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1 Introduction

Differential forms are a certain class of objects that can be integrated. Hence
to understand differential forms it’s helpful to start with the simplest possible
notion of integration: the single variable Riemann integral. Fundamentally,
the single variable integral can solve two different kinds of problems.

Example 1. Let I be an interval of the real line and let f : I → R be a
continuous function. One can then try to determine the area under the graph
of f over the interval I. Notice that this problem depends only on the interval
I as a set of points. Of course, the solution is just the integral of the function
f over the interval I. We can write this as∫

I

f(x) dx

to emphasize that this problem depends only on which points are in I.

Example 2. Consider a particle that travels along the real line with velocity
v(t). Suppose the particle is at the origin at time t = 0. One can then try to
determine the position of the particle at all other times t. Again the solution
is given by an integral: the position of the particle at time t is

p(t) =

∫ t

0

v(s) ds.

Note however that this integral depends both on the interval of points between
0 and t as a set as well as an orientation of this interval.

To compute the value of this integral, we need to know whether t is the left
endpoint of the interval or the right endpoint of the interval!

Of course this is a pretty pedantic distinction in one variable. If J denotes
the interval between 0 and t then∫ t

0

f(s) ds =

{ ∫
J
f(s) ds, if t ≥ 0

−
∫
J
f(s) ds, if t ≤ 0.
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However, in higher dimensions these concepts start to diverge rather dramat-
ically.

Example 3. Consider a continuous function f : R3 → R. What is the average
value of f on the unit sphere S2? Note that this problem depends on S2 only
as a set of points. The branch of math called measure theory was developed
to solve problems like this.

Example 4. Suppose gas particles are circulating in R3. In a given time in-
terval, how much gas flows across the unit sphere S2? Notice that the problem
is not well-posed as stated. Do we want to measure the amount of gas flowing
into the sphere or the amount of gas flowing out of the sphere? Hence the prob-
lem depends on an orientation. Developing a theory of oriented integration
leads to differential forms.

2 Differential 1-forms

2.1 Intuition

We begin with an intuitive discussion.

Definition 5. (Informal) A differential 1-form on Rn is a rule that assigns a
number to each oriented line segment in Rn in a suitable way.

Example 6. Every oriented line segment in R can be represented by a pair of
numbers p and q. The notation ~pq represents the oriented line segment that
originates at p and ends at q. Given a function v : R→ R we can then define
a 1-form v(x) dx by the following formula:[

v(x) dx

]
( ~pq) = v(p)(q − p).

If v represents the velocity of a particle moving in R and ~pq is short, then
the value of v(x) dx on ~pq is very nearly the position of the particle at time q
minus the position of the particle at time p.

Example 7. Consider a vector field F : Rn → Rn. Think of F as a force field:
a particle at position p experiences a force of magnitude and direction F (p).
When a particle moves in the presence of such a force field, the force performs
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a certain amount of work on the particle. The amount of work done by F is
positive if the force F aids the motion, and the amount of work done by F is
negative if the force F resists the motion.

Again an oriented line segment in Rn can be represented by a pair of points
p and q. The notation ~pq again stands for the line segment beginning at p and
terminating at q. We can define a 1-form ωF by

ωF ( ~pq) = F (p) · ( ~pq),

where on the right hand side we are thinking of ~pq as a vector pointing from
p to q. When ~pq is short, the value of ωF on ~pq is very nearly the work done
by F on a particle that moves in a straight line from p to q

Example 8. Consider a smooth function f : Rn → R. We can define a 1-form
df on Rn by

df( ~pq) = ∇f(p) · ( ~pq).

Notice that the right hand side is exactly the directional derivative of f at the
point p in the direction ~pq, i.e.,

df( ~pq) =
d

dt

∣∣∣∣
t=0

f(p+ t(q − p)).

Hence when ~pq is short, the value of df on ~pq is very nearly the difference
f(q)− f(p).

Note that by definition 1-forms only assign values to line segments. How-
ever, in principle, they should also be able to assign values to smooth curves.
For example, given any curve γ connecting p to q the 1-form ωF evaluated on
γ should tell us the work done by F on a particle that moves from p to q along
the path γ. Likewise, the 1-form df evaluated on γ should tell us the change
in the value of a function f as we go from p to q along γ. Integration is the
process by which 1-forms can assign values to curves.

Intuitively, integration of 1-forms works as follows. Consider a 1-form α on
Rn and let γ be a smooth, oriented curve in Rn. We begin by approximating
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γ by a sequence of oriented line segments L1, . . . , Lk.

Then we evaluate α on each of these line segments and add up the resulting
numbers. This gives a quantity

k∑
i=1

α(Li)

associated to the approximation. If this quantity converges as the approxima-
tion gets better and better, the resulting limit should be the integral of α over
γ. Let’s see how this works in each of the previous examples.

Example 9. Consider the 1-form v(x) dx from Example 6. Take two numbers
a < b and let γ be the line segment from a to b. Pick a partition

a = x0 < x1 < . . . < xk = b.

Then the line segments Li = [xi−1, xi] for i = 1, . . . , k form an approximation
to [a, b]. If we evaluate v(x) dx on each of these segments and add everything
up we get the quantity

k∑
i=1

[
v(x) dx

]
(Li) =

k∑
i=1

v(xi−1)(xi − xi−1).

But this is exactly a Riemann sum for the usual integral
∫ b
a
v(x) dx! Hence

taking the limit of the above quantity as the partition gets finer and finer
yields the usual integral of the function v over the interval [a, b].

Example 10. Consider the work 1-form ωF associated to a vector field F as
in Example 7. Consider a smooth curve γ in Rn starting at p and ending at

7



q. Approximate γ by oriented line segments L1, . . . , Lk. Assuming these line
segments are sufficiently short, each number ωF (Li) is very nearly the amount
of work F does on the particle as it moves along the line segment Li. Thus

k∑
i=1

ωF (Li)

is very nearly the amount of work F does on the particle as it moves from p
to q along the piecewise linear path obtained by concatenating the Li. As we
approximate γ by more and more line segments, this quantity should converge
to the amount of work F does on the particle as it moves from p to q along γ.
Hence the integral of ωF over γ should represent the amount of work F does
on a particle moving from p to q along γ.

Example 11. Consider the 1-form df associated to a function f as in Example
8. Consider a smooth curve γ in Rn starting at p and ending at q. Choose
points p = p0, p1, . . . , pk = q along γ and let Li be the line segment from pi−1

to pi. Assuming these line segments Li are sufficiently short, each number
df(Li) is very nearly equal to f(pi)− f(pi−1). Hence we have

k∑
i=1

df(Li) ≈
k∑
i=1

f(pi)− f(pi−1) = f(q)− f(p).

Taking a limit as the approximation gets better and better, we see that the
integral of df over γ should be equal to f(q)− f(p).

2.2 Formal Definitions

Let’s now try to formalize the preceding constructions. First we give another
description of the space of oriented line segments on Rn.

Definition 12. Fix a point p ∈ Rn. The tangent space to Rn at p is the set
TpRn = {(p,~v) : ~v ∈ Rn}.
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We can think of TpRn as a set of vectors based at p. It represents all
the different speeds and directions we can travel starting from p. This tangent
space TpRn is a vector space: we can add and scalar multiply vectors based at p
to get new vectors based at p. Any oriented line segment ~pq can be equivalently
thought of as the vector q − p based at p, i.e., the element (p, q − p) ∈ TpRn.
When the context is clear, we will often abuse notation and simply write
v ∈ TpRn for the vector v thought of as being based at p.

Notation. Often we write αp to indicate the restriction of α to TpRn. We
write αp(v) to mean the value of α on the tangent vector (p, v) ∈ TpRn, i.e.,
the value of α on the oriented line segment from p to p+ v.

Example 13. Define a 1-form α on R2 by

α(~pq) = x1(y2 − y1), for p = (x1, y1), q = (x2, y2).

In the tangent vector notation, ~pq is represented by (p, v) ∈ TpRn where v =
(x2 − x1, y2 − y1). Hence we could equivalently specify α by the formula
α(x,y)(v) = xv2.

To get a formal definition for differential 1-forms, we need to explain what
is meant by “suitable” in the informal Definition 5. To see that some condition
is required on the way 1-forms assign numbers to line segments, recall that we
would like to be able to integrate 1-forms over curves. The following example
shows that this may not be possible for very silly rules assigning numbers to
line segments.
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Example 14. Consider the rule αp(v) = 1 for all p and v in Rn, i.e., α assigns
the number 1 to every single oriented line segment in Rn. Now suppose we
try to integrate α over a curve γ by the procedure described above. We
approximate γ by line segments L1, . . . , Lk. Then we add up the value of α on
each of these segments to get

k∑
i=1

α(Li) = k.

As our approximation to γ gets better and better k goes to infinity, and hence
the above quantity diverges to infinity. Thus it doesn’t make sense to integrate
this rule α.

The problem with the preceding example is that α assigns large numbers
to very short line segments. In order for a 1-form to be integrable, we need
to impose some requirement that forces α to be small on small line segments.
We can do this with the following scaling condition:

αp(t~v) = tαp(~v), for all t ∈ R and p,~v ∈ Rn.

Any α satisfying the above condition will be small on short vectors. There is
also a second requirement we are going to impose on 1-forms:

αp(v + w) = αp(v) + αp(w), for all v, w ∈ Rn.

This additivity condition is somewhat harder to motivate, and we will not
give an extended discussion of it here. (The interested reader can consult
Whitney’s book Geometric Integration Theory for a heroic attempt to explain
why we impose this condition. Essentially if we assume that α undergoes some
amount of cancellation when we integrate it over small loops then this forces
additivity.)

The two conditions above say that αp is a linear functional TpRn → R.
Next we briefly recall some facts about linear functionals.

Definition 15. A linear functional on Rn is a map A : Rn → R such that
A(tv) = tA(v) and A(v + w) = Av + Aw for all v, w ∈ Rn and all t ∈ R.

Any such A can be represented by a row matrix A =
(
A1 A2 · · · An

)
.

The functional A with the above matrix acts on vectors v by the formula

Av =
(
A1 A2 · · · An

)

v1

v2
...
vn

 = A1v1 + A2v2 + . . .+ Anvn.
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Note that if A and B are both linear functionals then so are the functionals
tA and A+B defined by

(tA)(v) = t(Av), and (A+B)(v) = (Av) + (Bv).

In this way, the space of linear functionals itself forms a vector space.

There is a special way of writing linear functionals that is typically used in
differential forms. Define functionals dx1, dx2, . . ., dxn on Rn by

dxi(v) = vi.

That is, dxi takes a vector v and outputs its ith component. Every linear
functional can be written as a linear combination of the dxi. Indeed if A =(
A1 A2 · · · An

)
then we can equivalently write A = A1 dx1 + . . .+ An dxn

because

(A1 dx1 + . . .+ An dxn)(v) = A1 dx1(v) + . . .+ An dxn(v)

= A1v1 + . . .+ Anvn = Av.

Another way to say this is that the functionals dx1, . . . , dxn form a basis for
the space of all linear functionals on Rn.

Example 16. Consider R3 with coordinates x, y, z. Then

dx

1
2
3

 = 1, dy

1
2
3

 = 2, dz

1
2
3

 = 3.

If we think of v as a vector in TpR3 telling us how to get from p to q then
dx(v) tells us the change in the x coordinate moving from p to q. In a similar
fashion, dy(v) tells us the change in the y coordinate when we move from p to
q, and dz(v) tells us the change in the z coordinate.

In light of the above discussion, given a 1-form α, its restriction αp :
TpRn → R is a linear functional. Any linear functional can be written in
terms of the dxi and therefore we know

αp = A1dx1 + . . .+ Andxn

for some constants Ai. Actually, it’s better to write

αp = A1(p)dx1 + . . .+ An(p)dxn
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to emphasize that these constants depend on the point p. The final requirement
we will impose on our 1-forms is that these coefficients Ai(p) depend smoothly
on p.

We now summarize the above discussion with the formal definition of a
differential 1-form.

Definition 17. A differential 1-form α on Rn is a rule assigning a number to
each tangent vector in Rn which can be expressed in the form

α = f1 dx1 + . . .+ fn dxn

for some smooth functions fi : Rn → R.

Example 18. Consider the 1-form α = y dx+ dz on R3. We have

α(1,2,3)((4, 5, 6)T ) = 2dx((4, 5, 6)T ) + dz((4, 5, 6)T ) = (2)(4) + 6 = 14.

Example 19. Consider a force field

F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z))

on R3. Recall that the work form associated to F is the 1-form ωF given by

(ωF )p(v) = F (p) · v = F1(p)v1 + F2(p)v2 + F3(p)v3.

Hence we can write ωF = F1 dx+ F2 dy + F3 dz.

Definition 20. Consider a smooth function f : Rn → R. The differential of f
is the 1-form

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

The value of this 1-form on v ∈ TpRn is (df)p(v) = ∇f(p) · v.

Example 21. Consider the function f(x, y, z) = xyz. The gradient of f is
∇f = (yz, xz, xy) and

df = yz dx+ xz dy + xy dz.

Hence, for example, (df)(4,5,6)((1, 2, 3)T ) = (5)(6)(1) + (4)(6)(2) + (4)(5)(3) =
138.
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Example 22. Define a 2-form αrot by

αrot =
−y

x2 + y2
dx+

x

x2 + y2
dy.

Notice that this is not defined on all of R2 since the coefficients blow up at
0. Nevertheless, αrot is still a 1-form on R2 \ {0}. To understand what αrot

computes, notice that αrot is the work form associated to the vector field

F (x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
.

What does this vector field look like? First observe that(
x

x2 + y2
,

y

x2 + y2

)
is a vector that points in the (x, y) direction with length (x2 + y2)−1/2. Now(

0 −1
1 0

)( x
x2+y2
y

x2+y2

)
=

( −y
x2+y2
x

x2+y2

)
and this matrix represents a 90◦ counterclockwise rotation. Thus F (x, y)
is a vector tangent to the circle of radius (x2 + y2)1/2 with length equal to
(x2 + y2)−1/2. Thus

(αrot)(x,y)(v) = F (x, y) · v

measures the extent to which a displacement v induces counterclockwise rota-
tion about the origin.

For instance, we have (αrot)(0,1)(0, 1) = 0, and (αrot)(0,1)(1, 0) = −1, and
(αrot)(0,1)(−1, 0) = 1.
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The first formula reflects the fact that starting at (0, 1) and moving up does
not induce rotation about the origin. The second formula reflects the fact that
starting at (0, 1) and moving right induces clockwise rotation, and the third
reflects the fact that starting at (0, 1) and moving left induces counterclockwise
rotation. Notice also that the length of F increases as (x, y) gets closer to the
origin.

This reflects the fact that undergoing a displacement v from (x, y) will result
in a greater change in angle when (x, y) is close to the origin.

3 Curves

3.1 Definition of a Curve

Differential 1-forms can be integrated over curves. In order to make this pre-
cise, we first need to decide what we mean by curves.

Definition 23. (Informal) A 1-manifold is a subset of Rn which looks locally
like a line near each of its points. This line is called a tangent line.

Remark 24. Manifolds can be specified in many different ways. For example,
we can describe the unit circle as the set of points (x, y) satisfying the equation
x2 + y2 = 1. However, we can also describe the unit circle as the image of the
parameterization (cos t, sin t), t ∈ [0, 2π].

For the purpose of working with differential forms, its most convenient to
describe curves via parameterizations.
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Definition 25. A parameterized curve is a smooth map γ : [a, b]→ Rn.

Definition 26. We say that γ is regular provided γ′(t) = (γ′1(t), . . . , γ′n(t)) 6= 0
for all t.

Example 27. The map γ : [0, 1] → R2 given by γ(t) = (t, 2t) parameterizes
the line segment from (0, 0) to (1, 2). It has γ′(t) = (1, 2) for all t and so γ is
regular.

Example 28. The map γ : [0, 2π]→ R2 given by γ(t) = (cos t, sin t) parame-
terizes the unit circle. Note that γ′(t) = (− sin t, cos t) is always non-zero. In
fact γ′(t), thought of as an element of Tγ(t)R2, is tangent to the curve γ for
every t.

Example 29. Consider γ : [−2, 2] → R2 given by γ(t) = (t3, t2). Note that
γ is a parameterized curve, but γ is not regular since γ′(0) = (0, 0). In fact,
every point of γ lies on the graph of y = x2/3 and so γ has a cusp at the origin.

3.2 Integrating 1-Forms over Curves

We can now formalize the procedure for integrating a 1-form over a curve.
Recall that intuitively, to integrate a 1-form α over a curve γ, we approximate
γ by line segments L1, . . . , Lk, compute the quantity

k∑
i=1

α(Li),

and then try to take a limit of this quantity as the approximation gets better
and better. Unfortunately, it would be very cumbersome if we had to construct
an ad hoc scheme for approximating a curve every time we wanted to compute
an integral.

Fortunately, there is a nice way to use a parameterization to build an
approximation to a given curve. Suppose we’re given a curve γ : [a, b] → Rn

and a 1-form α on Rn. Take a partition a = t0 < t1 < . . . < tk = b of the
interval [a, b]. Such a partition naturally gives rise to a partition of γ. Now
Taylor’s theorem says that

γ(ti)− γ(ti−1) = γ′(ti−1)(ti − ti−1) + o(|ti − ti−1|).
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Therefore the line segment Li from γ(ti−1) to γ(ti−1) + γ′(ti−1)(ti − ti−1) is a
good approximation to the portion of γ between γ(ti−1) and γ(ti) when ti−ti−1

is small.

We now use these line segments Li as our approximation to γ. Assume that
α = f1 dx1 + . . . + fn dxn. Then evaluating α on each of these line segments
and adding the results gives

k∑
i=1

α(Li) =
k∑
i=1

αγ(ti−1)

(
γ′(ti−1)(ti − ti−1)

)

=
k∑
i=1

n∑
j=1

fj(γ(ti−1))γ′j(ti−1)(ti − ti−1).

But this is exactly a Riemann sum for integral∫ b

a

n∑
j=1

fj(γ(t))γ′j(t) dt!

So the quantity
∑k

i=1 α(Li) converges to the above integral as our approxima-
tion gets better and better. Based on this we make the following definition.

Definition 30. The integral of a 1-form α = f1 dx1 + . . . + fn dxn over a
parameterized curve γ : [a, b]→ Rn is∫

γ

α =

∫ b

a

f1(γ(t))γ′1(t) + . . .+ fn(γ(t))γ′n(t) dt.

Remark 31. Notice that f1(γ(t))γ′1(t) + . . . + fn(γ(t))γ′n(t) = αγ(t)(γ
′(t)).

Hence we could equivalently write∫
γ

α =

∫ b

a

αγ(t)(γ
′(t)) dt.
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Example 32. Let α = x2 dx + dy and let γ(t) = (t, t2) for t ∈ [0, 1]. Then
γ′1(t) = 1 and γ′2(t) = 2t and so∫

γ

α =

∫ 2

0

t2 · 1 + 2t dt =

∫ 1

0

t2 + 2t dt =
4

3
.

Remark 33. Really we would like the integral
∫
γ
α to depend only on the

image of γ and its orientation and not the particular parameterization we
picked. In other words, we’d like the integral to depend on the curve as an
oriented geometric object, and not the particular way it’s traversed.

Of course there may be multiple different parameterizations of the same
curve.

Example 34. Both γ(t) = (cos t, sin t), t ∈ [0, π] and φ(t) = (−t,
√

1− t2),
t ∈ [−1, 1] parameterize the upper half of the unit circle.

The following proposition shows that the integral of a 1-form does not
change if we reparameterize a given curve.

Proposition 35. Assume we have parameterized curves γ : [a, b] → Rn and
φ : [c, d] → Rn. Moreover, assume that γ and φ are reparameterizations of
each other in the sense that there exists a map ψ : [a, b]→ [c, d] such that

(i) ψ is invertible and both ψ and ψ−1 are continuously differentiable,

(ii) γ(t) = φ(ψ(t)) for all t ∈ [a, b],

(iii) ψ′(t) > 0 for all t ∈ [a, b].

Then
∫
γ
α =

∫
φ
α for every 1-form α.

Proof. Fix a 1-form α =
∑n

j=1 fj dxj. Then∫
γ

α =

∫ b

a

n∑
j=1

fj(γ(t))γ′j(t) dt

=

∫ b

a

n∑
j=1

fj(φ(ψ(t)))φ′j(ψ(t))ψ′(t) dt

=

∫ d

c

n∑
j=1

fj(φ(u))φ′j(u) du

(
u = ψ(t), du = ψ′(t) dt

)
=

∫
φ

α.
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Here we’ve used assumption (iii) to guarantee that ψ(a) = c and ψ(b) = d.

Remark 36. Assumption (iii) says that ψ is orientation preserving. If we
instead assume that ψ is orientation reversing in the sense that ψ′(t) < 0 for
t ∈ [a, b] then the same argument shows that

∫
γ
α = −

∫
φ
α.

Example 37. Returning to Example 34 we have γ(t) = φ(ψ(t)) where ψ(t) =
− cos t. So if α = x dx+ y2 dy we get∫

γ

α =

∫ π

0

(cos t)(− sin t) + (sin2 t)(cos t) dt

=

∫ 1

−1

u− u
√

1− u2 du

(
u = − cos t, du = sin t dt

)
=

∫
φ

α,

as promised by Proposition 35.

We can now prove a simple generalization of the fundamental theorem of
calculus.

Proposition 38. Consider a smooth function f : Rn → R. For any curve
γ : [a, b]→ Rn we have ∫

γ

df = f(γ(b))− f(γ(a)).

Proof. Recall that the chain rule says

d

dt
[f(γ(t))] =

n∑
j=1

∂f

∂xj
(γ(t))γ′j(t).

Therefore we have∫
γ

df =

∫
γ

n∑
j=1

∂f

∂xj
dxj

=

∫ b

a

n∑
j=1

∂f

∂xj
(γ(t))γ′j(t) dt

=

∫ b

a

d

dt
[f(γ(t))] dt = f(γ(b))− f(γ(a)),

where we’ve used the ordinary fundamental theorem of calculus in the last
line.
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Remark 39. Of course this makes sense intuitively: df measures how f
changes under small displacements and so integrating df along a curve should
tell us the net change in f induced by traveling along the curve.

4 The Winding Number

4.1 Definition and Basic Properties

Recall that the rotation form αrot on R2 \ {0} is given by

αrot =
−y

x2 + y2
dx+

x

x2 + y2
dy.

Definition 40. Let γ : [a, b] → R2 \ {0} be a closed curve, i.e., γ(a) = γ(b).
Then the winding number of γ about 0 is

w(γ, 0) =
1

2π

∫
γ

αrot.

