicial complex �, we de�ne its f -vector to be

f

�

= (f

�1

; f

0

; f

1

; : : : ; f

d�1

);

where f

i

counts the number of i-dimensional faces of �. By convention, f

�1

= 1.

Similarly, we may de�ne the f -vector of a poset P by identifying P with its order

complex �(P ). (See [10, p. 120].) That is, we de�ne

f

P

= f

�(P )

= (f

�1

; f

0

; f

1

; : : : ; f

d�1

);

where f

i

counts the number of (i + 1)-element chains of P . Again, f

�1

= 1 by

convention.

In abundant research papers, authors have considered the f -vectors of various

classes of complexes and posets, and have conjectured or obtained signi�cant infor-

mation about the coe�cients. (See [1], [2], [11, Ch. 2,3].) Such information includes

linear relationships between coe�cients and properties such as symmetry, log concav-

ity and unimodality.

Related to the f -vector f

�

is the h-vector h

�

= (h

0

; h

1

; : : : ; h

d

), which we de�ne

by

d

X

i=0

f

i�1

(x� 1)

d�i

=

d

X

i=0

h

i

x

d�i

:
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From this de�nition, it is clear that knowing the h-vector of a complex is equivalent to

knowing the f -vector. For some conditions on a simplicial complex, one can show that

its h-vector is the f -vector of another complex. Speci�cally, we have the following

result due to Stanley [9, Cor. 4.5].

Theorem 3.1. If � is a balanced Cohen-Macaulay complex, then its h-vector is the

f -vector of some simplicial complex �.

We de�ne a simplicial complex to be Cohen-Macaulay if it satis�es a certain topo-

logical condition ([11, p. 61]), and balanced if we can color the vertices with d colors

such that no face contains two vertices of the same color ([11, p. 95]). The class

of balanced Cohen-Macaulay complexes is quite important because it includes the

order complexes of all distributive lattices. The distributive lattices, in turn, contain

information about all posets. (See [10, Ch. 3].)

By placing an additional restriction on the complex �, one arrives at a special

case of the theorem which has an elegant bijective proof. Let us require that � be

the order complex of a distributive lattice J(P ). In this case, h

�

= h

J(P )

counts the

number of linear extensions of P by descents. (See [4].) That is, h

k

is the number of

linear extensions of P with k descents. Therefore, Theorem 3.1 asserts that for any

poset P , there is a bijective correspondence between linear extensions of P with k

descents and (k � 1)-faces of some simplicial complex �.

f� j � a linear extension of P ; des(�) = kg

1�1

 ! f� j � a (k � 1)-face of �g:

Using [3, Remark 6.6] and [7, Cor. 2.2], one can construct a family f�

n

g

n>0

of simpli-

cal complexes such that for any poset P on n elements, the complex � corresponding

to � = �(J(P )) is a subcomplex of �

n

.

On the other hand, any additional restriction placed on the complex � in Theo-

rem 3.1 should allow us to prove more than a special case of the theorem. It should

allow us to strengthen the special case by asserting speci�c properties of the complex

� in the conclusion of the theorem. In particular, let us require that � be the order

complex of a distributive lattice J(P ) which is a product of chains. (See [10, Ch. 3]

for de�nitions.) We will prove the following result.

Theorem 3.2. Let the distributive lattice J(P ) be a product of chains. Then there

is a poset Q such that the h-vector of J(P ) is the f -vector of Q.

Let us reconsider this theorem in terms of rearrangements of words. If J(P ) is

a product of chains having cardinalities (p

1

+ 1); : : : ; (p

n

+ 1), then P is the disjoint

sum of chains (p

1

+ � � �+ p

n

). It is not di�cult to see that linear extensions of P

12
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Figure 3.1: A poset with a k-element chain for each k-letter code in C(11223).

are in bijective correspondence with rearrangements of the word w = 1

p

1

� � �n

p

n

.

Combining this observation with Theorem 2.1, we restate Theorem 3.2 in terms of

Dumont's statistic.

Proposition 3.3. Let w be any word and de�ne the vector h = (h

0

; : : : ; h

d

) by

h

i

= #fu 2 R(w) j dmc(u) = ig;

where d is the maximum cardinality of LC(u) over all rearrangements u of w. Then,

there is a poset Q whose f -vector is h.

