CHAIN POLYNOMIALS AND PERMUTATION STATISTICS

Mark Skandera

(Massachusetts Institute of Technology)

Outline

- 1. Characterization of integer sequences
- 2. f-vectors and chain polynomials
- 3. Distributive lattices
- 4. h-vectors
- 5. Permutation statistics
- 6. $(\mathbf{3} + \mathbf{1})$ -free posets

Sequence Characterization

Let $a = (a_0, \ldots, a_d)$ be a sequence of nonnegative integers.

Question. Under what conditions does the polynomial

$$a(x) = a_0 + a_1 x + \dots + a_d x^d$$
have only real zeros?
(Thm of Gantmacher.)

Question. Under what conditions does the sequence *a* count faces of a simplicial complex? (Thm of Schutzenberger, Kruskal, Katonah.)

Properties of sequences

The sequence $a = (a_0, \ldots, a_d)$ may have the following properties.

1. *a* is *unimodal*, i.e., $a_0 \leq \cdots \leq a_j \geq \cdots \geq a_d$, for some *j*.

2. *a* is *log-concave*, i.e.,

$$a_i^2 \ge a_{i-1}a_{i+1},$$

for $i = 1, \dots, d-1.$

3. The polynomial

$$a_0 + a_1 x + \dots + a_d x^d$$

has only real zeros.

Two descriptions of a sequence

Theorem. The sequence $a = (a_0, \dots, a_d)$ is the h-vector of some Cohen-Macauley complex if and only if it counts faces in some multicomplex.

f-vectors

The *f*-vector of a poset
$$P$$
,
 $f_P = (f_{-1}, f_0, \dots, f_{d-1}),$
counts chains by cardinality. f_i is the number
of $(i + 1)$ -element chains in P .

For the poset above, we have $f_P = (1, 5, 6, 2).$

We define the *chain polynomial* of P by $f_P(x) = f_{-1} + f_0 x + \dots + f_{d-1} x^d$

Question. Which sequences (a_0, \ldots, a_d) are f-vectors of posets? (Open.)

Question. For which posets P does the chain polynomial $f_P(x)$ have only real zeros? (Open.)

Distributive lattices

For any poset P, define the *distributive lattice* J(P) to be the poset of order ideals of P, ordered by inclusion.

Question. Which sequences (a_0, \ldots, a_d) are f-vectors of distributive lattices? (Open.)

The distributive lattice conjecture

Conjecture. (Neggers-Stanley) Let J(P) be a finite distributive lattice. Then the chain polynomial $f_{J(P)}(x)$ has only real zeros.

Question. Is $f_{J(P)}$ always log-concave? (Open.)

Question. Is $f_{J(P)}$ always unimodal? (Open.)

h-vectors

The h-vector of a poset,

$$h_P = (h_0, \ldots, h_d),$$

is defined in terms of the f-vector,

$$h_P(x) = (1-x)^d f_P\left(\frac{x}{1-x}\right)$$

Example.

$$f_P(x) = 1 + 6x + 10x^2 + 5x^3.$$

$$\mapsto 5 + 10x + 6x^2 + x^3,$$

$$\mapsto 5 + 10(x - 1) + 6(x - 1)^2 + (x - 1)^3$$

$$= 0 + x + 3x^2 + x^3,$$

$$\mapsto 1 + 3x + x^2 + 0x^3 = h_P(x).$$

Some h-vectors of distributive lattices

$$(1, 4, 4, 1)$$

 $(1, 6, 8, 2)$
 $(1, 7, 14, 7, 1)$
 $(1, 8, 11, 2)$
 $(1, 8, 15, 8, 1)$
 $(1, 9, 23, 13, 2)$
 $(1, 10, 9)$
 $(1, 10, 10)$

Some f-vectors of posets

$$(1, 5, 7, 2)$$

 $(1, 5, 6, 1)$
 $(1, 6, 9, 2)$
 $(1, 7, 7, 1)$
 $(1, 8, 11, 3)$
 $(1, 9, 13, 3)$
 $(1, 11, 20, 6)$
 $(1, 13, 29, 12)$

Theorem. (Stanley) For each distributive lattice J(P), there is a simplicial complex Γ such that $f_{\Gamma} = h_{J(P)}$.

Question. For which posets P is there a poset Q such that $f_Q = h_{J(P)}$? (Open.)

Theorem. For each poset P which is a disjoint sum of chains, there is a poset Q such that $f_Q = h_{J(P)}$.

Permutation statistics

A permutation statistic is a function $\phi: S_n \to \mathbb{N}.$

The statistic *des* counts descents in a permutation. Dumont's statistic, dmc, counts the number of nonzero letters in $code(\pi)$.

Example.

$$\pi = 2 \ 8 \ 4 \ 3 \ 6 \ 7 \ 9 \ 5 \ 1$$

$$\operatorname{code}(\pi) = 1 \ 6 \ 2 \ 1 \ 2 \ 2 \ 1 \ 0$$

Positions 2,3,7,8 are descents in π . Thus, des $(\pi) = 4$. The distinct nonzero letters in code (π) are $\{1,2,6\}$. Thus, dmc $(\pi) = 3$.