Intuitively, αrot tells us how much rotation is induced by a small displace-
ment. So integrating αrot over a closed curve γ should tell us the total amount
of rotation induced by following γ. Hence the winding number should com-
pute the total number of times γ winds around the origin in a coutnerclockwise
sense.

Example 41. Let γk(t) = (cos(kt), sin(kt)), t ∈ [0, 2π]. Then γk winds around
the origin k times in a counterclockwise sense. We have∫

γk

αrot =

∫
γk

−y
x2 + y2

dx+
x

x2 + y2
dy

=

∫ 2π

0

[− sin(kt)][−k sin(kt)] + [cos(kt)][k cos(kt)] dt

=

∫ 2π

0

k sin2(kt) + k cos2(kt) dt =

∫ 2π

0

k dt = 2πk,

and therefore w(γk, 0) = k, as expected.

Next we will try to rigorously justify this intuition for the winding number.
This will require a fair bit of effort. We begin with a definition.
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Definition 42. Let γ : [a, b]→ R2 \{0} be a curve. An angle function for γ is
a continuous function θ : [a, b] → R such that γ(t) = ‖γ(t)‖(cos θ(t), sin θ(t))
for all t ∈ [a, b].

Example 43. Let γ(t) = (cos t, sin t), t ∈ [0, 4π]. Then θ(t) = t is an angle
function for γ. Actually θ(t) = t+ 2πk is also an angle function for any fixed
integer k. Note that the function

θ̃(t) =

{
t, if 0 ≤ t < 2π

t− 2π, if 2π ≤ t ≤ 4π

also has the property that γ(t) = ‖γ(t)‖(cos θ̃(t), sin θ̃(t)) for all t ∈ [0, 4π].
However, θ̃ is not an angle function for γ since θ̃ is not continuous. Hence it is
important that an angle function is allowed to take values in R and not just
[0, 2π].

Lemma 44. Let γ : [a, b] → R2 be a closed curve. Assume θ and θ̃ are both
angle functions for γ. Then there is an integer k such that θ(t) = θ̃(t) + 2πk
for all t ∈ [a, b].

Proof. Consider the function

f(t) =
θ(t)− θ̃(t)

2π
.

Note that f is continuous and that f(t) is an integer for all t ∈ [a, b]. Therefore
f must be constant. Thus there is an integer k such that f(t) = k for all
t ∈ [a, b], i.e., such that θ(t) = θ̃(t) + 2πk for all t ∈ [a, b].

Notice that if γ : [a, b] → R2 \ {0} is a closed curve, and θ is an angle
function for γ then the number of times γ winds about the origin is

θ(b)− θ(a)

2π
.

By Lemma 44, this quantity does not depend on the choice of angle function.
It remains to show that every curve actually has an angle function. We can
prove this by integrating the rotation form.

20



Lemma 45. Let γ : [a, b]→ R2 \ {0} be any curve. Choose θ0 so that γ(a) =
‖γ(a)‖(cos θ0, sin θ0). Then

θ(t) = θ0 +

∫
γ|[a,t]

αrot

is an angle function for γ. Here γ|[a,t] is the restriction of γ to the interval
[a, t].

Proof. We need to check that

γ(t)

‖γ(t)‖
= (cos θ(t), sin θ(t))

for all t. It’s equivalent to check that(
γ1

‖γ‖
− cos θ

)2

+

(
γ2

‖γ‖
− sin θ

)2

= 0.

Expanding the left hand side we find(
γ1

‖γ‖
− cos θ

)2

+

(
γ2

‖γ‖
− sin θ

)2

=
γ2

1

‖γ‖2
− 2

γ1

‖γ‖
cos θ + cos2 θ +

γ2
2

‖γ‖2
− 2

γ2

‖γ‖
sin θ + sin2 θ

= 2− 2

(
γ1

‖γ‖
cos θ +

γ2

‖γ‖
sin θ

)
.

Hence it’s enough to check that

f(t) =

(
γ1

‖γ‖
cos θ +

γ2

‖γ‖
sin θ

)
(t) = 1

for all t ∈ [a, b]. By choice of θ0, we have f(a) = 1. Therefore, we’re reduced
to showing that f ′(t) = 0 for all t ∈ [a, b].

Now let’s compute some derivatives. We have

θ′(t) =
d

dt

∫ t

a

(
−γ2γ

′
1

‖γ‖2
+
γ1γ

′
2

‖γ‖2

)
(s) ds =

(
−γ2γ

′
1

‖γ‖2
+
γ1γ

′
2

‖γ‖2

)
(t).
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Also by the quotient rule we have

(
γ1

‖γ‖

)′
=

d

dt

(
γ1

(γ2
1 + γ2

2)1/2

)
=
‖γ‖γ′1 − γ1

(
2γ1γ′1+2γ2γ′2

2‖γ‖

)
‖γ‖2

=
γ′1(γ2

1 + γ2
2)− γ2

1γ
′
1 − γ1γ2γ

′
2

‖γ‖3
=
γ′1γ

2
2 − γ1γ2γ

′
2

‖γ‖3
.

By a similar computation,(
γ2

‖γ‖

)′
=
γ′2γ

2
1 − γ1γ2γ

′
1

‖γ‖3
.

Hence we get

f ′(t) =

[
γ′1γ

2
2 − γ1γ2γ

′
2

‖γ‖3

]
cos θ − γ1

‖γ‖

[
−γ2γ

′
1

‖γ‖2
+
γ1γ

′
2

‖γ‖2

]
sin θ

+
γ2

‖γ‖

[
−γ2γ

′
1

‖γ‖2
+
γ1γ

′
2

‖γ‖2

]
cos θ +

[
γ′2γ

2
1 − γ1γ2γ

′
1

‖γ‖3

]
sin θ.

But this is zero, as needed, since the coefficients of cos θ cancel to 0 and likewise
the coefficients of sin θ cancel to 0.

We can now prove the main theorem about the winding number.

Theorem 46. Let γ : [a, b] → R2 \ {0} be a closed curve. Then the winding
number w(γ, 0) is an integer.

Proof. From the lemma we know that

θ(t) = θ0 +

∫
γ|[a,t]

αrot

is an angle function for γ. Now θ(b) = θ(a) + 2πk for some integer k since γ
is closed. Hence∫

γ

αrot =

∫
γ|[a,b]

αrot −
∫
γ|[a,a]

αrot

= (θ(b)− θ0)− (θ(a)− θ0) = θ(b)− θ(a) = 2πk,

and it follows that w(γ, 0) = k is an integer.
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4.2 Homotopy Invariance

Next we’d like to discuss how winding number changes when we deform curves.

Definition 47. Fix a subset U ⊂ R2. Assume γ, η : [a, b] → U are closed
curves. A homotopy in U between γ and η is a smooth map h : [0, 1]×[a, b]→ U
such that

(i) h(0, t) = γ(t) for all t ∈ [a, b],

(ii) h(1, t) = η(t) for all t ∈ [a, b],

(iii) h(s, a) = h(s, b) for all s ∈ [0, 1].

If such a homotopy h exists, we say that γ and η are homotopic in U .

Example 48. Let γ(t) = (cos t, sin t) and let η(t) = (2 cos t, 2 sin t) for t ∈
[0, 2π]. Then h(s, t) = ((1 + s) cos t, (1 + s) sin t) is a homotopy in R2 between
γ and η.

One can think of a homotopy as a smooth deformation interpolating be-
tween γ and η. When considering questions about homotopy, it is essential
to keep the set U in mind. For example, the notion of homotopy is not very
interesting when U = R2, as the following theorem shows.

Theorem 49. Every pair of closed curves γ, η : [a, b] → R2 are homotopic in
R2.

Proof. The idea of the proof is that we can deform γ to η along straight lines
connecting γ(t) to η(t). More formally, define h : [0, 1]× [a, b]→ R2 by

h(s, t) = (1− s)γ(t) + sη(t).

It is easy to see that h satisfies all the requirements for a homotopy.

Homotopy is more interesting when we take U = R2 \ {0}. Indeed, in
R2 \ {0} the previous straight line homotopy may no longer work if one of the
lines passes through the origin. In fact, there are closed curves in R2 \{0} that
are not homotopic.
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Theorem 50. Assume the closed curves γ, η : [a, b]→ R2 \ {0} are homotopic
in R2 \ {0}. Then w(γ, 0) = w(η, 0).

Proof. By assumption there exists a homotopy h : [0, 1] × [a, b] → R2 \ {0}
between γ and η. Define a function f : [0, 1]→ R by

f(s) =
1

2π

∫ b

a

−∂th2(s, t)h1(s, t)

‖h(s, t)‖2
+
h2(s, t)∂th1(s, t)

‖h(s, t)‖2
dt. (1)

Then f(s) = w(hs, 0) where hs : [a, b] → R2 \ {0} is the closed curve hs(t) =
h(s, t). In particular, f(s) is an integer for all s ∈ [0, 1]. On the other hand,
formula (1) implies that f is a continuous function of s. Therefore f must be
constant, and so w(γ, 0) = f(0) = f(1) = w(η, 0).

5 Determinants

Next we’re going to move on to discussing n-forms on Rn. These are the easiest
forms to understand after 1-forms. Before we can define n-forms, however, we
need to discuss determinants.

5.1 Definition and Basic Properties

The determinant is a function from n × n matrices to real numbers. Equiva-
lently, it takes in n vectors in Rn and spits out a number.

det

a11 a12 · · · a1n
...

...
...

an1 an2 · · · ann

↔ det(v1, . . . , vn), where vi =


a1i

a2i
...
ani

 .

You may have seen various definitions of the determinant in the past. For
instance,

det

(
a b
c d

)
= ad− bc

det

a b c
d e f
g h i

 = a

[
det

(
e f
h i

)]
− b
[
det

(
d f
g i

)]
+ c

[
det

(
d e
g h

)]
.
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These computational rules certainly have their place, but for us the following
axiomatic definition is also useful.

Definition 51. An n-dimensional determinant is a function

D : Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R

which satisfies the following properties.

(i) D(v1, . . . , tvi, . . . , vn) = tD(v1, . . . , vi, . . . , vn)

(ii) D(v1, . . . , vj, . . . , vi, . . . , vn) = −D(v1, . . . , vi, . . . , vj, . . . , vn)

(iii) D(v1, . . . , vi + tvj, . . . , vn) = D(v1, . . . , vi, . . . , vn)

(iv) D(e1, . . . , en) = 1.

When faced with such an axiomatic definition it is natural to ask whether
a function satisfying the axioms actually exists. Moreover, if such a function
does exist, must it be unique? We will now address these questions. We begin
with the issue of uniqueness.

Proposition 52. There is at most one n-dimensional determinant function.

Proof. Suppose D1 and D2 both satisfy all the properties of an n-dimensional
determinant function. Consider n vectors v1, . . . , vn in Rn. There are two cases
to consider.

First suppose that v1, . . . , vn are linearly dependent. For simplicity, we can
assume that

v1 = a2v2 + . . .+ anvn

for some constants a2, . . . , an ∈ R. Then repeatedly applying property (iii)
shows that

D1(v1, . . . , vn) = D1(
n∑
j=2

ajvj, v2, . . . , vn) = D1(
n∑
j=3

ajvj, v2, . . . , vn)

= D1(
n∑
j=4

ajvj, v2, . . . , vn) = · · · = D1(0, v2, . . . , vn).
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Now by properties (i) and (ii),

D1(0, v2, . . . , vn) = D1(−0, v2, . . . , vn) = −D1(0, v2, . . . , vn)

and therefore D1(0, v2, . . . , vn) = 0. Thus D1(v1, . . . , vn) = 0. By the exact
same argument we must have D2(v1, . . . , vn) = 0 and hence D1(v1, . . . , vn) =
D2(v1, . . . , vn).

Now suppose instead that v1, . . . , vn are linearly independent. Consider the
n × n matrix A whose ith column is vi. Then A is invertible. Recall that an
elementary matrix E is an n × n matrix such that right multiplying another
matrix n× n matrix B by E has one of the following effects:

(i) it scales a column of B by t, or

(ii) it interchanges two columns of B, or

(iii) it adds a multiple of one column of B to another column of B.

Since A is invertible, there exists a sequence of elementary matrices E1, . . . , Em
such that AE1E2 · · ·Em = I.

Now observe that properties (i)-(iii) of a determinant function exactly tell
us how the value of D1 changes when we right multiply by an elementary
matrix. Therefore, there are non-zero numbers ai, uniquely determined by Ei,
such that

1 = D1(I) = D1(AE1 · · ·Em−1Em)

= D1(AE1 · · ·Em−1)am = · · · = D1(A)a1 · · · am.

Since right multiplying by elementary matrices has exactly the same effect on
D2, we likewise get

1 = D2(I) = D2(AE1 · · ·Em−1Em)

= D2(AE1 · · ·Em−1)am = · · · = D2(A)a1 · · · am,

and therefore D1(A) = D2(A), as needed.

Example 53. As a concrete example of the ideas in the previous proof, we
show how to compute

det

1 2 2
2 3 4
3 4 5


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by using column operations. First, using the fact that determinant is un-
changed by adding a multiple of one column to another we get

det

1 2 2
2 3 4
3 4 5

 = det

1 1 2
2 1 4
3 1 5

 = det

1 1 0
2 1 0
3 1 −1

 = det

0 1 0
1 1 0
2 1 −1


= det

0 1 0
1 1 0
0 1 −1

 = det

0 1 0
1 0 0
0 1 −1

 = det

0 1 0
1 0 0
0 0 −1

 .

Next using the fact that determinant changes sign when we interchange columns
we get

det

0 1 0
1 0 0
0 0 −1

 = − det

1 0 0
0 1 0
0 0 −1

 .

Then using the scaling property we get

− det

1 0 0
0 1 0
0 0 −1

 = det

1 0 0
0 1 0
0 0 1

 .

But the determinant of the identity matrix is 1, and therefore

det

1 2 2
2 3 4
3 4 5

 = 1.

In the same way, we could compute the determinant of any other matrix by
column reducing it to the identity.

Next we need to show that a determinant function actually exists. We can
do this by writing down an explicit formula. In fact,

det(A) =
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n.

To make sense of this, we need to explain what all the symbols in the formula
mean. Here Sn stands for all permutations of the numbers 1, . . . , n. In other
words, Sn consists of all ordered lists where each number 1, . . . , n appears
exactly once.
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Example 54. The two elements of S2 are (1, 2) and (2, 1). The six elements
of S3 are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). In general,
Sn has n! elements.

Notation. We write σ = (σ(1), . . . , σ(n)) for a permutation in Sn. For exam-
ple, if σ = (1, 3, 2) then σ(1) = 1, σ(2) = 3, and σ(3) = 2.

Definition 55. It is possible to obtain any permutation σ ∈ Sn by starting
with (1, 2, . . . , n) and then repeatedly swapping pairs of numbers. We say σ
is even if it takes an even number of swaps to get from (1, 2, . . . , n) to σ, and
σ is odd if it takes an odd number of swaps to get from (1, 2, . . . , n) to σ.

Example 56. The permutation (1, 2, 4, 3) is odd since we can obtain it from
the identity via one swap:

(1, 2, 3, 4)→ (1, 2, 4, 3).

The permutation (3, 2, 4, 1) is even since we can obtain it from the identity via
two swaps:

(1, 2, 3, 4)→ (1, 2, 4, 3)→ (3, 2, 4, 1).

Of course, there are many different ways to get from the identity to σ by
performing swaps. For example, we can also get to (1, 2, 4, 3) by the following
sequence of five swaps:

(1, 2, 3, 4)→ (2, 1, 3, 4)→ (4, 1, 3, 2)→ (4, 1, 2, 3)→ (4, 2, 1, 3)→ (1, 2, 4, 3).

It’s a theorem (that we won’t prove) that for every σ ∈ Sn, it’s impossible to
get from the identity to σ by an even number of swaps and to also get from
the identity to σ by an odd number of swaps. Thus the notion of σ being even
or odd is well-defined.

Definition 57. For σ ∈ Sn the sign of σ is

sign(σ) =

{
+1, if σ is even

−1, if σ is odd.

We’ve now defined all the symbols appearing in the formula

det(A) =
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n.

For concreteness, we now expand the formula for n = 2 and n = 3.
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Example 58. Assume that n = 2 and let

A =

(
a11 a12

a21 a22

)
.

There are exactly two permutations σ = (1, 2) and τ = (2, 1) in S2. Hence the
formula for det(A) becomes

det(A) = sign(σ)aσ(1),1aσ(2),2 + sign(τ)aτ(1),1aτ(2),2

= a11a22 − a21a12,

which is the familiar rule for the determinant of a 2× 2 matrix.

Example 59. Assume that n = 3 and let

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

There are six permutations σ1 = (1, 2, 3), σ2 = (1, 3, 2), σ3 = (2, 1, 3), σ4 =
(2, 3, 1), σ5 = (3, 1, 2), and σ6 = (3, 2, 1) in S3. Writing out the formula for
det(A) yields

det(A) = sign(σ1)a11a22a33 + sign(σ2)a11a32a23 + sign(σ3)a21a12a33

+ sign(σ4)a21a32a13 + sign(σ5)a31a12a23 + sign(σ6)a31a22a13

= a11a22a33 − a11a32a23 − a21a12a33

+ a21a32a13 + a31a12a23 − a31a22a13.

A convenient way to remember this is to form an augmented matrix by copying
the first two rows of A.

The three terms appearing with a plus sign are the products of the diagonals
running down and to the right, and the three terms appearing with a minus
sign are the products of the diagonals running up and to the right.
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Theorem 60. The function

det(A) =
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n

satisfies all the properties of a determinant function.

Proof. We will check each of the four properties.

(i) Let B be the matrix obtained from A by scaling the ith column by t.
Then for each σ ∈ Sn we have

bσ(j),j =

{
aσ(j),j if j 6= i,

taσ(j),j if j = i.

Therefore

det(B) =
∑
σ∈Sn

sign(σ)bσ(1),1 · · · bσ(n),n

=
∑
σ∈Sn

sign(σ)taσ(1),1 · · · aσ(n),n

= t det(A),

as needed.

(ii) Let B be the matrix obtained from A by swapping the ith and jth
columns. Also for each σ ∈ Sn, let σ̃ be the permutation obtained by swapping
the ith and jth entries in σ. Notice that σ̃ and σ have opposite signs and that
bσ(i),i = aσ̃(i),i. Therefore

det(B) =
∑
σ∈Sn

sign(σ)bσ(1),1 · · · bσ(n),n

=
∑
σ∈Sn

sign(σ)aσ̃(1),1 · · · aσ̃(n),n

=
∑
σ̃∈Sn

−sign(σ̃)aσ̃(1),1 · · · aσ̃(n),n

= − det(A),

as needed.
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(iii) Let B be the matrix obtained from A by adding t times the jth column
to the ith column. Let C be the matrix obtained from A by replacing the ith
column with a copy of the jth column. Then we have

det(B) =
∑
σ∈Sn

sign(σ)bσ(1),1 · · · bσ(n),n

=
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n + t
∑
σ∈Sn

sign(σ)cσ(1),1 · · · cσ(n),n

= det(A) + t det(C).

In this calculation, we’ve used the fact that bσ(i),i = aσ(i),i + cσ(i),i and that
bσ(k),k = aσ(k),k = cσ(k),k for k 6= i. Finally note that C has two identical
columns and so det(C) = 0 by property (ii). Thus det(B) = det(A), as
needed.

(iv) LetA be the n×n identity matrix. Notice that the product aσ(1),1 · · · aσ(n),n

will be zero unless σ(i) = i for every i. Thus

det(A) =
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n

= sign((1, 2, . . . , n))a11 · · · ann = 1,

as needed.

5.2 Relationship with Volume

We have now shown that there exists a unique determinant function satisfying
properties (i)-(iv). Of course the question still remains as to why a function
satisfying these properties is interesting. To answer this, let’s look at another
function that also satisfies these properties. For simplicity, we’ll just describe
the situation in R2.

Definition 61. Given v, w ∈ R2, the parallelogram P (v, w) spanned by v and
w is the set of all points of the form sv + tw with 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1.

Note that we can give an orientation to P (v, w) in the following way. Travel
along the boundary of P (v, w) starting in the v direction. Then we say P (v, w)
is positively oriented if we traverse the boundary counterclockwise and we say
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P (v, w) is negatively oriented if we traverse the boundary clockwise. For ex-
ample, the following parallelogram P (v, w) is positively oriented.

On the other hand, interchanging the order of v and w yields a negatively
oriented parallelogram P (w, v).

Definition 62. The oriented area function A : R2 × R2 → R is

A(v, w) =

{
Area(P (v, w)) if P (v, w) is positively oriented

−Area(P (v, w)) if P (v, w) is negatively oriented.

Proposition 63. The oriented area function A satisfies all the axioms of a
determinant function. Therefore A(v, w) = det(v, w).

Proof. We need to check that A satisfies properties (i)-(iv).

(i) Note that P (tv, w) is obtained from P (v, w) by scaling one side by a
factor of t.

If we think of P (v, w) as composed of two triangles, this scales the base of the
triangles by a factor of t and leaves the height unchanged. Consequently it
scales the area by a factor of t as well: A(P (tv, w)) = tA(P (v, w)).
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(ii) Note that P (v, w) and P (w, v) have opposite orientations, and hence
A(v, w) = −A(w, v).

(iii) Note that P (v, w + tv) is obtained from P (v, w) by shearing.

Since shearing doesn’t change area, we get that A(v, w + tv) = A(v, w).

(iv) Note that P (e1, e2) is a positively oriented unit square. Hence it has
oriented area 1, and so A(e1, e2) = 1.

Remark 64. The same thing is true in higher dimensions for the same rea-
sons. The determinant det(v1, . . . , vn) computes the oriented volume of the
n-dimensional parallelepiped spanned by v1, . . . , vn.

We close this section by recording one more useful fact about determinants.
The determinant is actually additive in each of its arguments.

Proposition 65. The determinant satisfies

det(v1, . . . , vi + ṽi, . . . , vn) = det(v1, . . . , vi, . . . , vn) + det(v1, . . . , ṽi, . . . , vn)

Proof. Let A be the matrix with columns v1, . . . , vi, . . . , vn. Let B be the
matrix with columns v1, . . . , ṽi, . . . , vn. Let C be the matrix with columns
v1, . . . , vi + ṽi, . . . , vn. Then

det(C) =
∑
σ∈Sn

sign(σ)cσ(1),1 · · · cσ(n),n

=
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n +
∑
σ∈Sn

sign(σ)bσ(1),1 · · · bσ(n),n

= det(A) + det(B),

as needed. In the above calculation, we’ve used the fact that cσ(i),i = aσ(i),i +
bσ(i),i and that cσ(j),j = aσ(j),j = bσ(j),j for j 6= i.
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6 Top Dimensional Forms

6.1 Definition of Top Dimensional Forms

We are now ready to define n-forms on Rn.