To prove the proposition, and therefore Theorem 3.2, we will work directly with

codes of rearrangements of a word. Let us denote C(w) be the set of codes of all

rearrangements of w. Proposition 3.3 asserts that for any word w, there is a bijection

between k-letter elements of C(w) and k-element chains in some poset Q,

fc 2 C(w) j c a k-letter codeg

1�1

 ! f(v

1

<

Q

� � � <

Q

v

k

) 2 �(Q)g: (3.1)

We will construct such a poset Q = Q(w) as follows.

De�nition 3.1. Given an arbitrary word w, let Q be the subset of one-letter codes

in C(w). For each pair (c; c

0

) of codes in Q whose letters are (`; `

0

), respectively, de�ne

c <

Q

c

0

if

1. ` < `

0

.

2. The multiplicity of ` in c is strictly greater than that of `

0

in c

0

.

3. For each position i such that c

0

i

= `

0

, we have c

i+`

0

�`

= `.

13



Example 3.2. Figure 3.1 shows the poset Q corresponding to the word w = 11223.

The f -vector f

Q

counts words in R(w) by Dumont's statistic. Equivalently, it counts

linear extensions of the poset P = 2+ 2+ 1 by descent, and is equal to the h-vector

of J(P ),

f

Q

= h

J(P )

= (1; 12; 15; 2):

In Sections 4 and 5 we will demonstrate that for any word w, the procedure in

De�nition 3.1 gives a poset Q satisfying the bijections of (3.1). We will give an explicit

bijection 	 : C(w)! �(Q), taking k-letter codes in C(w) to k-element chains in Q.

4 The chain map 	

Fix a nondecreasing word w = w

1

� � �w

m

on n letters, and de�ne the poset Q as in

De�nition 3.1. We will de�ne a chain map 	 : C(w) ! �(Q) which will identify a

code c with a chain

	(c) = v

1

<

Q

� � � <

Q

v

k

;

of elements in Q. If c is a code on the k letters `

1

< � � � < `

k

, then each poset element

v

i

will be a code whose unique nonzero letter is `

i

. Speci�cally, we will determine v

i

by applying a vertex map  

`

i

: C(w)! Q to c.

v

i

=  

`

i

(c):

After proving that  

`

i

(c) <

Q

 

`

j

(c) whenever `

i

< `

j

, we will de�ne the chain map to

be a product of vertex maps,

	(c) =  

`

1

(c) <

Q

� � � <

Q

 

`

k

(c):

We begin by observing that several simple operations on codes in C(w) yield other

codes in C(w).

Observation 4.1. Let u be a rearrangement of w and let c = code(u).

1. If c

i

> c

i+1

, then the word

c

0

= c

1

� � � c

i�1

� c

i+1

� (c

i

� 1) � c

i+2

� � � c

m

belongs to C(w).

14



2. If for some r > i, c

i

is strictly less than c

i+1

; : : : ; c

r

and c

i

> c

r+1

, then the word

c

00

= c

1

� � � c

i�1

� c

r+1

� c

i+1

� � � c

r

� (c

i

� 1) � c

r+2

� � � c

m

belongs to C(w).

3. If c

i

< c

i+1

, or if c

i

= c

i+1

and u

i

< u

i+1

, then the word

c

000

= c

i

� � � c

i�1

� (c

i+1

+ 1) � c

i

� c

i+2

� � � c

m

belongs to C(w).

Proof. Let u

0

be the word obtained from u by switching the letters in positions i and

i+1, and let u

00

be the word obtained by switching the letters in positions i and r+1,

u

0

= (u

1

� � �u

i�1

� u

i+1

� u

i

� u

i+2

� � �u

m

);

u

00

= (u

1

� � �u

i�1

� u

r+1

� u

i+1

� � �u

r

� u

i

� u

r+2

� � �u

m

):

(1) We have u

i

> u

i+1

and c

0

= code(u

0

).

(2) We have u

r+1

< u

i

< u

i+1

; � � � ; u

r

and c

00

= code(u

00

).

(3) We have u

i

< u

i+1

and c

000

= code(u

0

).

Using this observation we will de�ne two families of maps from C(w) to itself,

�

1

; : : : ; �

m�1

and �

1

; : : : ; �

m�1

. Then, composing maps from these two families, we

will de�ne the family of vertex maps  

1

; : : : ;  

m�1

.

The map �

`

i

: C(w)! C(w) removes from a code c all letters `

j

which are greater

than `

i

. It essentially changes each such letter `

j

to `

i

and moves it `

j

� `

i

places to

the right in c. If we identify c with the k-element chain v

1

<

Q

� � � <

Q

v

k

, then we will

identify �

`

i

(c) with the i-element subchain v

1

<

Q

� � � <

Q

v

i

.