Distribution of des and dmc on S_n

The permutation statistics des and dmc are called *Eulerian* because their distributions on S_n are given by the *Eulerian numbers*.

$$A(n, k+1) = \#\{\pi \in S_n | \operatorname{des}(\pi) = k\},\= \#\{\pi \in S_n | \operatorname{dmc}(\pi) = k\}.$$

A combinatorial interpretation of the h-vector

Theorem. (Stanley) The h-vector $h_{J(P)}$ counts linear extensions of P by descent.

$$f_{J(P)}(x) = (1+x)^2(1+6x+10x^2+5x^3),$$

$$h_{J(P)}(x) = 1+3x+x^2.$$

The linear extensions of P are $\{1234, 124/3, 13/24, 2/134, 2/14/3\}.$

For any poset P we can construct a simplicial complex Γ satisfying $f_{\Gamma} = h_{J(P)}$ by associating a (k-1)-simplex to each linear extension of Pwhich has k descents.

Example. If P is the antichain $\mathbf{1} + \mathbf{1} + \mathbf{1} + \mathbf{1}$, then Γ is the complex shown above.

$$f_{\Gamma}(x) = h_{J(P)}(x) = 1 + 11x + 11x^2 + x^3.$$

For any poset P which is a disjoint sum of chains, we can construct a poset Q satisfying $f_Q = h_{J(P)}$, by associating a k-element chain to each linear extension of P which has k letters in its code.

Example. If P is the sum of chains $\mathbf{2} + \mathbf{2} + \mathbf{1}$, then Q is the poset shown above.

$$f_Q(x) = h_{J(P)}(x) = 1 + 12x + 15x^2 + 2x^3.$$

Another conjecture

Conjecture. Let J(P) be any finite distributive lattice. Then there is a poset Q such that $f_Q = h_{J(P)}$.

A strategy for proving the conjecture is to study *pairs* of permutation statistics.

A *linear extension* of a poset is a permutation which avoids certain forbidden *inversions*.

Inversions

Definition. An *inversion* in a permutation is a pair $(\pi_i > \pi_j)$ such that i < j.

 $INV(\pi)$ counts the number of inversions in π .

Example. $\pi = 45123$ has six inversions: (4,1), (4,2), (4,3), (5,1), (5,2), (5,3).

The linear extensions of P are $\{1234, 124/3, 13/24, 2/134, 2/14/3\}.$

P

These are the permutations in S_4 avoiding the subsequences 41, 42, 31.

Joint distributions

Theorem. (Foata, Zeilberger, Han) The pairs of permutation statistics (des, MAJ) and (exc, DEN) are equally distributed on S_n .

Theorem. (Foata) The pairs of permutation statistics (des, INV) and (dmc, MAJ) are equally distributed on S_n .

Question. Is there a natural Eulerian statistic *stat* such that the pairs (des, MAJ) and (stat, INV) are equally distributed on S_n ?

Calculation of stc

Begin at the right of $code(\pi)$, and moving left, circle the first letter which is at least 1, the next which is at least 2, etc. Set

 $stc(\pi) =$ number of circles.

Example.

 $\pi = 4 \ 6 \ 2 \ 3 \ 5 \ 1$ $code(\pi) = 3 \ 4 \ 1 \ 1 \ 1 \ 0.$

stc(462351) = 3.

Theorem. The pairs of permutation statistics (stc, INV) and (des, MAJ) are equally distributed on S_n .

Theorem. (Foata) The pairs of permutation statistics (MAJ, INV) and (INV, MAJ) are equally distributed on S_n .

Conjecture. The pairs of permutation statistics (stc, des) and (des, stc) are equally distributed on S_n .

Question. Can the statistic stc be used to define a poset structure for S_n ? (Open.)

Silly question

Question. If J(P) is a finite distributive lattice, can we find a finite poset Q such that $f_Q = h_{J(P)}$ and $f_Q(x)$ is known to have only real zeros?

This would prove two conjectures at once.

$(\mathbf{3} + \mathbf{1})$ -free posets

Call a poset (3 + 1)-free if it contains no induced subposet isomorphic to 3 + 1.

The poset on the right above is not (3 + 1)-free, because the subposet induced by elements $\{2, 3, 4, 6\}$ is isomorphic to 3 + 1. **Question.** Which sequences (a_0, \ldots, a_d) are f-vectors of $(\mathbf{3} + \mathbf{1})$ -free posets? (Open.)

Theorem. Let P be a $(\mathbf{3} + \mathbf{1})$ -free poset. Then the chain polynomial $f_P(x)$ has only real zeros.

Antiadjacency matrices

Given a labelled poset P, we define its antiadjacency matrix $A = [a_{ij}]$ by

$$a_{ij} = \begin{cases} 0, & \text{if } i <_P j, \\ 1, & \text{otherwise.} \end{cases}$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Theorem. (Stanley) The chain polynomial of a poset P is related to the antiadjacency matrix A by

 $f_P(x) = \det(I + xA).$

Theorem. Let P be a (3+1)-free poset. Then the antiadjacency matrix Acorresponding to any labelling of P has only real eigenvalues. Let J(P) be a distributive lattice with $h_{J(P)} = (h_0, h_1, \dots, h_d).$ Often there are many $(\mathbf{3} + \mathbf{1})$ -free posets Qwhich satisfy $f_Q = h_{J(P)}$.

h_1	number of
	posets Q
1	1
2	1
3	1.33
4	2
5	2.9
6	3.53
7	6
8	8
9	13.43

10	18.51
11	25.97
12	40.36
13	58.53
14	98.53
15	111.97
16	237.72
17	263.30
18	507.75
19	493.10
20	1088.03