Definition 66. (Informal) An n-form ω on Rn is a rule that assigns a number
to each oriented n-dimensional parallelepiped in Rn in a suitable fashion.

As before, we will place some requirements on ω. Namely, on each individ-
ual tangent space TpRn we require

(i) ωp(v1, . . . , tvi, . . . , vn) = tωp(v1, . . . , vi, . . . , vn)

(ii) ωp(v1, . . . , vi + ṽi, . . . , vn) = ωp(v1, . . . , vi, . . . , vn) + ωp(v1, . . . , ṽi, . . . , vn)

(iii) ωp(v1, . . . , vi, . . . , vj, . . . , vn) = −ωp(v1, . . . , vj, . . . , vi, . . . , vn).

The scaling property (i) and additivity property (ii) are similar to the require-
ments we placed on 1-forms. The new alternating property (iii) essentially
says that ω respects orientation.

But now notice that

ωp(v1, . . . , vi + tvj, . . . , vj, . . . , vn)

= ωp(v1, . . . , vi, . . . , vj, . . . , vn) + tωp(v1, . . . , vj, . . . , vj, . . . , vn)

= ωp(v1, . . . , vi, . . . , vj, . . . , vn),

where the second term on the second line is zero by the alternation prop-
erty. Therefore ωp satisfies all the properties of the determinant except the
normalization condition: ωp(e1, . . . , en) may not equal 1. However,

ωp
ωp(e1, . . . , en)

does satisfy all properties of the determinant. It follows that there is some
constant a such that ωp(v1, . . . , vn) = a det(v1, . . . , vn).

We’ve now shown that on each tangent space TpRn, the form ω acts by
some multiple a(p) of determinant. As in the case of 1-forms, we will require
this function a(p) to depend smoothly on p. This leads to the following formal
definition of an n-form.
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Definition 67. A differential n-form on Rn is a rule assigning a number to
each oriented n-dimensional parallelepiped in Rn which can be expressed in
the form

ωp(v1, . . . , vn) = f(p) det(v1, . . . , vn)

for some smooth function f : Rn → R.

Notation. Let f : Rn → R be a smooth function. We write ω = f dx1 . . . dxn
for the n-form ω that acts by ωp(v1, . . . , vn) = f(p) det(v1, . . . , vn). In other
words, we write dx1 . . . dxn instead of det.

Example 68. Consider the 3-form ω = xyz2 dx dy dz on R3. Then

ω(3,1,2)(e1, e2, e3) = (3)(1)(2)2 det(e1, e2, e3) = 12.

6.2 Integrating Top Dimensional Forms

Now let’s talk about integration. We integrate n-forms over n-dimensional
subsets of Rn. As in the 1-dimensional case, we will work with parameterized
n-dimensional subsets of Rn.

Definition 69. An n-cell in Rn is a smooth map c : [a1, b1]×. . .×[an, bn]→ Rn.

Remark 70. An n-cell can be singular. For example, it could just collapse
everything to a point. Like with curves, if we want to rule out singularities we
can impose some extra condition on the derivative. An n-cell c is called regular
if the Jacobian matrix (Dc)(p) is invertible at all points p in the domain of c.

Example 71. The map c : [0, 1]2 → R2 given by c(x, y) = (x, y) parameterizes
the unit square in the obvious way.

Example 72. The map c : [0, 1]×[0, 2π]→ R2 given by c(r, θ) = (r cos θ, r sin θ)
parameterizes the unit disk in polar coordinates. Note that c is not regular.

Example 73. The map c : [0, 1]× [0, 2π]× [−1, 1]→ R3 given by

c(r, θ, h) = (r cos θ, r sin θ, h)

parameterizes a solid cylinder using cylindrical coordinates.

Example 74. The map c : [0, 1]× [0, 2π]× [0, π]→ R3 given by

c(r, θ, φ) = (r cos θ sinφ, r sin θ sinφ, cosφ)

parameterizes the unit ball in R3 using spherical coordinates.
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The intuition for integrating n-forms is very similar to the intuition for
integrating 1-forms. For simplicity, we describe the picture in the case n = 2.
Consider a map c : [0, 1]2 → R2. Choose partitions 0 = s0 < s1 < . . . < s` = 1
and 0 = t0 < t1 < . . . < tm = 1. These give a decomposition of [0, 1]2 into
small squares Sij = [si−1, si]× [tj−1, tj]. The images c(Sij) cut up the image of
c into small pieces.

Notice that by Taylor’s theorem

c(si, tj−1)− c(si−1, tj−1) =

[
∂c

∂s
(si−1, tj−1)

]
(si − si−1) + o(|si − si−1|),

c(si−1, tj)− c(si−1, tj−1) =

[
∂c

∂t
(si−1, tj−1)

]
(tj − tj−1) + o(|tj − tj−1|).

Therefore, when si − si−1 and tj − tj−1 are small, the set c(Sij) is very
nearly a parallelogram Pij based at c(si−1, tj−1) with sides ∂c

∂s
(si−1, tj−1) and

∂c
∂t

(si−1, tj−1).

The collection of parallelograms Pij, 1 ≤ i ≤ `, 1 ≤ j ≤ m forms an
approximation to the image of c. Now consider an n-form ω = f dx dy. To
integrate ω over c, we add up the value of ω over all the parallelograms Pij to

get a quantity
∑`

i=1

∑m
j=1 ω(Pij). Then we try to take a limit of this quantity

as the approximation gets better and better. Now we have∑̀
i=1

m∑
j=1

ω(Pij)

=
∑̀
i=1

m∑
j=1

(si − si−1)(tj − tj−1)ωc(si−1,tj−1)

(
∂c

∂s
(si−1, tj−1),

∂c

∂t
(si−1, tj−1)

)

=
∑̀
i=1

m∑
j=1

(si − si−1)(tj − tj−1)f(c(si−1, tj−1))

∣∣∣∣∣∣
∂c1
∂s

(si−1, tj−1) ∂c1
∂t

(si−1, tj−1)

∂c2
∂s

(si−1, tj−1) ∂c2
∂t

(si−1, tj−1)

∣∣∣∣∣∣ .
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But this is exactly a Riemann sum for the integral∫ 1

0

∫ 1

0

f(c(s, t)) det(Dc(s, t)) ds dt.

Hence the quantity
∑`

i=1

∑m
j=1 ω(Pij) converges to this integral as the ap-

proximation gets better and better. Based on this, we make the following
definition.

Definition 75. The integral of an n-form ω = f dx1 . . . dxn over an n-cell
c : [a1, b1]× . . .× [an, bn]→ Rn is∫

c

ω =

∫ b1

a1

· · ·
∫ bn

an

f(c(t1, . . . , tn)) det(Dc(t1, . . . , tn)) dt1 . . . dtn.

Remark 76. Notice that

f(c(t1, . . . , tn)) det(Dc(t1, . . . , tn)) = ωc(t1,...,tn)

(
∂c

∂t1
, . . . ,

∂c

∂tn

)
.

Hence we could equivalently write∫
c

ω =

∫ b1

a

· · ·
∫ bn

an

ωc(t1,...,tn)

(
∂c

∂t1
, . . . ,

∂c

∂tn

)
dt1 . . . dtn.

Example 77. Let ω = x2y dx dy and let c : [0, 1]2 → R2 be given by c(s, t) =
(s, t). Then

Dc =

(
1 0
0 1

)
and so det(Dc) = 1. Thus∫

c

ω =

∫ 1

0

∫ 1

0

s2t ds dt =
1

3

∫ 1

0

t dt =
1

6
.

Note that this is just the usual integral of the function f(x, y) = x2y over the
unit square.

Example 78. Let ω = (x2 + y2) dx dy and let c : [0, 1]× [0, 2π]→ R2 be given
by c(r, θ) = (r cos θ, r sin θ). Then

Dc =

(
cos θ −r sin θ
sin θ r cos θ

)
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and so det(Dc) = r. It follows that∫
c

ω =

∫ 1

0

∫ 2π

0

r2 · r dr dθ =
π

2
.

Again, this is just the usual integral of the function f(x, y) = x2 + y2 over the
unit circle, computed in polar coordinates.

As with 1-forms, we can show that the integral of an n-form does not
change if we reparameterize an n-cell. To give the proof, we need to recall
the chain rule from multivariable calculus, as well as the change of variables
formula for multiple integrals.

Theorem 79 (Chain Rule). Assume that f : Rn → Rm and g : Rm → R` are
smooth maps. Then

D(g ◦ f)(p) =

[
(Dg)(f(p))

][
Df(p)

]
.

Here the right hand side is a product of two matrices.

Theorem 80 (Change of Variables). Assume U and V are subsets of Rn and
ψ : U → V is invertible and both ψ and ψ−1 are continuously differentiable.
Then ∫

V

f(y) dy =

∫
U

f(ψ(x))| det(Dψ(x))| dx.

We also need the following lemma about determinants.

Lemma 81. For any matrices A and B we have det(AB) = det(A) det(B).

Proof. We can assume A and B are both invertible because otherwise both
det(AB) and det(A) det(B) are 0. Choose elementary matrices E1, . . . , Em
such that AE1 · · ·Em = I. Likewise choose elementary matrices F1, . . . , F`
such that BF1 · · ·F` = I. Then

1 = det(I) = det(AE1 · · ·Em) = det(A)a1 · · · am

where ai is uniquely determined by Ei. Likewise,

1 = det(I) = det(BF1 · · ·F`) = det(B)b1 · · · b`
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where bi is uniquely determined by Fi. But ABF1 · · ·F`E1 · · ·Em = I and so

1 = det(I) = det(ABF1 · · ·F`E1 · · ·Em) = det(AB)b1 · · · b`a1 · · · am.

Therefore

det(AB) =
1

a1 · · · amb1 · · · b`
= det(A) det(B),

as needed.

We can now prove invariance under reparameterizations.

Proposition 82. Suppose c : [a1, b1] × . . . × [an, bn] → Rn and c̃ : [ã1, b̃1] ×
. . . × [ãn, b̃n] → Rn are reparameterizations of each other in the following
sense: there exists a map

ψ : [a1, b1]× . . .× [an, bn]→ [ã1, b̃1]× . . .× [ãn, b̃n]

such that

(i) ψ is invertible and both ψ and ψ−1 are continuously differentiable,

(ii) c(p) = c̃(ψ(p)) for all p,

(iii) det(Dψ) > 0 at all points p.

Then for any n-form ω we have
∫
c
ω =

∫
c̃
ω.

Proof. We have∫
c

ω =

∫
[a1,b1]×...×[an,bn]

f(c(p)) det(Dc(p)) dp

=

∫
[a1,b1]×...×[an,bn]

f(c̃(ψ(p))) det(D(c̃ ◦ ψ)(p)) dp

=

∫
[a1,b1]×...×[an,bn]

f(c̃(ψ(p))) det(Dc̃(ψ(p))) det(Dψ(p)) dp

=

∫
[ã1,b̃1]×...×[ãn,b̃n]

f(c̃(q)) det(Dc̃(q)) dq

=

∫
c̃

ω.

Here we used the chain rule and Lemma 81 to get from the second to the third
line, and we made the change of variables q = ψ(p) to get from the third line
to the fourth line.
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7 Differential k-forms

7.1 Definition of k-forms

We are now ready to handle the general case of differential k-forms on Rn.

Definition 83. (Informal) A k-form α on Rn is a rule that assigns a number
to each oriented k-dimensional parallelepiped in Rn in a suitable way.

As before, we can specify an oriented k-dimensional parallelepiped based
at p by giving a list of vectors v1, . . . , vk in TpRn. We write αp(v1, . . . , vk) for
the value of α on this parallelepiped. Again we shall require αp to satisfy the
scaling, additivity, and alternation requirements:

(i) αp(v1, . . . , tvi, . . . , vk) = tαp(v1, . . . , vi, . . . , vk)

(ii) αp(v1, . . . , vi + ṽi, . . . , vk) = αp(v1, . . . , vi, . . . , vk) + αp(v1, . . . , ṽi, . . . , vk)

(iii) αp(v1, . . . , vi, . . . , vj, . . . , vk) = −αp(v1, . . . , vj, . . . , vi, . . . , vk).

Also we require αp to depend smoothly on p.

Example 84. Define a 2-form dx dy on R3 by setting

(dx dy)p(v, w) = det

(
v1 w1

v2 w2

)
.

Thus (dx dy)p(v, w) tells us the oriented area of the parallelogram obtained by
projecting v and w to the xy-plane. This inherits properties (i)-(iii) from the
fact that determinant satisfies these properties.

Likewise we can define 2-forms dx dz and dy dz by

(dx dz)p(v, w) = det

(
v1 w1

v3 w3

)
,

(dy dz)p(v, w) = det

(
v2 w2

v3 w3

)
.

These compute the oriented area of the parallelogram obtained by projecting
v and w to the xz-plane and the yz-plane respectively.
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Example 85. Let F : R3 → R3 be a vector field. Think of F as the describing
the velocity of a fluid at each point in space. For example, the fluid could
be air and then F would say which way the wind is blowing at each point of
space.

Now fix some parallelogram. In a small instant of time, some amount of
fluid flows through this parallelogram. The amount of fluid flowing through is
proportional to (F · ~n) Area(P ) where ~n is the normal vector to the parallelo-
gram (oriented according to the right hand rule). Notice that (F (p)·~n) Area(P )
is also equal to the oriented volume of the parallelepiped spanned by v, w, and
F (p). We call this quantity the flux of F through P .

The flux form ωF associated to F is the 2-form

(ωF )p(v, w) = det(v, w, F (p)) = det

v1 w1 F1(p)
v2 w2 F2(p)
v3 w3 F3(p)


= F1(p) det

(
v2 w2

v3 w3

)
− F2(p) det

(
v1 w1

v3 w3

)
+ F3(p) det

(
v1 w1

v2 w2

)
.

Again this satisfies the scaling, additivity, and alternation properties because
determinant satisfies these properties. Also, notice that we can write ωF =
F1 dy dz − F2 dxdz + F3 dx dy. Later we’ll see that every 2-form on R3 can be
expressed in the form

f1 dx dy + f2 dx dz + f3 dy dz

for some functions f1, f2, f3 : R3 → R.

Example 86. Consider the vector field F given by

F (x, y, z) =
(x, y, z)

‖(x, y, z)‖3
.

This is defined on R3 \ {0} and represents the electric field generated by a
point charge placed at the origin.

Now suppose Σ is a closed surface in R3 \ {0}. Then Gauss’s law from
physics says that the flux of the electric field over Σ depends only on the net
charge enclosed by Σ. We’ll prove this later. But, taking it as a given for now,
note that this says that the flux of F over Σ is 0 is Σ does not enclose the
origin, and the flux of F over Σ is 4π if Σ does enclose the origin. Hence if we
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let αF be the flux form for F , we see a similar sort of behavior to the rotation
form in R2 \ {0}. Namely, the integral of αF over a closed surface Σ can only
take a discrete set of values. Moreover, this value depends only on whether or
not Σ encloses the origin.

Example 87. Think of R4 as R2 ×R2 with coordinates x1, x2, y1, y2. We can
think of a point in R4 as recording the position and momentum of a particle
moving in R2. The x coordinates tell us the position, and the y coordinates
tell us the momentum.

On this R4, define a 2-form

ω = dx1 dy1 + dx2 dy2.

So given a parallelogram in R4, ω tells us the oriented area of the projection
to the x1y1-plane plus the oriented area of the projection to the x2y2-plane.
This form ω is called the symplectic form. It plays a very important role in
Hamiltonian mechanics.

7.2 Writing k-forms in coordinates

Next we’ll derive a general formula for k-forms in Rn.

Definition 88. A multi-index of length k in Rn is a list (i1, . . . , ik) consisting
of k integer entries each between 1 and n. Often we write I = (i1, . . . , ik) for
a multi-index.

Notation. Given a multi-index I = (i1, . . . , ik) we write dxI as an abbrevia-
tion for dxi1 . . . dxik .

Example 89. If we’re working in R5 and I = (1, 5, 2) then dxI means dx1 dx5 dx2.

Definition 90. Let I = (i1, . . . , ik) be a multi-index. Then dxI is the k-form
on Rn defined by

(dxI)p(v
1, . . . , vk) = det


v1
i1

v2
i1
· · · vkik

v1
i2

v2
i2

...
...

. . .

v1
ik
· · · vkik

 .

In other words, dxI projects v1, . . . , vk to the xi1 . . . xik-plane and then com-
putes the oriented volume of the projection.
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Notice that if I contains a repeated index, then dxI = 0. Also if I is a
multi-index and J is obtained from I by swapping a single pair of indices then
dxI = −dxJ .

Example 91. For each multi-index I of length k, let fI : Rn → R be a smooth
function. Then

α =
∑
I

fI dxI

is a k-form on Rn. By the previous observation, we can always rewrite the
previous sum to be taken only over increasing multi-indices: those I such that
i1 < i2 < . . . < ik.

Definition 92. A multi-index I = (i1, . . . , ik) is called increasing provided
i1 < i2 < . . . < ik.

Example 93. The multi-index (2, 4, 8) is increasing, but (2, 1, 3) and (2, 2, 2)
are not increasing.

Proposition 94. On Rn there are
(
n
k

)
= n!

(n−k)!k!
increasing multi-indices of

length k.

Proof. There are n(n−1)(n−2) · · · (n−k+1) ways to select an ordered list of
k numbers from {1, . . . , n} without replacements. Of these lists, only one out
of every k! is in increasing order. Therefore, the total number of increasing
lists is

n(n− 1)(n− 2) · · · (n− k + 1)

k!
=

n!

(n− k)!k!
,

as claimed.

Example 95. When n = 3 and k = 2 we have
(

3
2

)
= 3. The three increasing

multi-indices of length 2 are (1, 2), (1, 3), and (2, 3).

Example 96. When n = 4 and k = 2 we have
(

4
2

)
= 6. The six increasing

multi-indices of length 2 are (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4).

Lemma 97. Let I = (i1, . . . , ik) and J = (j1, . . . , jk) be increasing multi-
indices. Let e1, . . . , en be the standard basis vectors in Rn. Then

dxI(e
j1 , . . . , ejk) =

{
1, if I = J

0, if I 6= J.
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Proof. Note that

e`m =

{
1, if ` = m

0, if ` 6= m.

First suppose that I = J . Then i` = j` for all ` and so

dxI(e
j1 , . . . , ejk) = dxI(e

i1 , . . . , eik) = det


ei1i1 ei2i1 · · · eiki1
ei1i2 ei2i2
...

. . .

ei1ik · · · eikik



= det


1 0 · · · 0
0 1
...

. . .

0 · · · 1

 = 1.

On the other hand, suppose that I 6= J . Then since I and J are increasing,
there is some ` such that i` does not appear in J . But then the `th row of the
matrix in the formula for dxI(e

j1 , . . . , ejk) is(
ej1i` ej2i` · · · ejki`

)
=
(
0 0 · · · 0

)
and hence the determinant of this matrix is 0.

Remark 98. We can also understand this lemma geometrically. Note that
ej1 , . . . , ejk spans a unit cube in the xj1 · · ·xjk-plane. If I = J then we project
this cube to the xj1 · · · xjk-plane (which changes nothing) and then we take
the oriented k-dimensional volume which is 1. On the other hand, if I 6= J
then we project to some other coordinate plane and this collapses the cube to
a lower dimensional object which has k-dimensional volume 0.

Proposition 99. For each increasing multi-index I of length k, let aI be a
constant. If

∑
I aI dxI = 0, then aI = 0 for all I. In other words, the forms

dxI are linearly independent.

Proof. Fix some arbitrary increasing multi-index J . Then

0 =

(∑
I

aI dxI

)
(ej1 , . . . , ejk) =

∑
I

aI dxI(e
j1 , . . . , ejk) = aJ .

Thus aJ = 0. But J was arbitrary, and so all the coefficients are zero.
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Proposition 100. Assume

ω : Rn × . . .× Rn︸ ︷︷ ︸
k times

→ R

satisfies the scaling, additivity, and alternation properties. Then there exist
constants aI such that ω =

∑
I aI dxI .

Proof. First we need to make a guess for the constants aI . Note that if the
formula ω =

∑
I aI dxI were actually valid, then aI would be the value of ω

on (ei1 , . . . , eik). Based on this, we define

aI = ω(ei1 , . . . , eik).

It remains to show that this works.

Define α =
∑

I aI dxI . We want to verify that ω = α. Note that both ω
and α satisfy the scaling, additivity, and alternation properties and hence so
does their difference ω − α. Moreover, by the definition of the constants aI ,
we see that

(ω − α)(ei1 , . . . , eik) = 0

for all increasing multi-indices I. Actually, by the alternation property, this
implies that

(ω − α)(ei1 , . . . , eik) = 0

for all multi-indices I (not just the increasing ones).

Now consider k vectors v1, . . . , vk. We can write

v1 = b11e
1 + b12e

2 + . . .+ b1ne
n

v2 = b21e
1 + b22e

2 + . . .+ b2ne
n

...

vk = bk1e
1 + bk2e

2 + . . .+ bkne
n.
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Then by scaling and additivity

(ω − α)(v1, . . . , vk) = (ω − α)(
n∑

i1=1

b1i1e
i1 , v2, . . . , vk)

=
n∑

i1=1

b1i1(ω − α)(ei1 , v2, . . . , vk)

=
n∑

i1=1

n∑
i2=1

b1i1b2i2(ω − α)(ei1 , ei2 , v3, . . . , vk)

= · · ·

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1

b1i1b2i2 · · · bkik(ω − α)(ei1 , ei2 , . . . , eik).

But every term in this last sum vanishes, and hence ω agrees with α, as
needed.

Combing the previous two propositions yields the following corollary.

Corollary 101. Every

ω : Rn × . . .× Rn︸ ︷︷ ︸
k times

→ R

that satisfies the scaling, additivity, and alternation properties can be written
uniquely in the form ω =

∑
I aI dxI where the aI are constants and the sum is

taken over all increasing multi-indices of length k.

Definition 102. A k-form ω on Rn is a rule assigning a number to each
oriented k-dimensional parallelepiped in Rn which can be expressed in the
form

ω =
∑
I

fI dxI

for some smooth functions fI : Rn → R.

Example 103. Every 2-form ω on R3 can be written in the form

ω = f1 dx dy + f2 dx dz + f3 dy dz

for some smooth functions f1, f2, f3 : R3 → R.
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7.3 Integrating k-forms

It remains to discuss the integration of k-forms. As before, k-forms will be
integrated over parameterized k-dimensional subsets of Rn.