De�nition 4.1. Let ` be a nonzero letter. De�ne the map �

`

: C(w) ! C(w) by

performing the following procedure on a code c.

For i = m;m� 1; : : : ; 1, if c

i

> `, then

1. Set � = c

i

� `.

2. Rede�ne c = c

1

� � � c

i�1

� c

i

� � � c

i+�

� ` � c

i+�+1

� � � c

m

.
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Analogous to �

`

i

, the map �

`

i

: C(w) ! C(w) removes all letters which are

smaller than `

i

. It does so by changing each such smaller letter to 0. If we identify

c with the k-element chain v

1

<

Q

� � � <

Q

v

k

, then we will identify �

`

i

(c) with the

(k � i+ 1)-element subchain v

i

<

Q

� � � <

Q

v

k

.

De�nition 4.2. Let ` be a nonzero letter. De�ne the map �

`

: C(w) ! C(w) by

�

`

(c) = a

1

� � �a

m

, where

a

i

=

(

0; if c

i

< `;

c

i

; otherwise:

The maps �

1

; : : : ; �

m�1

, and �

1

; : : : ; �

m�1

are well de�ned, for their de�nitions are

merely repeated applications of Observation 4.1 (1) and (2). Note that the composi-

tion �

`

�

`

produces a code on the single letter `. This code is an element of Q, and a

vertex of �(Q).

De�nition 4.3. Let ` be a nonzero letter. De�ne the vertex map  

`

: C(w)! Q by

 

`

= �

`

�

`

:

It is easy to see that �

2

`

= �

`

, and therefore that  

`

�

`

=  

`

. These and the

following relations will be essential in establishing a bijection between C(w) and

�(Q).

Proposition 4.2. Let ` and `

0

be letters, 1 � ` < `

0

� n. The maps �

`

; �

`

0

;  

`

; and

 

`

0

satisfy the relations

1. �

`

0

�

`

= �

`

�

`

0

= �

`

.

2.  

`

�

`

0

=  

`

:

3.  

`

(c) <

Q

 

`

0

(c), if c contains both letters.

Proof. (1) Let c = code(u) be an element of C(w). By the comments following

De�nition 4.2, we may interpret �

`

(c) as follows. De�ne b = b

1

� � � b

m

by

b

i

=

(

`; if c

i

> `,

c

i

; otherwise,

and rearrange the biword

�

u

b

�

as

�

u

0

b

0

�

so that b

0

= code(u

0

). Then, b

0

= �

`

(c).
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It is not hard to see that there is a unique such rearrangement. Using this inter-

pretation, it is easy to see that �

`

0

�

`

, �

`

�

`

0

, and �

`

describe the same procedure.

(2) Using (1), we have  

`

�

`

0

= �

`

�

`

�

`

0

= �

`

�

`

=  

`

.

(3) We may assume that `

0

is the greatest letter in c. (Otherwise, we de�ne

d = �

`

0

(c) and note that  

`

(c) =  

`

(d) and  

`

0

(c) =  

`

0

(d).) Let e =  

`

(c) and

e

0

=  

`

0

(c). Clearly, the multiplicity of ` in e is strictly greater than that of `

0

in e

0

,

for

#fi j e

i

= `g = #fi j c

i

� `g > #fi j c

i

� `

0

g = #fi j e

0

i

= `

0

g:

Next, we show that for any position i of e

0

satisfying e

0

i

= `, we must have e

i+`

0

�`

= `.

Since by assumption, `

0

is the greatest letter in c, we have e

0

i

= `

0

if and only if c

i

= `

0

.

To �nd e, we �rst calculate �

`

(c) by the procedure of De�nition 4.1. At each iteration

i such that c

i

= `

0

, we place the letter ` into position i+ `

0

� ` of �

`

(c). This position

will not be altered by iterations i� 1; : : : ; 1, since all letters of c are no greater than

`

0

. Finally, since e = �

`

�

`

(c), and �

`

changes only those letters less than `, we see

that e

i+`

0

�`

= ` for every position i such that e

i

= `

0

.

Now we may de�ne the map 	.

De�nition 4.4. De�ne the chain map 	 : C(w)! �(Q) by

	(c) =  

`

1

(c) <

Q

� � � <

Q

 

`

k

(c);

where `

1

< � � � < `

k

are the distinct nonzero letters in c.

5 Inverting 	

We will de�ne a map � : �(Q) ! C(w) which takes a k-element chain in Q to a

k-letter code in C(w). By demonstrating that � inverts 	, we will complete the proof

of Proposition 3.3.