Definition 104. A k-cell in Rn is a smooth map c : [a1, b1]×. . .×[ak, bk]→ Rn.

Example 105. The map c : [0, 2π]×[0, 1]→ R3 given by c(θ, h) = (cos θ, sin θ, h)
parameterizes the side of a cylinder.

Example 106. The map c : [0, 2π]× [0, π/2]→ R3 given by

c(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ)

parameterizes a hemisphere.

Definition 107. The integral of a k-form ω =
∑

I fI dxI over a k-cell c : [a1, b1]×
. . .× [ak, bk]→ Rn is

∫
c

ω =
∑
I

∫ b1

a1

· · ·
∫ bk

ak

fI(c(t1, . . . , tk)) det


∂ci1
∂t1

· · · ∂ci1
∂tk

...
...

∂cik
∂t1

· · · ∂cik
∂tk

 dt1 . . . dtk.

Remark 108. Notice that

∑
I

fI(c(t1, . . . , tk)) det


∂ci1
∂t1

· · · ∂ci1
∂tk

...
...

∂cik
∂t1

· · · ∂cik
∂tk

 = ωc(t1,...,tk)

(
∂c

∂t1
, . . . ,

∂c

∂tk

)
.

Hence we could equivalently write∫
c

ω =

∫ b1

a1

· · ·
∫ bk

ak

ωc(t1,...,tk)

(
∂c

∂t1
, . . . ,

∂c

∂tk

)
dt1 . . . dtk.

Again the motivation for this definition is very similar to what we have
already seen in the case of 1-forms and n-forms. We will describe it only in
the case k = 2 and n = 3 for simplicity. Consider a map c : [0, 1]2 → R3. Pick
partitions 0 = s0 < s1 < . . . , s` = 1 and 0 = t0 < t1 < . . . < tm = 1. These
induce a partition of [0, 1]2 into small squares Sij. The sets c(Sij) cut the image
of c into small pieces. As before, each set c(Sij) is very nearly a parallelogram
Pij based at c(si−1, tj−1) with sides ∂c

∂s
(si−1, tj−1) and ∂c

∂t
(si−1, tj−1).
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The collection of parallelograms Pij, 1 ≤ i ≤ `, 1 ≤ j ≤ m therefore forms
a good approximation to the image of c. Let ω = f dx dy + g dx dz + h dy dz
be a 2-form on R3. To integrate ω over c, we evaluate ω on each of the
parallelograms Pij and add up the results to form a quantity

∑`
i=1

∑m
j=1 ω(Pij).

We then try to take a limit of this quantity as our approximation gets better
and better. Now we have∑̀

i=1

m∑
j=1

ω(Pij)

=
∑̀
i=1

m∑
j=1

(si − si−1)(tj − tj−1)ωc(si−1,tj−1)

(
∂c

∂s
(si−1, tj−1),

∂c

∂t
(si−1, tj−1)

)

=
∑̀
i=1

m∑
j=1

(si − si−1)(tj − tj−1)f(c(si−1, tj−1))

∣∣∣∣∣∣
∂c1
∂s

∂c1
∂t

∂c2
∂s

∂c2
∂t

∣∣∣∣∣∣ (si−1, tj−1)

+
∑̀
i=1

m∑
j=1

(si − si−1)(tj − tj−1)g(c(si−1, tj−1))

∣∣∣∣∣∣
∂c1
∂s

∂c1
∂t

∂c3
∂s

∂c3
∂t

∣∣∣∣∣∣ (si−1, tj−1)

+
∑̀
i=1

m∑
j=1

(si − si−1)(tj − tj−1)h(c(si−1, tj−1))

∣∣∣∣∣∣
∂c2
∂s

∂c2
∂t

∂c3
∂s

∂c3
∂t

∣∣∣∣∣∣ (si−1, tj−1).

But this is exactly a Riemann sum for the integral∫ 1

0

∫ 1

0

f(c(s, t)) det

∂c1
∂s

∂c1
∂t

∂c2
∂s

∂c2
∂t

 ds dt+

∫ 1

0

∫ 1

0

g(c(s, t)) det

∂c1
∂s

∂c1
∂t

∂c3
∂s

∂c3
∂t

 ds dt

+

∫ 1

0

∫ 1

0

h(c(s, t)) det

∂c2
∂s

∂c2
∂t

∂c3
∂s

∂c3
∂t

 ds dt.

Hence the quantity
∑`

i=1

∑m
j=1 ω(Pij) converges to this integral as the approx-

imation gets better and better.

Example 109. Let F : R3 → R3 be a vector field and let Σ be a surface in R3.
Choose a parameterization c of Σ and let αF be the flux form for F . Then c
gives rise to an approximation of Σ by parallelograms Pij as described above.
For each i and j, we know that αF (Pij) is the flux of F over Pij and hence∑̀

i=1

m∑
j=1

αF (Pij)
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is the net flux of F over this entire collection of parallelograms. In the limit,
as this collection of parallelograms becomes a better and better approximation
to Σ, this should converge to the flux of F over Σ. Thus the integral

∫
c
αF

computes the flux of F over Σ.

Example 110. Let Σ be the boundary of the solid cylinder

{(x, y, z) : x2 + y2 ≤ 9, −2 ≤ z ≤ 5}.

Let F (x, y, z) = (x, y, z). Let’s use differential forms to find the flux of F
through Σ with respect to the outward pointing normal vector.

First, recall that the flux form associated to F is the 2-form

αF = x dy dz − y dx dz + z dx dy.

In order to integrate this over Σ, we need to parameterize Σ. We’ll parame-
terize the top, bottom, and sides separately. Here we need to take some care
to make sure we get the orientations correct.

We start with the top of the cylinder. This can be parameterized by
c : [0, 3]× [0, 2π]→ R3 where

c(r, θ) = (r cos θ, r sin θ, 5).

We have (
∂c
∂r

∂c
∂θ

)
=

cos θ −r sin θ
sin θ r cos θ

0 0

 .

Hence we get∫
c

αF =

∫ 3

0

∫ 2π

0

r cos θ det

(
sin θ r cos θ

0 0

)
− r sin θ det

(
cos θ −r sin θ

0 0

)
+ 5 det

(
cos θ −r sin θ
sin θ r cos θ

)
dr dθ

=

∫ 3

0

∫ 2π

0

5r dr dθ = 45π.

As a sanity check, note that this part of the cylinder is horizontal, so it makes
sense that we only see the z component of F in the calculation. Also, the
flux of F through the top of the cylinder is definitely positive, so we got the
orientation correct.
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Next we deal with the bottom of the cylinder. This can be parameterized
by c : [0, 3]× [0, 2π]→ R3 where

c(θ, r) = (r cos(−θ), r sin(−θ),−2).

We have (
∂c
∂r

∂c
∂θ

)
=

cos(−θ) r sin(−θ)
sin(−θ) −r cos(−θ)

0 0

 .

Hence we get∫
c

αF =

∫ 3

0

∫ 2π

0

r cos(−θ) det

(
sin(−θ) −r cos(−θ)

0 0

)
− r sin(−θ) det

(
cos(−θ) r sin(−θ)

0 0

)
− 2 det

(
cos(−θ) r sin(−θ)
sin(−θ) −r cos(−θ)

)
dr dθ

=

∫ 3

0

∫ 2π

0

(−2)(−r) dr dθ = 18π.

Again the flux through the bottom of the cylinder is definitely positive, so we
got the orientation correct.

Finally we handle the sides. These can be parameterized by c : [0, 2π] ×
[−2, 5]→ R3 where

c(θ, h) = (3 cos θ, 3 sin θ, h).

We have (
∂c
∂θ

∂c
∂h

)
=

−3 sin θ 0
3 cos θ 0

0 1

 .

It follows that∫
c

αF =

∫ 2π

0

∫ 5

−2

3 cos θ det

(
3 cos θ 0

0 1

)
− 3 sin θ det

(
−3 sin θ 0

0 1

)
+ h det

(
−3 sin θ 0
3 cos θ 0

)
dθ dh

=

∫ 2π

0

∫ 5

−2

9 cos2 θ + 9 sin2 θ dθ dh = 126π.

Finally we get that the total flux of F over Σ is 45π + 18π + 126π = 189π.
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8 Stokes’ Theorem

Stokes’ Theorem is a vast generalization of the fundamental theorem of calcu-
lus. It includes all of the classical theorems of vector calculus as special cases.
Consider a k-form ω on Rn and a (k + 1)-cell c in Rn. Stokes’ Theorem says
that ∫

∂c

ω =

∫
c

dω.

Here ∂c is the boundary of c and dω is the exterior derivative of ω. In order
for this formula to make sense, we need to define both of these objects.

8.1 Classical Theorems of Vector Calculus

Before defining these objects in general, let’s look at some familiar examples.

Example 111. The usual fundamental theorem of calculus says that∫ b

a

f ′(x) dx = f(b)− f(a).

To interpret this in the above language, think of the function f as a zero
form. It assigns values to 0-dimensional parallelograms (i.e. points) in Rn.
The differential of f is the 1-form df = f ′(x) dx. Let c : [a, b]→ [a, b] be given
by c(t) = t. Then the boundary of c consists of the two points a and b. To
remember the orientation of c, we assign the point b a + sign and the point a
a − sign.

In this set up, the above formula becomes∫
c

df =

∫
∂c

f,

where to integrate a 0-form over a collection of points with signs, we just add
up plus or minus the values of the function at the points.
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Example 112. We’ve already seen a slight generalization of this: if f : Rn →
R and γ is a curve in Rn then∫

γ

df = f(γ(b))− f(γ(a)) =

∫
∂γ

f,

where ∂γ consists of the point γ(b) with a plus sign and the point γ(a) with a
minus sign.

Example 113 (Green’s Theorem). Let F : R2 → R2 be a vector field. Let Ω
be a nice region in the plane. Then∫

∂Ω

F · d~̀=

∫
Ω

circ(F ) dA.

Here the integral on the left is the line integral of F over ∂Ω, and

circ(F ) =
∂F2

∂x
− ∂F1

∂y

denotes the circulation of F . This formula fits into the general paradigm of
Stokes’ theorem: it relates the integral of F over the boundary of a region,
with the integral of some derivatives of F over the region itself.

Example 114 (The Divergence Theorem). Let F : R3 → R3 be a vector field.
Let Ω be a nice region in 3-space. Then∫

∂Ω

F · ν dA =

∫
Ω

div(F ) dV.

Here ν denotes the outward pointing unit normal to ∂Ω, and

div(F ) =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

is the divergence of F . Again this formula relates an integral of F over the
boundary of a region with an integral of some derivatives of F over the region
itself.

Example 115 (Classical Stokes’ Theorem). Let F : R3 → R3 be a vector field
and let Σ be an oriented surface in R3 with boundary ∂Σ. Then∫

∂Σ

F · d~̀=

∫
Σ

curl(F ) · ν dA.

Here ν is a unit normal vector to Σ and

curl(F ) =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
is the curl of F . This formula relates an integral of F over the boundary of a
surface with the integral of some derivatives of F over the surface itself.

52



8.2 Motivating the Exterior Derivative

To motivate the definition of the exterior derivative, let’s investigate the rela-
tionship between the “ω” and the “dω” in each of the above examples.

Example 116. Let f : Rn → R. Then

df =
∂f

∂x1

dx1 + . . .+
∂f

∂xn
dxn

and dfp(v) = ∇f(p) · v = d
dt

∣∣
t=0
f(p+ tv). Let γε be the line segment from p to

p + εv so that ∂γε consists of the point p + εv with a + sign and the point p
with a minus sign. Then ∫

∂γε

f = f(p+ εv)− f(p)

and so

dfp(v) =
d

dt

∣∣∣∣
t=0

f(p+ tv) = lim
ε→0

f(p+ εv)− f(p)

ε
= lim

ε→0

1

ε

∫
∂γε

f.

Thus dfp tells us about the integral of f over the boundary of very small line
segments based at p.

Example 117. Let F : R2 → R2 and let Ω be a nice region of R2. We can use
Green’s theorem ∫

∂Ω

F · d~̀=

∫
Ω

circ(F ) dA

to derive a formula for the circulation of F as follows. Fix a point p ∈ R2 and
let Kε be a square based at p with side length ε.

Note that since F is smooth, the circulation of F will be approximately equal
to circ(F )(p) over all of Kε. Thus we get an approximation∫

∂Kε

F · d~̀=

∫
Kε

circ(F ) dA ≈ ε2circ(F )(p).
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This suggests the following formula for circulation:

circ(F )(p) = lim
ε→0

1

ε2

∫
∂Kε

F · d~̀.

Thus geometrically, circ(F ) tells us about the line integral of F around very
small loops based at p. In other words, it tells us about the infinitesimal
circulation of F at p. Note also the formal similarity to the previous formula
for df .

Example 118. Let F : R3 → R3 and let Ω be a nice region in R3. Then the
divergence theorem says∫

∂Ω

F · ν dA =

∫
Ω

div(F ) dV.

As above, we can use this to derive a formula for divergence. Indeed, fix a
point p ∈ R3 and let Kε be a cube based at p with side length ε. Then since F
is smooth, div(F ) is approximately equal to div(F )(p) on all of Kε. Therefore,
we get an approximation∫

∂Kε

F · ν dA =

∫
Kε

div(F ) dV ≈ ε3 div(F )(p).

This suggests that

div(F )(p) = lim
ε→0

1

ε3

∫
∂Kε

F · ν dA.

Thus div(F ) tells us about the flux of F through very tiny cubes based at p.
Again, note the similarity of this formula to the previous ones.

Example 119. Finally consider the case of the classical Stokes’ theorem. Let
F : R3 → R3 and let Σ be a surface in R3 with boundary ∂Σ. Then Stokes’
theorem says ∫

∂Σ

F · d~̀=

∫
Σ

curl(F) · ν dA.

Now fix a point p ∈ R3, and let Kxy
ε be a small square based at p, parallel

to the xy-plane, with side length ε. Again curl(F ) is approximately equal to
curl(F )(p) on all of Kxy

ε and hence we get an approximation∫
∂Kxy

ε

F · d~̀=

∫
Kxy
ε

curl(F ) · ~k dA ≈ ε2
[
curl(F )(p) · ~k

]
.
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This suggests the formula

curl(F )(p) · ~k = lim
ε→0

1

ε2

∫
∂Kxy

ε

F · d~̀.

Hence the z-component of curl tells us about the line integral of F over very
small squares perpendicular to the z-axis. We could repeat the argument
with small squares perpendicular to the x-axis and y-axis to get the x and y
components of curl, respectively.

8.3 The Boundary Operator

The point of all these examples is that in each case the “dω” tells us about the
integral of the “ω” over the boundary of very small line segments, or squares,
or cubes, etc. This motivates the definition of dω. Given a k-form ω, the
exterior derivative dω will be a (k+1)-form dω such that dω(v1, . . . , vk+1) tells
us about the integral of ω over the boundary of the parallelepiped spanned
by εv1, . . . , εvk+1 when ε is small. In order to formalize this, we first need to
discuss boundaries.

Definition 120. A k-chain in Rn is a formal sum a1c1 + . . . + amcm where
each ci is a k-cell and each ai is an integer.

Definition 121. Let ω be a k-form on Rn and let a1c1 + . . . + amcm be a
k-chain. Then we define∫

a1c1+...+amcm

ω = a1

∫
c1

ω + . . .+ am

∫
cm

ω.

Remark 122. One can think of the k-chain 2c as two copies of the cell c, and
the k-chain −c as the cell c but with the opposite orientation.

Definition 123. Let c : [0, 1]k → Rn be a k-cell. The faces of c are the
following collection of maps:

c1
i (t1, . . . , tk−1) = c(t1, . . . , ti−1, 1, ti, . . . , tk−1), i = 1, . . . , k

c0
i (t1, . . . , tk−1) = c(t1, . . . , ti−1, 0, ti, . . . , tk−1), i = 1, . . . , k.

Thus each face is a (k − 1)-cell in Rn, and there are 2k faces in total.
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Example 124. Let c : [0, 1]2 → R2 be the standard cube c(x, y) = (x, y).
Then the four edges of c are

c1
1(t) = c(1, t) = (1, t), c0

1(t) = c(0, t) = (0, t),

c1
2(t) = c(t, 1) = (t, 1), c0

2(t) = c(t, 0) = (t, 0).

Note that the orientation of these edges does not agree with the standard
counterclockwise orientation.

Hence, in order to get the orientation correct, the boundary of c should be the
1-chain c0

2 + c1
1 − c1

2 − c0
1.

Definition 125. Let c : [0, 1]k → Rn be a k-cell. The boundary of c is the
(k − 1)-chain

∂c =
k∑
i=1

1∑
j=0

(−1)i+jcji .

Example 126. Let c : [0, 1]3 → R3 be the standard cube c(x, y, z) = (x, y, z).
The six faces of c are

c1
1(s, t) = c(1, s, t) = (1, s, t), c0

1(s, t) = c(0, s, t) = (0, s, t),

c1
2(s, t) = c(s, 1, t) = (s, 1, t), c0

2(s, t) = c(s, 0, t) = (s, 0, t),

c1
3(s, t) = c(s, t, 1) = (s, t, 1), c0

3(s, t) = c(s, t, 0) = (s, t, 0).

The boundary of c is the 2-chain c1
1 − c0

1 − c1
2 + c0

2 + c1
3 − c0

3. One can check
that this choice of signs makes the unit normal associated to each face by the
right hand rule point outward.

8.4 Definition of the Exterior Derivative

We can now define the exterior derivative.
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Definition 127. Let ω be a k-form on Rn. Fix a point p ∈ Rn and let
v1, . . . , vk+1 be vectors in Rn. Let Pε : [0, 1]k+1 → Rn be given by

Pε(t1, . . . , tk+1) = p+ εv1 + . . .+ εvk+1.

Then, by definition,

(dω)p(v1, . . . , vk+1) = lim
ε→0

1

εk+1

∫
∂Pε

ω,

provided that this limit exists. In other words, “dω is the thing that makes
Stokes’ theorem true infinitesimally.”

Remark 128. We will refer to this as the geometric formula for dω. It makes
it clear what dω is actually computing. On the other hand, this formula is very
cumbersome computationally. In each of the model examples we’ve seen, there
are nicer computational formulas for dω involving some partial derivatives:

circ(F ) =
∂F2

∂x
− ∂F1

∂y
,

div(F ) =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
,

curl(F ) =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
.

Fortunately, it turns out that this is always the case. The above limit can
always be rewritten in terms of a certain combination of partial derivatives.

Theorem 129. Let ω =
∑

I fI dxI be a k-form. Then the exterior derivative
of ω is the (k + 1)-form dω =

∑
I(dfI) dxI .

Before proving the theorem, we note that this formula is true in each of
our model examples.

Example 130. Let F : R2 → R2 be a vector field and consider the work form
ωF = F1 dx+ F2 dy. Then the above formula says

dωF = (dF1) dx+ (dF2) dy

=

(
∂F1

∂x
dx+

∂F1

∂y
dy

)
dx+

(
∂F2

∂x
dx+

∂F2

∂y
dy

)
dy

=
∂F1

∂x
dx dx+

∂F1

∂y
dy dx+

∂F2

∂x
dx dy +

∂F2

∂y
dy dy

=

(
∂F2

∂x
− ∂F1

∂y

)
dx dy = circ(F ) dx dy.

Hence we can write Green’s theorem as
∫
∂Ω
ωF =

∫
Ω
dωF .
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Example 131. Let F : R3 → R3 be a vector field and consider the flux form
αF = F1 dy dz − F2 dx dz + F3 dx dy. The above formula says

dαF = (dF1) dy dz − (dF2) dx dz + (dF3) dx dy

=

(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
dy dz

−
(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
dx dz

+

(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
dx dy

=
∂F1

∂x
dx dy dz − ∂F2

∂y
dy dx dz +

∂F3

∂z
dz dx dy

= div(F ) dx dy dz.

Hence we can write the divergence theorem as
∫
∂Ω
αF =

∫
Ω
dαF .

Example 132. Let F : R3 → R3 be a vector field and consider the work form
ωF = F1 dx+ F2 dy + F3 dz. The above formula says

dωF = (dF1) dx− (dF2) dy + (dF3) dz

=

(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
dx

+

(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
dy

+

(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
dz

=

(
∂F2

∂x
− ∂F1

∂y

)
dx dy +

(
∂F3

∂x
− ∂F1

∂z

)
dx dz +

(
∂F3

∂y
− ∂F2

∂z

)
dy dz.

But this is exactly the flux form for curl(F ). Hence we can write the classical
Stokes’ theorem as

∫
∂Σ
ωF =

∫
Σ
dωF .

We now return to the proof of Theorem 129. For the proof, we need to use
the multivariable Taylor theorem.

Theorem 133 (Taylor). Let f : Rn → R be a smooth function. Then for any
p and v in Rn we have

f(p+ v) = f(p) +∇f(p) · v + error

where |error| ≤ C‖v‖2. Here C is a positive constant.
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Proof. (Theorem 129) For simplicity, we give the proof only in the case k = 1
and n = 2. Assume that ω = f dx + g dy is a 1-form on R2 and fix vectors
v, w ∈ R2. Let Pε be a parallelogram based at p with sides εv and εw. We
need to evaluate the limit

lim
ε→0

1

ε2

∫
∂Pε

ω.

First observe that ∂Pε = γ1 + γ2 − γ3 − γ4 where γ1, γ2, γ3, γ4 : [0, 1]→ R2 are
given by

γ1(t) = p+ εtv, γ3(t) = p+ εw + εtv

γ2(t) = p+ εv + εtw, γ4(t) = p+ εtw.

We will use Taylor’s theorem to estimate the integral of ω over each of these
four segments.

Observe that∫
γ1

ω =

∫ 1

0

f(p+ εtv)εv1 + g(p+ εtv)εv2 dt.

Now Taylor’s theorem says

f(p+ εtv) = f(p) + εt∇f(p) · v + error

g(p+ εtv) = g(p) + εt∇g(p) · v + error

where |error| ≤ Ct2ε2‖v‖2 ≤ Cε2. Using these formulas to estimate the inte-
gral, we get∫

γ1

ω = εv1f(p) +
ε2v1

2
∇f(p) · v + εv2g(p) +

ε2v2

2
∇g(p) · v + error

where |error| ≤ Cε3.

Next consider γ3. We have∫
γ3

ω =

∫ 1

0

f(p+ εw + εtv)εv1 + g(p+ εw + εtv)εv2 dt.

Taylor expanding gives

f(p+ εw + εtv) = f(p) + ε∇f(p) · w + εt∇f(p) · v + error

g(p+ εw + εtv) = g(p) + ε∇f(p) · w + εt∇g(p) · v + error
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where |error| ≤ Cε2. Therefore∫
γ3

ω = εv1f(p) + ε2v1∇f(p) · w +
ε2v1

2
∇f(p) · v

+ εv2g(p) + ε2v2∇g(p) · w +
ε2v2

2
∇g(p) · v + error

where |error| ≤ Cε3.

Hence we get that

lim
ε→0

1

ε2

[∫
γ1

ω −
∫
γ3

ω

]
= lim

ε→0

[
−v1∇f(p) · w − v2∇g(p) · w +

error

ε2

]
= −v1∇f(p) · w − v2∇g(p) · w

since |error| ≤ Cε3. Repeating the same arguments with γ2 and γ4 gives that

lim
ε→0

1

ε2

[∫
γ2

ω −
∫
γ4

ω

]
= w1∇f(p) · v + w2∇g(p) · v.

It follows that

lim
ε→0

1

ε2

∫
∂Pε

ω = w1∇f(p) · v − v1∇f(p) · w + w2∇g(p) · v − v2∇g(p) · w

= w1

(
∂f

∂x
v1 +

∂f

∂y
v2

)
− v1

(
∂f

∂x
w1 +

∂f

∂y
w2

)
+ w2

(
∂g

∂x
v1 +

∂g

∂y
v2

)
− v2

(
∂g

∂x
w1 +

∂g

∂y
w2

)
=

(
∂g

∂x
− ∂f

∂y

)
(v1w2 − v2w1).

Thus

dω =

(
∂g

∂x
− ∂f

∂y

)
dx dy = (df) dx+ (dg) dy,

as needed.

Remark 134. The proof of the theorem for arbitrary k and n is exactly the
same conceptually. We Taylor expand the function f and use this to estimate
the integral of ω over each face of ∂c. We then add up these estimates and
observe that almost everything cancels, leaving the desired formula. The only
difficulty is that the notation is much more involved.
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8.5 Stokes’ Theorem

We close this section by giving the proof of Stokes’ theorem. In fact, we’ll give
two proofs: a geometric “proof” based on the limit formula for the exterior
derivative, and an algebraic proof based on the derivative formula for the
exterior derivative. The geometric proof has the advantage that it makes it
clear what is happening intuitively: Stokes’ theorem is true because we defined
dω to be the object that makes Stokes’ theorem true infinitesimally. However,
the algebraic proof is easier to make rigorous.

Theorem 135. Let ω be a k-form on Rn and let c be a (k + 1)-cell in Rn.
Then ∫

∂c

ω =

∫
c

dω.

Proof. (Geometric “Proof”) For simplicity, we’ll just give the proof in the case
k = 1. Let ω be a 1-form on Rn and let c : [0, 1]2 → Rn be a 2-cell. Cut [0, 1]2

into m2 squares Sij of side length 1/m.

Then the image c(Sij) is approximately a parallelogram Pij based at c( i−1
m
, j−1
m

)
with sides 1

m
∂c
∂s

and 1
m
∂c
∂t

.

We know that
m∑
i=1

m∑
j=1

dω(Pij)→
∫
c

dω (2)

as m→∞. Now observe that

dω(Pij) =
1

m2
dω

(
∂c

∂s
,
∂c

∂t

)
=

1

m2
lim
ε→0

1

ε2

∫
∂Qε

ω

where Qε is the parallelogram based at c( i−1
m
, j−1
m

) with sides ε∂c
∂s

and ε∂c
∂t

. In
particular, notice that Q1/m is Pij and hence

1

m2
lim
ε→0

1

ε2

∫
∂Qε

ω ≈ 1

m2

1

(1/m)2

∫
∂Q1/m

ω =

∫
∂Pij

ω
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when m is large. Also we have∫
∂Pij

ω ≈
∫
∂(c|Sij )

ω

where c|Sij denotes the restriction of c to Sij.

Therefore we have an approximation

m∑
i=1

m∑
j=1

dω(Pij) ≈
m∑
i=1

m∑
j=1

∫
∂(c|Sij )

ω, (3)

which gets better and better as m goes to ∞. Now observe that

m∑
i=1

m∑
j=1

∫
∂(c|Sij )

ω =

∫
∂c

ω (4)

since the sum on the left integrates ω over every interior edge of our m ×m
grid twice with opposite orientations.

Now using equations (2), (3), (4) and letting m→∞, we get that∫
∂c

ω =

∫
c

dω,

as desired.

Proof. (Algebraic Proof) For simplicity, we again give the proof only in the
case k = 1. In the general case, the notation is just more involved. So consider
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a 1-form ω = f1 dx1 + . . .+ fn dxn on Rn and let c : [0, 1]2 → Rn be an n-cell.
Then

dω =
n∑
i=1

n∑
j=1

∂fi
∂xj

dxj dxi.

Integrating this over c yields∫
c

dω =
n∑

i,j=1

∫ 1

0

∫ 1

0

∂fi
∂xj

(c(s, t)) det

∂cj
∂s

(s, t)
∂cj
∂t

(s, t)

∂ci
∂s

(s, t) ∂ci
∂t

(s, t)

 ds dt

=
n∑

i,j=1

∫ 1

0

∫ 1

0

(
∂fi
∂xj
◦ c
)(

∂cj
∂s

∂ci
∂t
− ∂cj

∂t

∂ci
∂s

)
ds dt.

On the other hand, let’s integrate ω over the boundary of c. We have∫
∂c

ω =

∫ 1

0

[
n∑
i=1

(fi ◦ c)
∂ci
∂s

]
(s, 0) ds−

∫ 1

0

[
n∑
i=1

(fi ◦ c)
∂ci
∂s

]
(s, 1) ds

+

∫ 1

0

[
n∑
i=1

(fi ◦ c)
∂ci
∂t

]
(1, t) dt−

∫ 1

0

[
n∑
i=1

(fi ◦ c)
∂ci
∂t

]
(0, t) dt.

Now by the fundamental theorem of calculus∫ 1

0

[
n∑
i=1

(fi ◦ c)
∂ci
∂s

]
(s, 0)−

[
n∑
i=1

(fi ◦ c)
∂ci
∂s

]
(s, 1) ds

= −
∫ 1

0

(∫ 1

0

d

dt

[
n∑
i=1

(fi ◦ c)
∂ci
∂s

]
(s, t) dt

)
ds

= −
∫ 1

0

∫ 1

0

n∑
i,j=1

(
∂fi
∂xj
◦ c
)
∂cj
∂t

∂ci
∂s

+ (fi ◦ c)
∂2ci
∂t ∂s

dt ds.

Likewise we have∫ 1

0

[
n∑
i=1

(fi ◦ c)
∂ci
∂t

]
(1, t)−

[
n∑
i=1

(fi ◦ c)
∂ci
∂t

]
(0, t) dt

=

∫ 1

0

(∫ 1

0

d

ds

[
n∑
i=1

(fi ◦ c)
∂ci
∂t

]
(s, t) ds

)
dt

=

∫ 1

0

∫ 1

0

n∑
i,j=1

(
∂fi
∂xj
◦ c
)
∂cj
∂s

∂ci
∂t

+ (fi ◦ c)
∂2c

∂s∂t
ds dt.
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Therefore∫
∂c

ω =

∫ 1

0

∫ 1

0

n∑
i,j=1

(
∂fi
∂xj
◦ c
)
∂cj
∂s

∂ci
∂t

+ (fi ◦ c)
∂2c

∂s∂t
ds dt

−
∫ 1

0

∫ 1

0

n∑
i,j=1

(
∂fi
∂xj
◦ c
)
∂cj
∂t

∂ci
∂s

+ (fi ◦ c)
∂2ci
∂t ∂s

dt ds

=

∫ 1

0

∫ 1

0

n∑
i,j=1

(
∂fi
∂xj
◦ c
)(

∂cj
∂s

∂ci
∂t
− ∂cj

∂t

∂ci
∂s

)
ds dt.

Hence we see that
∫
∂c
ω and

∫
c
dω are equal.

9 Closed and Exact Forms

We begin by recording some properties of the boundary and exterior derivative
operators. For example, it seems intuitively clear that the boundary of a
boundary should be zero. In the case of a parallelogram this is obvious. Indeed,
the boundary of a parallelogram consists of four line segments.

When we take the boundary of these line segments, we see each of the four cor-
ners twice, once with a plus sign and once with a minus sign. Hence everything
cancels and the boundary of the boundary is zero.

Proposition 136. Let c : [0, 1]k → Rn be a k-cell. Then ∂2c = ∂(∂c) = 0.

Proof. Writing out the formulas for ∂c and ∂2c we get

∂c =
k∑
i=1

1∑
j=0

(−1)i+jcji
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and then

∂2c =
k∑
i=1

1∑
j=0

k−1∑
`=1

1∑
m=0

(−1)i+j(−1)`+m(cji )
m
` .

As in the case of a parallelogram, it remains to show that the terms in this
sum cancel in pairs.

Consider the index set

I = {(i, j, `,m) : i ∈ {1, . . . , k}, ` ∈ {1, . . . , k − 1}, j,m ∈ {0, 1}}.

We can split I into two pieces:

I1 = {(i, j, `,m) ∈ I : i ≤ `},
I2 = {(i, j, `,m) ∈ I : i > `}.

Moreover, the pairing (i, j, `,m) ∈ I1 ↔ (` + 1,m, i, j) ∈ I2 gives a one-to-
one correspondence between elements of I1 and elements of I2. Thus we can
rewrite the above sum in the following way:

∂2c =
∑

(i,j,`,m)∈I

(−1)i+j+`+m(cji )
m
`

=
∑

(i,j,`,m)∈I1

[
(−1)i+j+`+m(cji )

m
` + (−1)(`+1)+m+i+j(cm`+1)ji

]
.

Hence to show that ∂2c = 0 it’s enough to check that

(−1)i+j+`+m(cji )
m
` + (−1)(`+1)+m+i+j(cm`+1)ji = 0

for each (i, j, `,m) ∈ I1. So fix some (i, j, `,m) ∈ I1. Unwinding the definition
of the face maps, we see that

(cji )
m
` (t1, . . . , tk−2) = cji (t1, . . . , t`−1,m, t`, . . . , tk−2)

= c(t1, . . . , ti−1, j, ti, . . . , t`−1,m, t`, . . . , tk−2),

where we’ve used the fact that i ≤ ` to get the second equality. Thus (cji )
m
`

plugs j into the ith slot of c and plugs m into the (`+ 1)st slot of c. Likewise,

(cm`+1)ji = cm`+1(t1, . . . , ti−1, j, ti+1, . . . , tk−2)

= c(t1, . . . , ti−1, j, ti, . . . , t`−1,m, t`, . . . , tk−2),
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where again we’ve used the fact that i ≤ ` to get the second equality. Thus
(cm`+1)ji also plugs j into the ith slot of c and plugs m into the (`+ 1)st slot of

c. In other words, (cji )
m
` = (cm`+1)ji . Thus we have

(−1)i+j+`+m(cji )
m
` + (−1)(`+1)+m+i+j(cm`+1)ji = 0,

as needed.

By Stokes’ theorem, there must be an analog of this property for the exte-
rior derivative. Indeed, for any k-form ω and any (k+2)-cell c, Stokes’ theorem
says that ∫

c

d2ω =

∫
∂c

dω =

∫
∂2c

ω.

But the integral on the right is zero since ∂2c = 0. Hence the integral of d2ω
over every (k + 2)-cell is zero and it follows that d2ω = 0. We can also verify
this directly from the formula for d2ω.

Proposition 137. For every differential form ω we have d2ω = 0.

Proof. Let ω be a k-form. We can write ω =
∑

I fI dxI . Then

dω =
∑
I

(dfI) dxI =
n∑
j=1

∑
I

∂fI
∂xj

dxj dxI .

Now apply d again to get

d2ω =
n∑
j=1

∑
I

d

(
∂fI
∂xj

)
dxj dxI

=
n∑
`=1

n∑
j=1

∑
I

∂2fI
∂x`∂xj

dx` dxj dxI

=
∑

1≤`<j≤n

∑
I

(
∂2fI
∂x`∂xj

− ∂2fI
∂xj∂x`

)
dx` dxj dxI = 0,

where the last equality uses the fact that mixed partial derivatives are zero.

Forms which have exterior derivative zero, and forms which are exterior
derivatives are important enough to warrant special names.
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Definition 138. A k-form ω is called closed if dω = 0.

Definition 139. A k-form ω is called exact provided ω = dα for some (k−1)-
form α.

Notice that the previous proposition implies that every exact form is closed.
Indeed if ω = dα is exact, then dω = d2α = 0 and so ω is closed.

Example 140. To prove a given form is not exact, it suffices to prove the
form is not closed. For example, consider the form ω = y dx + x2 dy on R2.
We have

dω =

(
∂(y)

∂x
dx+

∂(y)

∂y
dy

)
dx+

(
∂(x2)

∂x
dx+

∂(x2)

∂y
dy

)
dy

= (2x− 1) dx dy 6= 0.

Hence ω is not closed, and it follows that ω is not exact either.

The opposite implication need not be true: there are forms which are closed
but not exact.

Example 141. Consider the rotation form

αrot =
−y

x2 + y2
dx+

x

x2 + y2
dy.

We have

dαrot =
∂

∂y

(
−y

x2 + y2

)
dy dx+

∂

∂x

(
x

x2 + y2

)
dx dy

=
−(x2 + y2) + 2y2

(x2 + y2)2
dy dx+

(x2 + y2)− 2x2

(x2 + y2)2
dx dy

=
y2 − x2

(x2 + y2)2
dy dx+

y2 − x2

(x2 + y2)2
dx dy = 0

and thus αrot is closed. However, αrot is not exact. Indeed, by Stokes’ theorem,
the integral of any exact 1-form ω = df over a closed curve γ is zero:∫

γ

ω =

∫
γ

df = f(γ(b))− f(γ(a)) = 0.

But there are closed curves γ such that
∫
γ
αrot 6= 0.
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10 Wedge Product and Pullback

Wedge product and pullback are operations that can be performed on differ-
ential forms. Actually we’ve already implicitly used both operations. But now
we’d like to give them names and discuss some of their properties.

10.1 Wedge Product

We’ll start with the wedge product.

Definition 142. Let α =
∑

I fI dxI be a k-form, and let β =
∑

J gJ dxJ be
an `-form. Then their wedge product is the (k + `)-form α ∧ β given by

α ∧ β =
∑
I

∑
J

fIgJ dxI dxJ .

Hence to compute the wedge product of two forms, we just symbolically
multiply the forms together in the obvious way.

Example 143. Let α = y dx+ z dz and β = x2 dx dy + xz dx dz. Then

α ∧ β = (y dx+ z dz) ∧ (x2 dx dy + xz dx dz)

= yx2dx dx dy + zx2 dz dx dy + yxz dx dx dz + xz2 dz dx dz

= x2z dx dy dz.

Example 144. Let α = dx1 dx3 dx4 and β = x3 dx2 + x4 dx5. Then

α ∧ β = (dx1 dx3) ∧ (x3 dx2 + x4 dx4)

= x3 dx1 dx3 dx2 + x4 dx1 dx3 dx4

= −x3 dx1 dx2 dx3 + x4 dx1 dx3 dx4

Example 145. Notice that dx dy = dx ∧ dy. Likewise

d

(∑
I

fI dxI

)
=
∑
I

dfI ∧ dxI .

Thus we have already implicitly been using the wedge product. As with ordi-
nary multiplication of numbers, it is common to drop the wedge symbol and
just write αβ for α ∧ β.
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Remark 146. Suppose α is a k-form and β is an `-form. There is also a
coordinate independent definition of α ∧ β. Namely,

(α ∧ β)p(v1, . . . , vk+`) =
∑

(−1)ναp(vi1 , . . . , vik)βp(vj1 , . . . , vj`).

Here the sum is taken over all i1 < . . . < ik and j1 < . . . < j` such that
(i1, . . . , ik, j1, . . . , j`) is a permutation of (1, 2, . . . , k + `). The number ν is 1
if this permutation is odd and 2 if this permutation is even.

Next we record some basic properties of the wedge product.

Proposition 147. Let α =
∑

I fI dxI be a k-form and let β =
∑

J gJ dxJ be
an `-form. Then

(i) αβ = (−1)klβα,

(ii) d(αβ) = (dα)β + (−1)kα(dβ),

(iii) if α and β are closed then αβ is closed,

(iv) if α is exact and β is closed then αβ is exact.

Remark 148. Often property (i) is referred to as graded commutativity. Sim-
ilarly property (ii) is called the graded product rule.

Proof. (i) Observe that

αβ =
∑
I

∑
J

fIgJ dxI dxJ , βα =
∑
I

∑
J

fIgJ dxJ dxI .

But it takes k` swaps to interchange the dxI with the dxJ :

dxj1 . . . dxj` dxi1 . . . dxik = (−1)kdxj1 . . . dxj`−1
dxi1 . . . dxikdxj`

= (−1)2kdxj1 . . . dxj`−2
dxi1 . . . dxik dxj`−1

dxj`
= · · ·
= (−1)k`dxi1 . . . dxik dxj1 . . . dxjk .

Thus αβ = (−1)k`βα.
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(ii) We have

d(αβ) = d

(∑
I

∑
J

fIgJ dxI dxJ

)
=
∑
I

∑
J

d(fIgJ) dxI dxJ

=
∑
I

∑
J

n∑
m=1

(
∂fI
∂xm

gJ +
∂gJ
∂xm

fI

)
dxm dxI dxJ .

Likewise we have

(dα)β =

(∑
I

n∑
m=1

∂fI
∂xm

dxm dxI

)(∑
J

gJ dxJ

)

=
∑
I

∑
J

n∑
m=1

∂fI
∂xm

gJ dxm dxI dxJ

and

α(dβ) =

(∑
I

fI dxI

)(∑
J

n∑
m=1

∂gJ
∂xm

dxm dxJ

)

=
∑
I

∑
J

n∑
m=1

∂gJ
∂xm

fI dxI dxm dxJ .

Since it takes k swaps to interchange dxm with dxI , this implies that d(αβ) =
(dα)β + (−1)kα(dβ).

(iii) Assume that dα = 0 and dβ = 0. Then property (ii) implies that
d(αβ) = (dα)β + (−1)kα(dβ) = 0.

(iv) Assume that α = dω and dβ = 0. Then property (ii) implies that
d(ωβ) = (dω)β + (−1)kω(dβ) = αβ.

10.2 Pullback

Next we discuss pullback. Assume that f : Rm → Rn is a smooth map and
let ω be a k-form on Rn. Let P be a parallelepiped in Rm based at p with
sides v1, . . . , vk. Then the image f(P ) is very nearly a parallelepiped Q based
at f(p) with sides (Df)v1, . . . , (Df)vk. We can define a k-form on Rm which
assigns to P the number ω(Q). This form is called the pullback of ω by f .
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Definition 149. Let f : Rm → Rn be a smooth map and let ω be a k-form
on Rn. The pullback f ∗ω is a k-form on Rm given by

(f ∗ω)p(v1, . . . , vk) = ωf(p)((Df)v1, . . . , (Df)vk).

Example 150. Let f : R2 → R2 be given by f(r, θ) = (r cos θ, r sin θ). Call
the coordinates on the target x and y and let ω = dx dy. Then

Df =

(
cos θ −r sin θ
sin θ r cos θ

)
, (Df)e1 =

(
cos θ
sin θ

)
, (Df)e2 =

(
−r sin θ
r cos θ

)
.

Consequently

(f ∗ω)(r,θ)(e1, e2) = ωf(r,θ)((Df)e1, (Df)e2)

= dx dy

((
cos θ
sin θ

)
,

(
−r sin θ
r cos θ

))
= det

(
cos θ −r sin θ
sin θ r cos θ

)
= r.

Since f ∗ω is a 2-form on R2 we know that f ∗ω = g(r, θ) dr dθ for some function
g. The above calculation shows that g(r, θ) = r and hence f ∗ω = r dr dθ.

Example 151. We already used the pullback construction when we defined
the integral. Indeed, suppose c : [0, 1]2 → R3 is a 2-cell and let ω = f dx dy +
g dx dz + h dy dz be a 2-form on R3. Then

∫
c

ω =

∫ 1

0

∫ 1

0

(f ◦ c)

∣∣∣∣∣∣
∂c1
∂s

∂c1
∂t

∂c2
∂s

∂c2
∂t

∣∣∣∣∣∣+ (g ◦ c)

∣∣∣∣∣∣
∂c1
∂s

∂c1
∂t

∂c3
∂s

∂c3
∂t

∣∣∣∣∣∣+ (h ◦ c)

∣∣∣∣∣∣
∂c2
∂s

∂c2
∂t

∂c3
∂s

∂c3
∂t

∣∣∣∣∣∣ ds dt
=

∫ 1

0

∫ 1

0

ωc(s,t)

(
∂c

∂s
,
∂c

∂t

)
ds dt =

∫ 1

0

∫ 1

0

(c∗ω)(s,t)(e1, e2) ds dt.

Note that if we let K : [0, 1]2 → R2 be the identity parameterization of [0, 1]2,
i.e., K(s, t) = (s, t) then∫

K

c∗ω =

∫ 1

0

∫ 1

0

(c∗ω)(s,t)(e1, e2) ds dt.

Thus we get that ∫
c

ω =

∫
K

c∗ω.

71



More generally, for any k-cell c : [0, 1]k → Rn and any k-form ω on Rn, the
same reasoning shows that∫

c

ω =

∫ 1

0

· · ·
∫ 1

0

ωc(t1,...,tk)

(
∂c

∂t1
, . . . ,

∂c

∂tk

)
dt1 . . . dtk

=

∫ 1

0

· · ·
∫ 1

0

(c∗ω)(t1,...,tk)(e1, . . . , ek) dt1 . . . dtk

=

∫
K

c∗ω

where K : [0, 1]k → Rk is given by K(t1, . . . , tk) = (t1, . . . , tk).

Next we show how to compute the pullback in coordinates.

Proposition 152. Let f : Rm → Rn. Call the coordinates on the domain xj
and the coordinates on the target yi. Let ω = g dyi1 . . . dyik be a k-form on Rn.
Then f ∗ω = (g ◦ f) dfi1 . . . dfik .

Before giving the proof, let’s do an example illustrating how to apply the
formula.

Example 153. Let f : R2 → R3 be given by f(s, t) = (t, s2, s + t) and let
ω = x dy dz be a 2-form on R3. Then Proposition 152 says

f ∗ω = t df2 df3 = t

(
∂(s2)

∂s
ds+

∂(s2)

∂t
dt

)(
∂(s+ t)

∂s
ds+

∂(s+ t)

∂t
dt

)
= t(2s ds)(ds+ dt) = 2st ds dt.