We begin by de�ning an operation _ : C(w)�Q! C(w) which joins a new letter

to a code.

De�nition 5.1. Let d 2 Q be a code whose unique nonzero letter is `

0

, and let

c 2 C(w) be a code whose greatest letter is `. Assume that  

`

(c) <

Q

d. De�ne the

code e = c _ d by the following procedure.

1. For each i such that d

i

= `

0

, set e

i

= `

0

and cross out the ` in position i+ � of c.

17



2. Fill the remaining positions of e with the remaining components of c, in order.

Note that L(e) = L(c)[f`g. Therefore, we may map a chain of k one-letter codes

to a single k-letter code by iterating the join operation.

De�nition 5.2. Let v

1

<

Q

� � � <

Q

v

k

be a chain of one-letter codes on the letters

`

1

< � � � < `

k

, respectively. De�ne the map � : �(Q)! C(w) by

�(v

1

<

Q

� � � <

Q

v

k

) = (� � � ((v

1

_ v

2

) _ v

3

) � � � ) _ v

k

:

The following proposition shows that the join operation is well de�ned. It follows

that � is well de�ned also.

Proposition 5.1. If c and d are codes in C(w) satisfying the hypotheses of De�ni-

tion 5.1, then c _ d also belongs to C(w).

Proof. Let u and y be words in R(w) whose codes c = code(u) and d = code(y) satisfy

the conditions of De�nition 5.1. Consider the leftmost position i in c such that c

i

= `

and d

i��

= `

0

. By assumption, c

i�1

� c

i

. If c

i�1

< c

i

, or if c

i�1

= c

i

and u

i�1

< u

i

,

then we may apply Observation 4.1 (3) `

0

� ` times to obtain the word

c

1

� � � c

i���1

� `

0

� c

i��+1

� � � ĉ

i

� � � c

m

;

which belongs to C(w). (Here, ĉ

i

means that the letter c

i

is omitted.) Repeating this

process for each such position i, we rede�ne the join operation. Therefore it su�ces

to show that for every position i satisfying d

i���1

= 0, d

i��

= `

0

, and c

i�1

= c

i

= `,

we have u

i�1

< u

i

.

Let i be such a position and suppose that u

i�1

= u

i

. Since d

i��

= `

0

and d

i���1

= 0,

there are exactly i� � � 1 + `

0

= i+ `� 1 letters in y which are strictly less than y

i

.

In particular, we have

w

i+`�1

< w

i+`

: (5.1)

Let k be the number of positions preceeding i such that u

i�k

= u

i�k+1

= � � � = u

i

and

c

i�k

= c

i�k+1

= � � � = `. Then there are exactly i � k � 1 + ` letters in u which are

strictly less than u

i

(= u

i�1

= � � � = u

i�k

). In particular, we have

w

i�k�1+`

< w

i�k+`

= w

i�k+1+`

= � � � = w

i+`

;

which contradicts (5.1). We conclude that u

i�1

< u

i

, and therefore that c_ d belongs

to C(w).
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To begin demonstrating that � inverts 	 we note the following relations satis�ed

by  , � and _.

Proposition 5.2. The pair of maps ( ; �) inverts the operation _ in the following

sense.

1. Let c 2 C(w) be a code with greatest letter `, and let d 2 Q be a code with letter

`

0

> ` and satisfying  

`

(c) <

Q

d. Then we have

 

`

0

(c _ d) = d;

�

`

(c _ d) = c:

2. Let c 2 C(w) be a code whose greatest two letters are ` < `

0

. Then we have

�

`

(c) _  

`

0

(c) = c:

Proof. (1) Let S be the set of positions of d containing the letter `

0

, and let � = `

0

� `.

De�ne the words e = c _ d, d

0

=  

`

0

(c _ d), and c

0

= �

`

(c _ d): Calculating e, we

have

(e

i

)

i2S

= `

0

� � � `

0

;

(e

i

)

i 62S

= (c

i

)

i�� 62S

:

Since e contains no letters greater than `

0

, we have d

0

=  

`

0

(e) = �

`

0

(e). Thus, d

0

= d:

(d

0

i

)

i2S

= `

0

� � � `

0

;

(d

0

i

)

i 62S

= 0 � � �0:

Calculating c

0

= �

`

(e), we change each occurrence of `

0

in e to `, and move it �

positions to the right. Since  

`

(c) <

Q

d, we see that c

0

= c:

(c

0

i

)

i��2S

= ` � � � ` = (c

i

)

i��2S

;

(c

0

i

)

i�� 62S

= (c

i

)

i�� 62S

:

(2) Similar.