Let’s verify this is correct using the definition of the pullback. We have

Df =

 0 1
2s 0
1 1

 , (Df)e1 =

 0
2s
1

 , (Df)e2 =

1
0
1


and so

(f ∗ω)(s,t)(e1, e2) = ω(t,s2,s+t)

 0
2s
1

 ,

1
0
1

 = t

∣∣∣∣2s 0
1 1

∣∣∣∣ = 2st.

Hence f ∗ω is indeed equal to 2st ds dt.
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We now proceed with the proof of the proposition.

Proof. (Proposition 152) We know that f ∗ω is a k-form and so

f ∗ω =
∑
J

(f ∗ω)p(ej1 , . . . , ejk) dxJ .

We need to compute these coefficients (f ∗ω)p(ej1 , . . . , ejk). From the definition
of pullback, we see that

(f ∗ω)p(ej1 , . . . , ejk) = ωf(p)

(
∂f

∂xj1
, . . . ,

∂f

∂xjk

)
= g(f(p)) dyi1 . . . dyik

(
∂f

∂xj1
, . . . ,

∂f

∂xjk

)
= g(f(p)) det

(
∂fI
∂xJ

)
,

where

∂fI
∂xJ

=


∂fi1
∂xj1

· · · ∂fi1
∂xjk

...
. . .

...
∂fik
∂xj1

· · · ∂fik
∂fjk

 .

It follows that

f ∗ω =
∑
J

(g ◦ f) det

(
∂fI
∂xJ

)
dxJ .

On the other hand, we compute that

dfi1 · · · dfik =

(
m∑
j1=1

∂fi1
∂xj1

dxj1

)(
m∑
j2=1

∂fi2
∂xj2

dxj2

)
· · ·

(
m∑

jk=1

∂fik
∂xjk

dxjk

)

=
∑

j1 6=j2 6=···6=jk

∂fi1
∂xj1

∂fi2
∂xj2

· · · ∂fik
∂xjk

dxj1 . . . dxjk

=
∑

j1<j2<...<jk

(∑
σ∈Sk

sign(σ)
∂fi1
∂xjσ(1)

∂fi2
∂xjσ(2)

· · · ∂fik
∂xjσ(k)

)
dxj1 . . . dxjk

=
∑
J

det

(
∂fI
∂xJ

)
dxJ .

It follows that f ∗ω = (g ◦ f) dfi1 . . . dfik , as needed.
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10.3 Pushforward

It is a meta principle that every operation on differential forms has a dual
operation on cells. For example, the exterior derivative operator on forms is
dual to the boundary operator on cells. The dual operation to pullback is
called pushforward.

Definition 154. Let f : Rm → Rn be a smooth map and let c : [0, 1]k → Rm

be a k-cell in Rm. The pushforward f∗c : [0, 1]k → Rn is the k-cell in Rn given
by f∗c(p) = f(c(p)) = (f ◦ c)(p).

Remark 155. The idea here is that if c parameterizes a set S in Rm then f∗c
parameterizes the set f(S) in Rn.

Definition 156. The pushforward of a k-chain is defined by taking the push-
forward of each cell in the chain individually. Thus if

∑
aici is a k-chain, we

define
f∗

(∑
aici

)
=
∑

ai(f∗ci)

The following proposition shows the duality between pushforward and pull-
back.

Proposition 157. Let f : Rm → Rn be smooth, let c : [0, 1]k → Rm be a k-cell,
and let ω be a k-form on Rn. Then∫

c

f ∗ω =

∫
f∗c

ω.

Proof. We have∫
c

f ∗ω =

∫ 1

0

· · ·
∫ 1

0

(f ∗ω)c(t1,...,tk)((Dc)e1, . . . , (Dc)ek) dt1 . . . dtk

=

∫ 1

0

· · ·
∫ 1

0

ωf(c(t1,...,tk))((Df)(Dc)e1, . . . , (Df)(Dc)ek) dt1 . . . , dtk

=

∫ 1

0

· · ·
∫ 1

0

ω(f◦c)(t1,...,tk)((D(f ◦ c))e1, . . . , (D(f ◦ c))ek) dt1 . . . , dtk

=

∫
f◦c

ω =

∫
f∗c

ω,

where we used the chain rule to get from the second to the third line.
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10.4 Pullback and the Exterior Derivative

There is one more crucial property of pullback: f ∗(dω) = d(f ∗ω). In other
words, pullback commutes with exterior derivative. There is also a dual prop-
erty for pushforward: f∗(∂c) = ∂(f∗c). That is, pushforward commutes with
boundary. This property of pushforward is a little easier to understand intu-
itively. It essentially says that “the boundary of the image is the image of the
boundary.”

Proposition 158. Let f : Rm → Rn be a smooth map and let c : [0, 1]k → Rm

be a k-cell. Then ∂(f∗c) = f∗(∂c).

Proof. The faces of f∗c are the maps

(f∗c)
j
i (t1, . . . , tk−1) = (f∗c)(t1, . . . , ti−1, j, ti+1, . . . , tk−1)

= f(c(t1, . . . , ti−1, j, ti, . . . , tk−1))

= f(cji (t1, . . . , tk−1)) = (f∗(c
j
i ))(t1, . . . , tk−1).

Thus (f∗c)
j
i = f∗(c

j
i ) and it follows that

∂(f∗c) =
k∑
i=1

1∑
j=0

(−1)i+j(f∗c)
j
i =

k∑
i=1

1∑
j=0

(−1)i+jf∗(c
j
i ) = f∗(∂c).

This proves the proposition.

What about the corresponding property of pullback? Let f : Rm → Rn be
a smooth map and let ω be a k-form on Rn. Then

[d(f ∗ω)]p(v1, . . . , vk+1) = lim
ε→0

1

εk+1

∫
∂Pε

f ∗ω

= lim
ε→0

1

εk+1

∫
f∗(∂Pε)

ω = lim
ε→0

1

εk+1

∫
∂(f∗Pε)

ω,

where Pε : [0, 1]k+1 → Rm is given by

Pε(t1, . . . , tk+1) = p+ εt1v1 + . . .+ εtk+1vk+1.

But the image of the parallelepiped Pε under f is very nearly the parallelepiped
Qε : [0, 1]k+1 → Rn given by

Qε(t1, . . . , tk+1) = f(p) + εt1(Df)v1 + . . .+ εtk+1(Df)vk+1.

75



Hence we expect that

lim
ε→0

1

εk+1

∫
∂(f∗Pε)

ω “ = ” lim
ε→0

1

εk+1

∫
∂(Qε)

ω

= dωf(p)((Df)v1, . . . , (Df)vk+1)

= [f ∗(dω)]p(v1, . . . , vk+1).

This shows that d(f ∗ω) = f ∗(dω). Unfortunately, this is not a rigorous proof
because f∗Pε is not literally equal to Qε. We’d have to estimate the error in
this approximation to justify the equals sign in quotes. This could be done in
principle, but instead we will give a rigorous proof based on the formula for
pullback in coordinates.

Proposition 159. Let f : Rm → Rn be a smooth function and let ω be a
k-form on Rn. Then d(f ∗ω) = f ∗(dω).

Proof. Let xj be the coordinates on Rm and let yi be the coordinates on Rn.
Suppose that ω = g dyi1 . . . dyik . Then

dω =
n∑
`=1

∂g

∂y`
dy` dyi1 . . . dyik .

It follows that

f ∗ω = (g ◦ f) dfi1 . . . dfik ,

f ∗(dω) =
n∑
`=1

(
∂g

∂y`
◦ f
)
df` dfi1 . . . dfik .

Finally, the graded product rule says that

d(f ∗ω) =
m∑
j=1

∂

∂xj
(g ◦ f) dxj dfi1 . . . dfik + (g ◦ f) d(dfi1 . . . dfik).

Since a product of closed forms is closed, we have d(dfi1 . . . dfik) = 0. Hence
the above formula becomes

d(f ∗ω) =
m∑
j=1

n∑
`=1

(
∂g

∂y`
◦ f
)
∂f`
∂xj

dxj dfi1 . . . dfik

=
n∑
`=1

(
∂g

∂y`
◦ f
)
df` dfi1 . . . dfik .

Thus we see that d(f ∗ω) = f ∗(dω), as needed.
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11 The Poincare Lemma

We have seen that there are closed forms on Rn \ {0} which are not exact. It
is a very special property of Rn that all closed forms defined on Rn turn out
to be exact. This fact is usually referred to as the Poincare lemma.

Theorem 160 (Poincare Lemma). Every closed k-form on Rn is exact.

Example 161. Let’s check that every closed 1-form on Rn is exact. Let

α =
n∑
i=1

fi dxi

be a closed 1-form on Rn. Typically we find antiderivatives by some sort of
integration process. Motivated by this, define a function g : Rn → R by setting

g(p) =

∫
γ

α

where γ : [0, 1]→ Rn is some curve starting at 0 and ending at p.

We need to check that this is well-defined, i.e., that it does not depend
on the particular choice of curve connecting the origin to p. So suppose that
γ, η : [0, 1] → Rn are two curves connecting the origin to p. Define h : [0, 1] ×
[0, 1]→ Rn by

h(s, t) = sη(t) + (1− s)γ(t).

Note that h(s, 0) = 0 and h(s, 1) = p for all s ∈ [0, 1]. This h is a homotopy
between γ and η holding the endpoints of these curves fixed. Since α is closed,
Stokes’ theorem says

0 =

∫
h

dα =

∫
∂h

α =

∫
h02

α +

∫
h11

α−
∫
h12

α−
∫
h01

α

=

∫
η

α−
∫
γ

α.

Here the final equality follows from the fact that h0
2(s) = h(s, 0) = 0, h1

1(t) =
h(1, t) = η(t), h1

2(s) = h(s, 1) = p, and h0
1(t) = γ(t). Thus∫

η

α =

∫
γ

α,

proving that g is well-defined.
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We claim that dg = α. To see this, fix a point p in Rn, and observe that

∂

∂xi
g(p) = lim

ε→0

[∫
γp+εei

α−
∫
γp

α

]
where γp+εei is some path from 0 to p + εei, and γp is some path from 0 to
p. Actually, we are free to choose these paths, and hence we can assume that
γp+εei consists of γp followed by the straight line from p to p + εei. For this
choice of γp+εei , we get

lim
ε→0

[∫
γp+εei

α−
∫
γp

α

]
= lim

ε→0

1

ε

∫
ηε

α

where ηε : [0, ε]→ Rn is given by ηε(t) = p+tei. But the fundamental theorem
of calculus implies that

lim
ε→0

1

ε

∫
ηε

α = lim
ε→0

1

ε

∫ ε

0

fi(p+ tei) dt = fi(p).

Thus we get

dg =
n∑
i=1

∂g

∂xi
dxi =

n∑
i=1

fi dxi = α,

as needed.

To prove the general case of the Poincare lemma, we need to find a way to
“integrate” k-forms to get (k − 1)-forms. Given a k-form ω =

∑
I fI dxI on

Rn, we can split the dxI ’s into two groups: those that contain dx1 and those
that don’t. This gives a decomposition

ω =
∑
J

f1,J dx1 dxJ +
∑
K

fK dxK ,

where the first sum is taken over increasing lists J of k−1 numbers taken from
2, . . . , n, and the second sum is taken over increasing listsK of k numbers taken
from 2, . . . , n. We define the “integral”

Iω =
∑
J

(∫ x1

0

f1,J(s, x2, . . . , xn) ds

)
dxJ .

This is a (k− 1)-form on Rn obtained by integrating out the dx1 in the terms
with a dx1, and forgetting the terms without a dx1.
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Example 162. Consider the 2-form

ω = x1x2 dx1 dx2 + x2
1x3 dx1 dx3 + x2 dx2 dx3.

We have

Iω =

(∫ x1

0

sx2 ds

)
dx2 +

(∫ x1

0

s2x3 ds

)
dx3

=
x2

1x2

2
dx2 +

x3
1x3

3
dx3.

Thus we’ve integrated out the dx1 in dx1 dx2 and dx1 dx3, and we’ve forgotten
the term dx2 dx3.

Proposition 163. Define maps ι : Rn−1 → Rn and π : Rn → Rn−1 by setting
ι(x2, . . . , xn) = (0, x2, . . . , xn) and π(x1, x2, . . . , xn) = (x2, . . . , xn). Then

d(Iω) + I(dω) = ω − π∗ι∗ω.

Proof. Let ω be a k-form and write

ω =
∑
J

f1,J dx1 dxJ +
∑
K

fK dxK .

Then we have

Iω =
∑
J

(∫ x1

0

f1,J(s, ·) ds
)
dxJ ,

where the · stands for the variables x2, . . . , xn. It follows that

d(Iω) =
∑
J

(
f1,J dx1 +

n∑
j=2

∂

∂xj

[∫ x1

0

f1,J(s, ·) ds
]
dxj

)
dxJ

=
∑
J

(
f1,J dx1 +

n∑
j=2

[∫ x1

0

∂f1,J

∂xj
(s, ·) ds

]
dxj

)
dxJ .

On the other hand, we have

dω =
∑
J

n∑
j=2

∂f1,J

∂xj
dxj dx1 dxJ +

∑
K

∂fI
∂x1

dx1 dxK + terms that don’t
have dx1 ,
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and hence

I(dω) = −
∑
J

n∑
j=2

(∫ x1

0

∂f1,J

∂xj
(s, ·)

)
dxj dxJ

+
∑
K

(∫ x1

0

∂fI
∂x1

(s, ·) ds
)
dxK

= −
∑
J

n∑
j=2

(∫ x1

0

∂f1,J

∂xj
(s, ·)

)
dxj dxJ

+
∑
K

fK(x1, ·) dxI −
∑
K

fK(0, ·) dxK .

Thus we get

d(Iω) + I(dω) = ω −
∑
K

fK(0, ·) dxK .

To complete the proof, we need to check that∑
K

fK(0, ·) dxK = π∗ι∗ω.

Note that ι∗(dxi) = dxi for i ≥ 2 and ι∗(dx1) = 0. Thus

ι∗ω =
∑
K

fK(0, ·) dxK ,

where we are thinking of this as a form on Rn−1 with coordinates x2, . . . , xn. To
get π∗(ι∗ω), we simply treat this as a form on Rn with the same formula.

Using this we can prove the Poincare lemma.

Proof. (Poincare lemma) Fix an integer k ≥ 1. We will prove the result by
induction on the dimension n of the ambient space Rn. For the base case,
assume that n = k. Let ω be a closed k-form on Rk. Then the previous
proposition says

ω = d(Iω) + I(dω) + π∗ι∗ω.

But dω = 0 since ω is closed and ι∗ω = 0 since it is a k-form on Rk−1. Thus
ω = d(Iω) is exact. This proves the base case.

Now fix a positive integer n ≥ k. Assume by way of induction that every
closed k-form on Rn is exact. To complete the inductive step, we need to show
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that every closed k-form on Rn+1 is exact. So assume ω is a closed k-form on
Rn+1. Note that d(ι∗ω) = ι∗(dω) = 0, and so ι∗ω is a closed k-form on Rn.
By the inductive hypothesis, there is a form α on Rn such that ι∗ω = dα. It
follows that

ω = d(Iω) + I(dω) + π∗ι∗ω = d(Iω) + π∗(dα)

= d(Iω) + d(π∗α) = d(Iω + π∗α),

and hence ω is exact. This finishes the inductive step, and the proof is com-
plete.

12 Applications

Gauss’s Law in physics says that the flux of the electric field through a closed
surface is proportional to the net amount of charge enclosed by the surface.
We can use Stokes’ theorem to prove this in a couple of special cases.

12.1 Gauss’s Law for Point Charges

In three dimensions, the electric field generated by a unit point charge at the
origin is

F (x, y, z) =
1

4π

(x, y, z)

‖(x, y, z)‖3
.

Actually, in any dimension n ≥ 2, there is an analogous field F which we will
still refer to as an electric field.

Definition 164. Fix an integer n ≥ 2. Let cn−1 = Voln−1(unit sphere in Rn)
denote the (n− 1)-dimensional volume of the unit sphere in Rn.

Example 165. Note that c1 = 2π is the perimeter of the unit circle in R2 and
c2 = 4π is the surface area of the unit sphere in R3.

Definition 166. Fix a dimension n ≥ 2. The electric field associated to a
point charge at the origin is

F (~x) =
1

cn−1

~x

‖~x‖n
.

Note that this field is only defined on Rn \ {0}.
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So far we’ve only discussed the flux of vector fields in R3 over surfaces in
R3. However, there is also a notion of flux for vector fields F : Rn → Rn over
(n− 1)-dimensional objects in Rn.

Definition 167. Let F : Rn → Rn be a vector field on Rn. Associated to F
is a flux form αF . It is the (n− 1)-form on Rn given by the formula

(αF )p(v1, . . . , vn−1) = det(F (p), v1, . . . , vn−1).

Thus αF computes the flux of F over small (n− 1)-parallelepipeds in Rn.

By expanding the determinant along the first column we can also express
αF in terms of the dxi. Indeed,

det(F (p), v1, . . . , vn−1) =
n∑
i=1

(−1)i+1Fi(p)(dx1 . . . d̂xi . . . dxn)(v1, . . . , vn−1),

where the hat over dxi indicates that this term should be omitted. Thus we
can write

αF =
n∑
i=1

(−1)i+1Fi dx1 . . . d̂xi . . . dxn.

For small n this gives the formulas:

n = 2 : F1 dy − F2 dx

n = 3 : F1 dy dz − F2 dx dz + F3 dx dy

n = 4 : F1 dx2 dx3 dz4 − F2 dx1 dx3 dx4 + F3 dx1 dx2 dx4 − F4 dx1 dx2 dx3.

Note in particular that for n = 3 we recover the familiar formula for the flux
form of a vector field on R3.

Proposition 168. Let αF be the flux form associated to a vector field F : Rn →
Rn. Then

dαF = div(F ) dx1 . . . dxn

where div(F ) =
∑n

i=1
∂Fi
∂xi

is the divergence of the vector field F .
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Proof. We have

dαF =
n∑
i=1

(−1)i+1

(
n∑
j=1

∂Fi
∂xj

dxj

)
dx1 . . . d̂xi . . . dxn

=
n∑
i=1

(−1)i+1∂Fi
∂xi

dxi dx1 . . . d̂xi . . . dxn

=
n∑
i=1

∂Fi
∂xi

dx1 . . . dxi . . . dxn = div(F ) dx1 . . . dxn,

as needed.

Proposition 169. Let F be the electric field generated by a point charge at
the origin in Rn. Then dαF = 0 on Rn \ {0}.

Proof. According to the previous proposition, we need to check that div(F ) =
0. Recalling that

F (~x) =
1

cn−1

~x

‖~x‖n
,

we compute that

div(F ) =
1

cn−1

n∑
i=1

∂

∂xi

(
xi

(x2
1 + . . .+ x2

n)n/2

)
=

1

cn−1

n∑
i=1

(x2
1 + . . .+ x2

n)n/2 − nx2
i (x

2
1 + . . .+ x2

n)n/2−1

(x2
1 + . . .+ x2

n)n
= 0,

as desired.

We can now verify Gauss’s law in the case of point charges.

Proposition 170. Fix n ≥ 2 and let F be the electric field associated to a
point charge at the origin in Rn. Let αF be the flux form for F . Let Σ be a
closed (n− 1)-dimensional surface in Rn \{0} and let Ω be the region enclosed
by Σ. Then ∫

Σ

αF =

{
0, if 0 /∈ Ω

1, if 0 ∈ Ω.
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Proof. There are two cases to consider. First assume that Σ does not enclose
the origin. Then F is defined everywhere on Ω. Moreover, since Σ = ∂Ω,
Stokes’ theorem gives∫

Σ

αF =

∫
Ω

dαF =

∫
Ω

div(F ) dx1 . . . dxn = 0.

This verifies Gauss’s law when Σ does not enclose the origin.

Now suppose instead that Σ does enclose the origin. Fix a very small
number r > 0 and let Br be a ball of radius r centered at the origin. Then
div(F ) = 0 everywhere on Ω \Br and so

0 =

∫
Ω\Br

dαF =

∫
∂(Ω\Br)

αF =

∫
Σ

αF −
∫
∂Br

αF ,

where both integrals on the right hand side are computed with respect to the
outer normals. Thus we get ∫

Σ

αF =

∫
∂Br

αF .

On the other hand, F is everywhere normal to ∂Br and ‖F‖ = 1
cn−1rn−1 on

∂Br and so∫
∂Br

αF =
1

cn−1rn−1
Voln−1(∂Br) =

1

cn−1rn−1

[
rn−1 Voln−1(∂B1)

]
= 1.

Here we’ve used the fact that Voln−1(∂Br) = rn−1 Voln−1(∂B1) and the fact
that cn−1 = Voln−1(∂B1). Combining everything above yields∫

Σ

αF = 1,

and so we’ve verified Gauss’s law in this case as well.

12.2 Gauss’s Law for Uniform Charge Distributions

Of course, there are many other possible charge distributions. We’ll also ad-
dress the case of uniform charge densities on regions in Rn. Consider a nice
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region Ω in Rn. What is the electric field generated by a uniform charge density
on Ω?

To answer this intuitively, cut Ω into small pieces Ωi. In each piece Ωi pick a
point yi. Then we can approximate Ωi by a point charge at yi with net charge
Vol(Ωi). Because of this, the force a point charge at x experiences due to Ωi

is very nearly equal to
1

cn−1

x− yi
‖x− yi‖n

Vol(Ωi).

Summing over all the pieces Ωi shows that the total force at x is approximately

1

cn−1

∑
i

x− yi
‖x− yi‖n

Vol(Ωi).

This converges to
1

cn−1

∫
y∈Ω

x− y
‖x− y‖n

dV (y)

as the approximation gets better and better. Based on this we make the
following definition.

Definition 171. Let Ω be a nice region in Rn. The electric field associated
to a uniform charge density on Ω is

F (x) =
1

cn−1

∫
y∈Ω

x− y
‖x− y‖n

dV (y).

It turns out that this electric field is defined at every x ∈ Rn. This isn’t
immediately obvious from the formula above since we may divide by 0 in the
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integrand if x ∈ Ω. To see that the integral still converges, fix a point x ∈ Ω.
For n = 2, in polar coordinates centered at x, the integrand becomes

x− y
‖x− y‖2

dV (y) =
−(r cos θ, r sin θ)

r2
r dr dθ.

Thus the Jacobian factor cancels the singularity leaving something integrable.
For n = 3, in spherical coordinates centered at x, the integrand becomes

x− y
‖x− y‖3

dV (y) =
−(r cos θ sinφ, r sin θ sinφ, r cosφ)

r3
r2 sinφ dr dθ dφ.

Again the Jacobian factor cancels the singularity leaving something integrable.
For general n, the same computation in n-dimensional polar coordinates shows
that the integral is well-defined.

Proposition 172. Let Bs be a ball of radius s centered at the origin in R2.
Let F be the electric field associated to a uniform charge density on Bs. Then

F (~x) =
~x

2
for ~x ∈ ∂Bs.

Proof. By rotational symmetry, it’s enough to prove this for ~x = (s, 0). Intro-
duce polar coordinates centered at x. In these coordinates, ∂Bs is given by
the equation r = −2s cos θ.

Therefore we get

F (x) =
1

2π

∫
y∈Bs

x− y
‖x− y‖2

dV (y)

=
1

2π

∫ θ= 3π
2

θ=π
2

∫ r=−2s cos θ

r=0

−(r cos θ, r sin θ)

r2
r dr dθ

=
2s

2π

∫ 3π
2

π
2

(cos2 θ, sin θ cos θ) dθ =
(s

2
, 0
)

=
x

2
,

as needed.
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We’d like to prove Gauss’s law for continuous charge distributions. The
first step is to compute the divergence of the electric field associated to a
uniform charge distribution on Ω.

Proposition 173. Let Ω be a nice region in Rn and let F be the electric field
associated to a uniform charge distribution on Ω. Then F is continuous on
Rn and smooth away from ∂Ω. Moreover, we have

div(F )(x) =

{
0, if x is outside Ω

1, if x is inside Ω.

The full proof of this is slightly beyond the scope of the class. So we’ll just
indicate the main ideas.

Proof. (Sketch) There are two cases to consider.

Case 1: Assume that x is a point outside of Ω. We want to compute div(F ).
So we need to find, for instance,

∂

∂x1

F1 =
1

cn−1

∂

∂x1

[∫
y∈Ω

x1 − y1

‖x− y‖n
dV (y)

]
.

Thus we need to take the derivative of an integral. Recall that derivatives
commute with sums:

∂

∂x1

(∑̀
i=1

fi

)
=
∑̀
i=1

∂fi
∂x1

.

Since an integral is a sort of “infinite sum” we might therefore hope that
derivatives commute with integrals. In our case, this turns out to be valid
provided x does not belong to Ω.

Fact. If x lies outside Ω then

∂

∂x1

[∫
y∈Ω

x1 − y1

‖x− y‖n
dV (y)

]
=

∫
y∈Ω

∂

∂x1

(
x1 − y1

‖x− y‖n

)
dV (y).

Given the fact, we can finish the proof of case 1. Indeed, we get

div(F )(x) =
1

cn−1

n∑
i=1

∂

∂xi

[∫
y∈Ω

xi − yi
‖x− y‖n

dV (y)

]
=

1

cn−1

∫
y∈Ω

n∑
i=1

∂

∂xi

(
xi − yi
‖x− y‖n

)
dV (y) = 0
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since the divergence of a point charge centered at y is zero.

Case 2: Assume that x lies inside Ω. We’d still like to use the fact. To
make this work, we’ll remove a small ball around x from Ω. Let s > 0 be a
very small number and let Bs be a ball of radius s centered at x. Then we can
split F into two vector fields:

F (p) =
1

cn−1

∫
y∈Ω\Bs

p− y
‖p− y‖n

dV (y)︸ ︷︷ ︸
Gs(p)

+
1

cn−1

∫
y∈Bs

p− y
‖p− y‖n

dV (y)︸ ︷︷ ︸
Hs(p)

.

Note that if p ∈ Bs, then p lies outside Ω \ Bs, and so again we can use the
fact to commute derivatives with integrals. This implies that div(Gs)(p) = 0
for p ∈ Bs.

Since div(Gs)(p) = 0 in Bs, Stokes’ theorem gives that∫
∂Bs

αGs =

∫
Bs

dαGs = 0.

Recall from Example 118 that we can compute the divergence of F at x as a
limit of the flux of F through small surfaces centered at x. Thus we have

div(F )(x) = lim
s→0

1

Voln(Bs)

∫
∂Bs

αF

= lim
s→0

1

Voln(Bs)

[∫
∂Bs

αGs +

∫
∂Bs

αHs

]
= lim

s→0

1

Voln(Bs)

∫
∂Bs

αHs .

Finally, one verifies by explicit computation that

1

Voln(Bs)

∫
∂Bs

αHs = 1,

and this completes the proof.

Remark 174. Let us carry out this explicit computation for n = 2. In this
case, Hs is the electric field associated to a uniform charge density on a ball
of radius s. By Proposition 172, we know that ‖Hs‖ = s

2
on ∂Bs and Hs

everywhere normal to ∂Bs. Thus

1

Area(Bs)

∫
∂Bs

αHs =
1

πs2

[s
2
· 2πs

]
= 1,

as needed.
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Now we can verify Gauss’s law for continuous charge distributions as well.

Proposition 175. Let Ω be a nice region in Rn and let F be the electric
field associated to a uniform charge density on Ω. Let Σ be a closed (n − 1)-
dimensional surface in Rn which encloses a region U . Then∫

Σ

αF = Vol(U ∩ Ω).

Proof. Since U = ∂Σ, Stokes’ theorem gives that∫
Σ

αF =

∫
U

dαF =

∫
U

div(F ) dx1 . . . dxn = Vol(U ∩ Ω).

Here the final equality follows from the fact that div(F ) = 1 inside Ω and
div(F ) = 0 outside Ω.

12.3 The Isoperimetric Inequality

We can use Gauss’s law for uniform charge distributions along with Stokes’
theorem to give a nice proof of the isoperimetric inequality in the plane. The
isoperimetric problem in the plane asks “what is the most efficient way to
enclose a given amount of area in the plane?” In other words, of all the
regions in the plane with a given area, which one has the smallest perimeter?
Intuitively, we expect that the answer is a circle. The following inequality
confirms that this is the case.

Theorem 176 (Isoperimetric Inequality). Let Ω be region in R2 bounded by
a smooth, closed curve. Then

Length(∂Ω) ≥ 2
√
π
√

Area(Ω).

Moreover, if equality holds then Ω is a round disc.

Remark 177. Note that the right hand side of the above inequality is the
perimeter of the circle with the same area as Ω. Indeed, let r be the radius of
such a circle. Then πr2 = Area(Ω) and so

r =
√

Area(Ω)/π.

It follows that the perimeter of the circle is 2πr = 2
√
π
√

Area(Ω). Hence
the isoperimetric inequality really says that the perimeter of Ω is at least the
perimeter of the circle with the same area as Ω. In particular, the isoperimetric
inequality implies that the circle is the solution to the isoperimetric problem.
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Proof. (Due to Gromov) Let Ω be as in the statement of the theorem. Let
F be the electric field generated by a uniform charge density on Ω. Then
div(F ) = 1 on Ω and so Stokes’ theorem says that

Area(Ω) =

∫
Ω

dαF =

∫
∂Ω

αF =

∫
∂Ω

F · ν d`.

Here ν is the unit outward normal to ∂Ω.

It remains to estimate the right hand side. Fix a point x ∈ ∂Ω. Then

F (x) · ν =
1

2π

∫
y∈Ω

(x− y) · ν
‖x− y‖2

dV (y).

Introduce polar coordinates centered at x such that r = 1, θ = 0 corresponds
to ν.

In this coordinate system the integrand becomes

(x− y) · ν
‖x− y‖2

=
−r cos θ

r2
= −cos θ

r
.

Next let’s analyze the level sets of this function.

We claim that the level sets of − cos θ
r

are circles tangent to the line θ = π/2
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at x.

To see this, first consider a circle of radius s which lies in the region π/2 ≤
θ ≤ 3π/2 and is tangent to θ = π/2 at x.

Computing, we find that − cos θ
r

= 1
2s

on this circle. Likewise, consider a circle
of radius s which lies in the region −π/2 ≤ θ ≤ π/2 and is tangent to θ = π/2
at x. Then − cos θ

r
= − 1

2s
on this circle. Finally, notice that − cos θ

r
= 0 on the

line θ = π/2. Thus we have a complete description of the level sets of − cos θ
r

.

Now let D be a disc of the same area as Ω which lies in the region π/2 ≤
θ ≤ 3π/2 and is tangent to θ = π/2 at x. Let

s =
√

Area(Ω)/π
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denote the radius of D.

From the above description of the level sets of − cos θ
r

, we see that

−cos θ

r
≥ 1

2s
inside D, −cos θ

r
≤ 1

2s
outside D.

Moreover, the fact that Area(D) = Area(Ω) implies that Area(D \ Ω) =
Area(Ω \D). It follows that∫

y∈Ω\D

(x− y) · ν
‖x− y‖2

dV (y) ≤ 1

2s
Area(Ω \D)

=
1

2s
Area(D \ Ω) ≤

∫
y∈D\Ω

(x− y) · ν
‖x− y‖2

dV (y).

Hence we can estimate

F (x) · ν =
1

2π

∫
y∈Ω

(x− y) · ν
‖x− y‖2

dV (y)

=
1

2π

∫
y∈Ω∩D

(x− y) · ν
‖x− y‖2

dV (y) +
1

2π

∫
y∈Ω\D

(x− y) · ν
‖x− y‖2

dV (y)

≤ 1

2π

∫
y∈Ω∩D

(x− y) · ν
‖x− y‖2

dV (y) +
1

2π

∫
y∈D\Ω

(x− y) · ν
‖x− y‖2

dV (y)

=
1

2π

∫
y∈D

(x− y) · ν
‖x− y‖2

dV (y) =
s

2
,

where we used Proposition 172 to get the last equality.

Putting everything together, we get

Area(Ω) =

∫
∂Ω

F · ν d` ≤ s

2
· Length(∂Ω) =

√
Area(Ω)/π

2
· Length(∂Ω).
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Rearranging, this implies that

Length(∂Ω) ≥ 2
√
π
√

Area(Ω),

as desired. To complete the proof, notice that if equality holds then F (x) ·ν =
s/2 for every x ∈ ∂Ω. From the above chain of inequalities, it’s clear that the
only way this can happen is if Ω = D.

12.4 Brouwer’s Fixed Point Theorem

We can also use Stokes’ theorem to give a proof of the Brouwer fixed point
theorem. This theorem has important applications in both math and other
disciplines. For example, in game theory, the Brouwer fixed point theorem is
used to establish the existence of Nash equilibria.

Theorem 178 (Brouwer). Let D = {x ∈ Rn : ‖x‖ ≤ 1} be the closed unit
disc in Rn. Let f : D → D be a smooth map. Then f has a fixed point, i.e.,
there is a point x ∈ D such that f(x) = x.

Remark 179. (i) It is essential that D is the closed unit disc. The formula

f(x, y) =

(
x

2
+

1

2
,
y

2

)
defines a smooth map from the open unit disc to itself. However, it does not
have a fixed point in the open unit disc. Of course, the “missing” fixed point
(1, 0) does belong to the closed unit disc.

(ii) The assumption that f is smooth is not essential. In fact, the theorem
remains true so long as f is merely continuous.

(iii) The theorem remains true if we replace the closed unit disc D by any
other subset of Rn that “looks like” D. More precisely, suppose A is a subset
of Rn such that there is a continuous bijection φ : A → D with continuous
inverse. Then Brouwer’s theorem applies to continuous maps f : A → A as
well. For example, A could be a closed cube or a closed tetrahedron. However,
a spherical shell A = {x ∈ Rn : 1 ≤ ‖x‖ ≤ 2} is not allowed.

Example 180. As a silly example, suppose someone takes a cup of coffee,
stirs it, and then allows the liquid to return to rest. The Brouwer fixed point
theorem says that some molecule must return to the exact position at which
it started.
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We will deduce the Brouwer fixed point theorem as a consequence of the
following lemma.

Lemma 181. Let D be the closed unit ball in Rn. There does not exist a
smooth map g : D → ∂D such that g(p) = p for all p ∈ ∂D.

Remark 182. Intuitively, this says there is no way to retract the closed unit
ball to its boundary without “ripping” the disc.

Proof. Suppose for contradiction that such a map g exists. Let F be the elec-
tric field generated by a point charge at the origin and consider the associated
flux form αF on Rn \ {0}. Recall that dαF = 0. Also notice that g restricts to
the identity map on ∂D and so g∗(∂D) = ∂D. Hence we get

1 =

∫
∂D

αF =

∫
g∗(∂D)

αF =

∫
∂D

g∗αF =

∫
D

d(g∗αF ) =

∫
D

g∗(dαF ) = 0.

This is clearly impossible. [Note that we are allowed to apply Stokes’ theorem
to g∗αF since it is defined everywhere on D, whereas αF is not.]

Now let’s use the lemma to prove Brouwer’s theorem.

Proof. (Brouwer Fixed Point Theorem) Suppose for contradiction there is a
smooth map f : D → D that does not have a fixed point. For each x ∈ D, let
R(x) be the ray originating at f(x) and passing through x. Note that R(x)
is well-defined since f has no fixed points. Now define g : D → ∂D by letting
g(x) be the point at which R(x) intersects ∂D.

Note that g is smooth and that g(x) = x for x ∈ ∂D. This is a contradiction
because no such g exists by Lemma 181.
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13 Manifolds

13.1 Intuition

We begin with an intuitive discussion of manifolds.

Definition 183. (Informal) An n-dimensional manifold is a set M ⊂ RN such
that M looks locally like a n-dimensional plane near each of its points.

Example 184. The following are examples of 1-dimensional manifolds in R2.

Notice that M can be bounded or unbounded. The important thing is that
M has a well-defined tangent line at each of its points.

Example 185. The following are not examples of 1-manifolds.

In each case there is a point where M is not locally modeled by a line.

Example 186. A ray is not a one manifold since it is locally modeled on a
half-line near one of its points.

Nevertheless, this is still an important object that we would like to consider.
It is an example of a manifold with boundary.
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Definition 187. (Informal) A n-dimensional manifold with boundary is a set
M ⊂ RN that looks locally like either an n-dimensional plane or half of an
n-dimensional plane near each of its points. The points where M looks like
half of an n-dimensional plane are called the boundary points of M .

Example 188. Let M be the upper hemisphere of the unit sphere in R3 .
That is, let M = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z > 0}.

Then M is a 2-dimensional manifold. If we modified M to include the equator,
then we would get a manifold with boundary.

Example 189. A torus is the surface of a donut in R3.

It is an example of a 2-dimensional manifold. It is also possible to think about
a torus as an abstract 2-dimensional manifold without giving an embedding
into Euclidean space. Indeed, think about the screen in the game of Pac-Man.
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When Pac-Man goes off one edge of the screen, he comes back on the other
side. Thus we can think of the screen in Pac-Man as a square with the top edge
glued to the bottom edge and the left edge glued to the right edge. Starting
from a square, gluing the top edge to the bottom edge makes a cylinder, and
then gluing the left edge to the right edge connects the two ends of the cylinder
to make a torus.

Example 190. The Möbius band is a 2-dimensional manifold with boundary
obtained by taking a rectangular strip, putting a single twist in it, and then
gluing a pair of opposite edges together.

Unlike the previous examples we’ve seen, the Möbius band is one-sided. An
ant that walks once around the Möbius band will come back to it’s starting
point on the opposite side of the band.

13.2 Formal Definitions

Now we proceed with the formal definition of a manifold. The basic building
blocks of manifolds are called embeddings.

Definition 191. Let U be an open subset of Rn. An embedding is a map
ψ : U → RN such that

(i) ψ is injective,

(ii) Dψ(x) has n linearly independent columns for every x ∈ U ,
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(iii) ψ−1 : ψ(U)→ U is continuous.

The motivation for each of these conditions is the following. Condition (i) en-
sures that the image of ψ has no self-intersections. Condition (ii) ensures that
ψ(U) has a well-defined n-dimensional tangent plane at each point. Finally,
condition (iii) prevents the image of ψ from “wrapping around to itself” as we
approach the boundary of U .

Example 192. Consider the map ψ : (−1, 1) → R2 which maps the open
interval into a 6-shaped figure.

This map ψ satisfies conditions (i) and (ii) for an embedding. However, it fails
condition (iii). The map ψ−1 is not continuous from the 6-shaped figure to the
open interval.

Example 193. One basic example of an embedding is the graph of a function.
Let u : Rn → R be a smooth function. Then ψ : Rn → Rn+1 given by

ψ(x1, . . . , xn) = (x1, . . . , xn, u(x1, . . . , xn))

is an embedding that parameterizes the graph of u. To see that this satisfies
conditions (i)-(iii), first observe that ψ : U → ψ(U) is invertible with inverse
ψ−1 : ψ(U) → U given by ψ−1(x1, . . . , xn, xn+1) = (x1, . . . , xn). The existence
of an inverse shows that ψ is injective. Moreover, ψ−1 is continuous since it is
the restriction of a continuous map defined on all of Rn+1.

It remains to check thatDψ(x1, . . . , xn) has n linearly independent columns.
Observe that

Dψ(x1, . . . , xn) =


1

1
. . .

1
∗ ∗ · · · ∗


where the stars stand for some numbers that don’t matter. Call the columns
v1, . . . , vn and suppose that w = a1v1 + . . . + anvn = 0. Observe that the
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first coordinate of w is a1 and therefore a1 = 0. The second coordinate of w
is a2 and therefore a2 = 0. Likewise ai = 0 for all other i. This shows that
v1, . . . , vn are linearly independent.

Definition 194. An n-dimensional manifold is a subset M of RN such that
for each point p ∈M there exists

(i) an open set U ⊂ Rn,

(ii) an open set V ⊂ RN containing p, and

(iii) an embedding ψ : U → RN such that M ∩ V = ψ(U).

The map ψ is called a local parameterization for M near p. It’s inverse
ψ−1 : ψ(U) → U is called a chart for M near p. A collection of parame-
terizations (ψi)i∈I is called an atlas for M provided M is contained in the
union of the images ψi(Ui).

Example 195. Let u : Rn → R be a smooth function and let M ⊂ Rn+1 be the
graph of u. Then M is an n-dimensional manifold. The map ψ : Rn → Rn+1

given by ψ(x) = (x, u(x)) is a single parameterization that covers all of M .

Example 196. Let S2 be the unit sphere in R3. Let’s show that S2 is a 2-
dimensional manifold by exhibiting an explicit atlas for S2. Let U be the open
unit ball in R2. Note that {z > 0} is an open set in R3 and S2∩{z > 0} consists
of the upper hemisphere of S2 without the equator. The map ψz>0 : U → R3

given by
ψz>0(x, y) = (x, y,

√
1− x2 − y2)

is an embedding (since it is the graph of a function) and ψ(U) = S2∩{z > 0}.
Likewise, there are five other embeddings

ψz<0(x, y) = (x, y,−
√

1− x2 − y2), ψz<0(U) = S2 ∩ {z < 0}
ψy>0(x, z) = (x,

√
1− x2 − z2, z), ψy>0(U) = S2 ∩ {y > 0}

ψy<0(x, z) = (x,−
√

1− x2 − z2, z), ψy<0(U) = S2 ∩ {y < 0}
ψx>0(y, z) = (

√
1− y2 − z2, y, z), ψx>0(U) = S2 ∩ {x > 0}

ψx<0(y, z) = (−
√

1− y2 − z2, y, z), ψx<0(U) = S2 ∩ {x < 0}

each of which parameterizes a hemisphere of S2. The collection of these six
embeddings forms an atlas for S2.
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Example 197. Let T 2 be the torus in R3 obtained by taking the circle

(x− 2)2 + z2 = 1

in the xz-plane and revolving it around the z-axis. We’d like to show that this
is a 2-manifold by giving an explicit atlas. Note that

ψ(s, t) = (2 cos s, 2 sin s, 0) + cos t(cos s, sin s, 0) + sin t(0, 0, 1)

= (2 cos s+ cos s cos t, 2 sin s+ sin s cos t, sin t)

parameterizes T 2. However, ψ is not injective if we allow s and t to vary over
too large a domain. Hence to obtain embeddings, define maps

ψ1 :

(
0,

3π

2

)
×
(

0,
3π

2

)
→ R3,

ψ2 :

(
π,

5π

2

)
×
(

0,
3π

2

)
→ R3,

ψ3 :

(
0,

3π

2

)
×
(
π,

5π

2

)
→ R3,

ψ4 :

(
π,

5π

2

)
×
(
π,

5π

2

)
→ R3,

by ψ1(s, t) = ψ(s, t), ψ2(s, t) = ψ(s, t), ψ3(s, t) = ψ(s, t), and ψ4(s, t) = ψ(s, t).
Together these four parameterizations form an atlas for T 2.

13.3 Tangent Spaces

Given an n-dimensional manifold in RN we would like to define the tangent
plane to M at p. This should be an n-dimensional plane TpM ⊂ TpRN .

Definition 198. Fix a point p ∈M . Choose a local parameterization ψ : U →
RN such that there is a point x ∈ U with ψ(x) = p. The tangent space to
M at p is the vector space spanned by the columns of Dψ(x). This space has
dimension n since the columns of Dψ(x) are linearly independent. We denote
the tangent space to M at p by TpM .

Example 199. Let u : R2 → R be a smooth function and let Σu be the graph
of f . Then ψ(x, y) = (x, y, u(x, y)) is a parameterization for Σu. The columns
of Dψ are

∂ψ

∂x
=

 1
0
∂u
∂x

 and
∂ψ

∂y
=

 0
1
∂u
∂y

 .

These span the tangent space T(x,y,u(x,y))Σu.
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14 The Regular Value Theorem

Even in the simple examples we have seen, it is already somewhat tedious to
construct an atlas by hand. Fortunately, there are other more practical ways
of checking that a set is a manifold. The most useful of these is the regular
value theorem. This theorem describes criteria for the level set of a function
to be a manifold.

14.1 The Implicit Function Theorem

Before we can prove the regular value theorem, we first need to discuss the
implicit function theorem. We begin with a special case. Suppose f : R2 → R
is smooth and f(x0, y0) = 0. We would like to know whether it is possible
to write the level set {f = 0} as the graph of a function of x in a small
neighborhood of (x0, y0).

As a motivating calculation, suppose there is a function g : (x0−ε, x0+ε)→
R with g(x0) = y0 and f(x, g(x)) = 0. Then we can try to Taylor expand g
using implicit differentiation:

0 =
d

dx

∣∣∣∣
x=x0

[
f(x, g(x))

]
=
∂f

∂x
(x0, y0) +

∂f

∂y
(x0, y0)g′(x0).