Completing the proof of Proposition 3.3, the following proposition shows that 	

is bijective.

Proposition 5.3. Let c 2 C(w) be a code on the letters `

1

< � � � < `

k

, and let

v

1

<

Q

� � � <

Q

v

k

be a k-element chain in Q, where the letter of v

i

is `

i

for each i. The

maps 	 and � satisfy
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1. 	�(v

1

<

Q

� � � <

Q

v

k

) = v

1

<

Q

� � � <

Q

v

k

:

2. �	(c) = c:

Proof. (1) By De�nition 5.2, we have

�(v

1

<

Q

� � � <

Q

v

k

) = (� � � ((v

1

_ v

2

) _ v

3

) � � � ) _ v

k

:

Applying 	 =  

`

1

� � � � �  

`

k

to this code, we calculate  

`

i

((� � � (v

1

_ v

2

) _ � � � )_ v

k

),

for i = 1; : : : ; k. By Proposition 5.2 (1), we have

 

`

i

((� � � (v

1

_ v

2

) _ � � � ) _ v

k

) =  

`

i

�

`

i

�

`

i+1

� � ��

`

k

((� � � (v

1

_ v

2

) _ � � � ) _ v

k

)

=  

`

i

((� � � (v

1

_ v

2

) _ � � � ) _ v

i

)

= v

i

;

as desired.

(2) By De�nition 4.4, we have

	(c) =  

`

1

(c) <

Q

� � � <

Q

 

`

k

(c):

Applying � to this chain, we join vertices one at a time. Noting that  

`

1

(c) = �

`

1

(c),

we use Proposition 5.2 (2) to calculate

�

`

i

(c) _  

`

i+1

(c) = �

`

i

�

`

i+1

(c) _  

`

i+1

�

`

i+1

(c)

= �

`

i

(�

`

i+1

(c)) _  

`

i+1

(�

`

i+1

(c))

= �

`

i+1

(c):

Thus, after k � 1 join iterations, we recover c.

6 Open questions

Since the class of balanced Cohen-Macaulay complexes contains so many widely stud-

ied classes of complexes, there are many possibilities to re�ne Theorem 3.1. In Theo-

rem 3.2, we have required that � be an order complex of the form �(J(P )), where P

is a disjoint sum of chains. One could also ask if the theorem holds for more general

classes of posets. (See [10], [11] for de�nitions in the questions that follow.) For

instance, the following questions are open.

Question 6.1. If P is a forest, then is there another poset Q such the h-vector of

J(P ) is the f -vector of Q?
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Question 6.2. If P is a series-parallel poset, then is there another poset Q such the

h-vector of J(P ) is the f -vector of Q?

We conjecture that the answers to both questions are a�rmative. In fact, we

conjecture that the answer remains a�rmative for any choice of a poset P .

Conjecture 6.1. Let J(P ) be any distributive lattice. Then there is another poset Q

such that the h-vector of J(P ) is the f -vector of Q.

This conjecture has been tested by computer for all distributive lattices J(P )

arising from posets P having up to seven elements. Other open questions place

requirements on � instead of on �.

Question 6.3. For which balanced Cohen-Macaulay complexes � is h

�

the f -vector

of a graded poset (or (3+ 1)-free poset, or ag complex)?

To begin to answer Questions 6.1 - 6.3, it would be interesting to utilize any

Eulerian permutation statistic stat to de�ne posets such as Q in De�nition 3.1 which

satisfy the following two conditions.

1. For each k, the k-element chains in Q bijectively correspond to the linear ex-

tensions � of P with stat(�) = k.

2. For each poset P in some class P, the statistics stat and des are equidistributed

on the set of linear extensions of P , so that h

J(P )

= f

Q

.

One might also consider a variation of this method based upon objects other than

permutations, such as Motzkin paths or either of the tree representations in [10,

pp. 23-25].

A result similar to Theorem 2.1 (in the sense that word rearrangements correspond

to linear extensions of certain posets) states that the statistics inv and maj are equally

distributed on the linear extensions of posets known as postorder labelled forests [5].

Perhaps Theorem 2.1 could be extended similarly.

Question 6.4. For what conditions on a poset P are the statistics des and dmc

equidistributed on the set of linear extensions of P ?

One might apply another variation of the method above by de�ning a rule which

maps each n-element poset P to a subset K(P ) of S

n

which is not a set of linear

extensions of P . This subset should have the property that the elements � in K(P )

satisfying stat(�) = k are in bijective correspondence with the linear extensions of P

which have k descents.
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