There are now two possibilities. If ∂f
∂y

(x0, y0) = 0 then this equation may have
no solution. If the equation has no solution, we have arrived at a contradiction
and g does not exist.

On the other hand we may have ∂f
∂y

(x0, y0) 6= 0. In this case we can solve

for g′(x0) to get

g′(x0) = −
∂f
∂x

(x0, y0)
∂f
∂y

(x0, y0)

Now let’s try to go one stage further and find g′′(x0). By implicit differentiation
again

0 =
d

dx

[
∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x))g′(x)

]
=
∂2f

∂x2
+

∂2f

∂x∂y
g′(x) +

[
∂2f

∂x∂y
+
∂2f

∂y2
g′(x)

]
g′(x) +

∂f

∂y
g′′(x).
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Since ∂f
∂y

(x0, y0) 6= 0, we can solve this equation to find g′′(x0). Hence there is

no new obstruction to finding g′′(x0) beyond the first derivative being non-zero.
Continuing in this fashion it is possible to compute g′′′(x0), g(4)(x0), etc.

While this does not constitute a proof, this strongly suggests that such a g
should exist provided ∂f

∂y
(x0, y0) 6= 0. The implicit function theorem says that

this is indeed the case.

Theorem 200 (Implicit Function Theorem, Special Case). Suppose f : R2 →
R is smooth and f(x0, y0) = 0 and ∂f

∂y
(x0, y0) 6= 0. Then there is an open

interval U centered at x0 and an open interval V centered at y0 and a smooth
function g : U → V such that the solutions to f(x, y) = 0 in U ×V are exactly
the points (x, g(x)).

Remark 201. Of course we can interchange the roles of x and y in the the-
orem. That is if ∂f

∂x
(x0, y0) 6= 0, then the level set {f = 0} is locally given by

the graph of a function of y near (x0, y0).

Example 202. Define f : R2 → R by f(x, y) = x2 + y2 − 1 so that the level
set {f = 0} is the unit circle. Observe that

∂f

∂y
= 2y

which is non-zero so long as y 6= 0. Hence the implicit function theorem
guarantees that the unit circle can locally be written as the graph of the
function of x about any point except for (1, 0) and (−1, 0). Likewise

∂f

∂x
= 2x

which is non-zero so long as x 6= 0. Thus the implicit function theorem says
the unit circle can locally be written as the graph of a function of y at any
point except (0, 1) and (0,−1).

Now we state the general case of the implicit function theorem. First we
set up the notation. Let f : Rn×Rm → Rm be a smooth map. Write x1, . . . , xn
for the coordinates on Rn and write y1, . . . , ym for the coordinates on Rm. The
derivative Df can be broken into two pieces:

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 and
∂f

∂y
=


∂f1
∂y1

· · · ∂f1
∂ym

...
...

∂fm
∂y1

· · · ∂fm
∂ym


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Thus ∂f/∂x has m rows and n columns, while ∂f/∂y is an m × m square
matrix.

Theorem 203 (Implicit Function Theorem). Let f : Rn × Rm → Rm be a
smooth map. Assume that f(x0, y0) = 0 and that(

∂f

∂y

)
(x0, y0)

is invertible. Then there is an open set U ⊂ Rn containing x0 and an open
set V in Rm containing y0 and a smooth function g : U → V such that the
solutions to f(x, y) = 0 in U × V are exactly the points of the form (x, g(x)).
In other words, the level set {f = 0} can be written as the graph of a function
of x near (x0, y0).

14.2 The Regular Value Theorem

The regular value theorem gives a condition for the level set of a function to
be a manifold.

Theorem 204 (Regular Value Theorem). Let f : Rn+m → Rm be a smooth
function. Fix c ∈ Rn and assume that at each point p ∈ {f = c} the derivative
(Df)(p) has rank m (i.e. has m linearly independent columns). Then the level
set {f = c} is an n-dimensional manifold in Rn+m.

Proof. Let f and c be as in the statement of the theorem. The idea is to use
the implicit function theorem to construct charts for {f = c}. Fix a point p
in the level set {f = c}. By assumption (Df)(p) has m linearly independent
columns. Therefore we can relabel the coordinates on Rn+m = Rn × Rm as
x1, . . . , xn, y1, . . . , ym in such a way that(

∂f

∂y

)
(x0, y0)

is invertible. Then by the implicit function theorem there is an open set
U ⊂ Rn containing x0 and an open set V ⊂ Rm containing y0 and a smooth
function g : U → Rm such that {f = c} ∩ (U × V ) is the graph of g. Thus
ψ : U → Rn+m given by ψ(x) = (x, g(x)) is an embedding such that

{f = c} ∩ (U × V ) = ψ(U).

It follows that ψ is a local parameterization of {f = c} near p. Since p was
arbitrary, this proves that {f = c} is a manifold.
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It is also possible to compute the tangent space to the level set {f = c} in
terms of Df .

Proposition 205. Let f : Rn+m → Rm be a smooth function. Fix c ∈ Rn and
assume that at each point p ∈ {f = c} the derivative (Df)(p) has rank m.
Then the tangent space to {f = c} at p is ker(Df(p)).

Proof. Let M = {f = c} which is an n-dimensional manifold by the regular
value theorem. Let ψ : U → Rn+m be a local parameterization for M near p.
Let x be the point in U such that ψ(x) = p. By definition, the tangent space
TpM is spanned by the columns of Dψ(x). Note that f(ψ(x+ tei)) = c for all
t. Differentiating this equation in t setting t = 0 gives

Df(p)[Dψ(x)ei] = 0.

Therefore the ith column of Dψ(x) belongs to ker(Df(p)). Since i was arbi-
trary, this implies that ker(Df(p)) contains TpM . On the other hand, since
Df(p) has rank m, it follows that ker(Df(p)) is n-dimensional. Since TpM
is also n-dimensional and ker(Df(p)) ⊇ TpM , it follows that we must have
equality.

Example 206. Let f : R2 → R be given by f(x, y) = x2−y2. ThenDf(x, y) =
(2x,−2y). This has rank 1 unless (x, y) = (0, 0). Therefore for every c 6= 0,
the level set {f = c} is a 1-dimensional manifold by the regular value theorem.
In this case, we can also verify this by hand since equation x2− y2 = c defines
a hyperbola for c 6= 0.

The tangent space to {f = 3} at the point (2, 1) is the kernel of Df(2, 1).
Now Df(2, 1) = (4,−2) and the kernel of this matrix is spanned by

v =

(
1
2

)
.

Therefore the tangent space to {f = 3} at (2, 1) is spanned by v.

14.3 Manifolds of Matrices

To illustrate the utility of the regular value theorem, we will now show that
several natural collections of matrices form manifolds. The space of all n ×
n matrices is denoted Rn×n. It is naturally identified with n2-dimensional
Euclidean space. There are many interesting subsets of Rn×n. For example,
consider
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(i) GL(n) = {A ∈ Rn×n : det(A) 6= 0},

(ii) SL(n) = {A ∈ Rn×n : det(A) = 1},

(iii) O(n) = {A ∈ Rn×n : ATA = I}.

The general linear group GL(n) consists of all invertible n× n matrices. The
special linear group SL(n) consists of all n × n matrices with determinant
one. These are exactly the matrices that preserve the oriented volume of n-
dimensional parallelepipeds. Finally the orthogonal group O(n) consists of all
rotation and reflection matrices.

Proposition 207. The general linear group GL(n) is an n2-dimensional man-
ifold in Rn×n.

Proof. It is enough to check that GL(n) is an open subset of Rn×n. This follows
from the fact that the determinant is a continuous function of the entries in a
matrix. Hence if A has non-zero determinant, then any small perturbation of
A will also have non-zero determinant.

Proposition 208. The special linear group SL(n) is an (n2 − 1)-dimensional
manifold in Rn×n.

Proof. Consider the function det : Rn×n → R. The special linear group is
exactly the level set {det = 1}. Therefore the regular value theorem will give
the conclusion provided (D det)(A) has rank 1 at every matrix A ∈ SL(n).

To verify this, we need to compute D det(A). We begin with the special
case A = I. In this case

(D det)(I)B = lim
t→0

det(I + tB)− det(I)

t
.

Let b1, . . . , bn be the columns of B. Then by the scaling and additivity prop-
erties of determinant

det(I + tB) = det(e1 + tb1, . . . , en + tbn)

= det(e1, . . . , en) + t
n∑
i=1

det(e1, . . . , ei−1, bi, ei+1, . . . , en)

+ terms involving higher powers of t.
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Now observe that det(e1, . . . , ei−1, bi, ei+1, . . . , en) = bii and hence

det(I + tB) = 1 + t tr(B) + terms involving higher powers of t.

Thus

lim
t→0

det(I + tB)− det(I)

t
= tr(B)

and so (D det)(I)B equals the trace of B.

Now consider an arbitrary invertible n× n matrix A. We have

(D det)(A)B = lim
t→0

det(A+ tB)− det(A)

t
.

We can compute this limit by factoring out an A and using the computation
we’ve already done at the identity:

lim
t→0

det(A+ tB)− det(A)

t
= det(A) lim

t→0

det(I + tA−1B)− det(I)

t
= det(A) tr(A−1B).

Thus (D det)(A)B = det(A−1) tr(A−1B).

Now fix a matrix A ∈ SL(n). To show that (D det)(A) has rank 1, it is
enough to show that (D det)(A) : Rn×n → R is not the zero map. But this is
obvious from the previous formula since

(D det)(A)A = det(A−1) tr(A−1A) = tr(I) = n 6= 0.

Hence the regular value theorem applies and yields that SL(n) = {det = 1} is
an (n2 − 1)-dimensional manifold.

Proposition 209. The orthogonal group O(n) is an n(n−1)
2

dimensional man-
ifold in Rn×n.

Proof. Define a function f : Rn×n → Rn×n by setting f(A) = ATA. Then the
orthogonal group is exactly the level set {f = I}. We would like to apply
the regular value theorem. However, we are not yet in a position to do this.
Indeed, if we could apply the regular value theorem to this f , it would tell us
that the level set {f = I} is a manifold of dimension n2 − n2 = 0! But this is
clearly not the case.
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To get around this, observe that

(ATA)T = ATA.

In other words, the matrix ATA is always symmetric. Let S be the set of
all symmetric n × n matrices. Since a symmetric matrix is determined by
its entries on and above the diagonal, the space S is naturally identified with
Rn(n+1)/2. Now consider f as a map Rn×n → S. The orthogonal group is still
the level set {f = I}. But now the regular value theorem, if applicable, will
tell us that {f = I} is a manifold of dimension

n2 − n(n+ 1)

2
=
n(n− 1)

2
,

as desired.

Thus we aim to apply the regular value theorem to the map f : Rn×n → S.
We need to check that (Df)(A) has rank n(n+1)

2
for all A ∈ O(n). First let’s

find a formula for (Df)(A)B. We have

(Df)(A)B = lim
t→0

f(A+ tB)− f(A)

t

= lim
t→0

(A+ tB)T (A+ tB)− ATA
t

= ATB +BTA.

Now fix a matrix A ∈ O(n). To show that (Df)(A) has rank n(n+1)
2

, it is
equivalent to show that (Df)(A) is surjective as a map from Rn×n → S.

So fix a matrix C ∈ S. We want to find a matrix B such that

ATB +BTA = C =
C

2
+
CT

2
.

Since BTA = (ATB)T , it is equivalent to find a matrix B such that

ATB =
C

2
.

Since A belongs to O(n), we know that AAT = I and therefore B = AC
2

is a
solution to the previous equation. This proves that (Df)(A) is surjective for
every A ∈ {f = I}. Therefore the regular value theorem applies and yields

that O(n) = {f = I} is a manifold of dimension n(n−1)
2

.
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15 Differential Forms on Manifolds

15.1 Definition and First Examples

A differential form on a manifold is still a rule that assigns a number to oriented
parallelepipeds. However, a form on M can only be applied to parallelepipeds
that are tangent to M . As before, if ω is a form on M , we write ωp(v1, . . . , vn)
for the value of ω on the parallelepiped based at p and spanned by the vectors
v1, . . . , vn ∈ TpM . We shall again require that ωp satisfies the scaling, additiv-
ity, and alternation properties. Moreover, we require ωp to depend smoothly on
p. (We will give the precise definition of what this means later after discussing
how to write forms in coordinates.)

Example 210. Let S2 be the unit sphere in R3. Then

ωp(v) = v · e3, v ∈ TpS2

is a 1-form on S2.

The previous example is a special case of a more general construction.

Definition 211. Let M ⊂ RN be a manifold. A vector field F on M is a
choice of vector F (p) ∈ TpRN for each p ∈M . The vector F (p) is required to
depend smoothly on p.

Remark 212. Note that the vector F (p) need not be tangent to M at p. In
the case that F (p) ∈ TpM for all p ∈M we say that F is tangential.

Example 213. On S2 ⊂ R3 let F (p) = p. This is the unit outward normal to
the unit sphere.

Example 214. On S2 ⊂ R3 let F (p) = e3. This vector field is not tangential.
We could build a tangential vector field from F by projecting each vector F (p)
to TpM . Since the normal vector to TpM is p, this projected vector field is
given by the formula F T (p) = e3 − (e3 · p)p.

Given a vector field F on M there is an associated work 1-form given by
(ωF )p(v) = F (p) · v. Thus the form in Example 210 is the work 1-form for the
vector field F (p) = e3. When defining a work form, only the tangential part of
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a vector field matters. Indeed, given a vector field F on M let F = F T + F⊥

be its decomposition into tangential and normal components. Then

(ωF )p(v) = F (p) · v = (F T (p) + F⊥(p)) · v = F T (p) · v = (ωFT )p(v)

since v ·F⊥(p) = 0 for v ∈ TpM . Hence when defining work forms, it is enough
to consider only tangential vector fields.

Example 215. Consider S2 ⊂ R3. The area form ω on S2 is a 2-form given
by ωp(v, w) = det(p, v, w). Since p has length one and is normal to TpM , this
is just the oriented area of the parallelogram spanned by v and w.

15.2 Forms in Coordinates

In Euclidean space, we were able to express forms in terms of the coordinates
dx1, . . ., dxn. Writing forms in coordinates like this was often very convenient
for doing computations. We’d like to have a way to write forms on manifolds
in coordinates. This can be done by means of a parameterization.

Let α be a k-form on an n-dimensional manifold M ⊂ RN . Pick a point
p ∈ M . By the definition of a manifold, there is a local parameterization
ψ : U ⊂ Rn → RN parameterizing a neighborhood of p in M . We can consider
the pullback ψ∗α. This is the k-form on U given by

(ψ∗α)x(v1, . . . , vk) = αψ(x)((Dψ)v1, . . . , (Dψ)vk).

Note that the right hand side makes sense, since each (Dψ)vi is an element
of TpM . Since the left hand side is a form on an open subset of Rn, we can
express it in terms of dx1, . . ., dxn:

ψ∗α =
∑
I

fI dxI .

This is the formula for α in the local coordinates induced by ψ.

Remark 216. When we say that αp depends smoothly on p, we mean that
when we express α in any coordinate system

ψ∗α =
∑
I

fI dxI

the functions fI are smooth functions on U .
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Example 217. On S2 consider the 1-form αp(v) = e3 · v. Let’s write this in

terms of the local coordinates given by ψ(x, y) = (x, y,
√

1− x2 − y2). To do
this, we need to find

(ψ∗α)(x,y)

(
1
0

)
and (ψ∗α)(x,y)

(
0
1

)
Observe that

Dψ(x, y) =

 1 0
0 1
−x√

1−x2−y2
−y√

1−x2−y2
.


Therefore it follows that

(ψ∗α)(x,y)

(
1
0

)
= α

(x,y,
√

1−x2−y2)

 1
0
−x√

1−x2−y2

 =
−x√

1− x2 − y2
,

(ψ∗α)(x,y)

(
0
1

)
= α

(x,y,
√

1−x2−y2)

 0
1
−y√

1−x2−y2

 =
−y√

1− x2 − y2
,

Hence
ψ∗α = − x√

1− x2 − y2
dx− y√

1− x2 − y2
dy

is the expression for α in local coordinates.

Example 218. On S2 ⊂ R3 consider the area form ωp(v, w) = det(p, v, w).

Again let ψ(x, y) = (x, y,
√

1− x2 − y2). To write ω in local coordinates, we
need to find

(ψ∗ω)(x,y)

((
1
0

)
,

(
0
1

))
.

Using the expression for Dψ from above, we compute that

(ψ∗ω)(x,y)

((
1
0

)
,

(
0
1

))
= ω

(x,y,
√

1−x2−y2)


 1

0
−x√

1−x2−y2

 ,

 0
1
−y√

1−x2−y2




= det

 x 1 0
y 0 1√

1− x2 − y2 −x√
1−x2−y2

−y√
1−x2−y2


=

1√
1− x2 − y2

.

110



Thus ψ∗ω = 1√
1−x2−y2

dx dy in coordinates.

15.3 Change of Coordinates Formula

Let α be a k-form on a manifold M . If two parameterizations ψ1 and ψ2 for M
overlap, then we get two different expressions for α in local coordinates. We
would like to know how to go back and forth between these different coordinate
formulas.

Suppose ψ1 : U1 → Rn and ψ2 : U2 → Rn are two parameterizations such that
ψ1(U1) and ψ2(U2) overlap. Then ψ−1

2 ◦ ψ1 is well-defined on ψ−1
1 (ψ2(U2)).

Moreover ψ2 ◦ (ψ−1
2 ◦ ψ1) = ψ1 and so

ψ∗1α = (ψ−1
2 ◦ ψ1)∗ψ∗2α on ψ−1

1 (ψ2(U2)).

This is called the change of coordinates formula.

Example 219. On S2 ⊂ R3 consider the area form ω. Consider the two
parameterizations

ψ1(x, y) = (x, y,
√

1− x2 − y2),

ψ2(y, z) = (
√

1− y2 − z2, y, z).

We’ve already computed that

ψ∗1ω =
1√

1− x2 − y2
dx dy
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in Example 218. A very similar computation yields that

ψ∗2ω =
1√

1− y2 − z2
dy dz.

Note that ψ−1
2 ◦ ψ1 is defined on the set {(x, y) ∈ R2 : x2 + y2 < 1, x > 0}.

Moreover,

ψ−1
2 ◦ ψ1(x, y) = ψ−1

2 (x, y,
√

1− x2 − y2) = (y,
√

1− x2 − y2)

on its domain of definition.

Let’s verify the change of coordinates formula:

(ψ−1
2 ◦ ψ1)∗ψ∗2ω = (ψ−1

2 ◦ ψ1)∗
1√

1− y2 − z2
dy dz

=
1√

1− y2 − (
√

1− x2 − y2)2

dy d(
√

1− x2 − y2)

=
1√

1− y2 − (1− x2 − y2)
dy

−x√
1− x2 − y2

dx

=
1√

1− x2 − y2
dx dy.

Note that we used the fact that
√
x2 = x since x > 0 to get the final equality.

Thus (ψ−1
2 ◦ ψ1)∗ψ∗2ω = ψ∗1ω where defined.

15.4 Defining Forms in Coordinates

In Euclidean space we can also define differential forms by specifying them in
coordinates. If we choose a smooth function fI for each increasing multi-index
of length k, then we can define a k-form α by setting

α =
∑
I

fI dxI .

We can attempt to define forms on manifolds in a similar fashion. Suppose
M is an n dimensional manifold in RN . Assume for simplicity that M has
a finite atlas ψ1, . . . , ψm. For each integer i = 1, . . . ,m and each increasing
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multi-index I of length k, pick a smooth function f iI : Ui → R. Then we can
try to define a k-form α on M by stipulating that

ψ∗i α =
∑
I

f iI dxI

on Ui. In order for this to give rise to a well-defined form on M , the various
formulas must agree about what α does when two coordinate patches overlap.
In other words, the change of variables formula

(ψ−1
j ◦ ψi)∗ψ∗jα = ψ∗i α

must hold on ψ−1
i (ψj(Uj)). If this change of variables formula is satisfied for

all i and j, then there is indeed a unique k-form α on M which is given by
the specified formulas in coordinates. We summarize this in the following
proposition.

Proposition 220 (Defining forms in coordinates). Let M be an n-dimensional
manifold in RN . Let ψ1, . . . , ψm be an atlas for M . For each integer i =
1, . . . ,m and each increasing multi-index I of length k, pick a smooth function
f iI : Ui → R. Define k-forms βi on Ui by

βi =
∑
I

f iI dxI .

If the change of variables formula (ψ−1
j ◦ψi)∗βj = βi holds on ψ−1

i (ψj(Uj)) for
all i and j then there is a unique k-form α on M such that ψ∗i α = βi for all i.

16 Volume Forms and Orientation

We already seen how to define an area 2-form ω on S2 that measures the
oriented area of parallelograms tangent to S2. To do this, we took a parallelo-
gram tangent to S2 and completed it to a parallelepiped by appending a unit
normal vector. Then we took the oriented volume of this parallelepiped. This
same construction works more generally for two-sided hypersurfaces.

An n-dimensional manifold M in Rn+1 is called a hypersurface. A hy-
persurface M is called two-sided provided there exists a smooth, unit normal
vector field on M . That is, M is two-sided if we can find a smooth vector field
N on M such that N(p) has unit length and is perpendicular to TpM for all
p ∈M .
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Example 221. The unit sphere Sn in Rn+1 is a two-sided hypersurface since
N(p) = p is a smooth unit normal vector field. The Möbius band is an example
of a hypersurface which is not two-sided.

Given a two-sided hypersurface M ⊂ Rn+1, it is possible to define a volume
form ω on M by

ωp(v1, . . . , vn) = det(N(p), v1, . . . , vn).

This computes the oriented volume of n-dimensional parallelepipeds tangent
to M .

16.1 Area of n-dimensional parallelepipeds in RN .

We’d like to be able to define a volume form on an n-dimensional manifold M
contained in RN . In order to do this, we need to know how to compute the
volume of an n-dimensional parallelepiped in RN . So suppose a1, . . . , an are n
vectors in RN :

ai =


a1i

a2i
...
aNi

 .

What is the volume of the parallelepiped spanned by a1, . . . , an?

There is one special case where the answer is easy to compute. Suppose that
actually a1, . . . , an all live in the x1 · · · xn-coordinate plane. That is, suppose
that each ai has the form

ai =



a1i
...
ani
0
...
0


Then we can think of the parallelepiped spanned by a1, . . . , an as an n-dimensional
parallelepiped in Rn and hence its volume is given by the absolute value of the
determinant:

Vol(a1, . . . , an) =

∣∣∣∣∣∣∣det

a11 · · · a1n
...

. . .
...

an1 · · · ann


∣∣∣∣∣∣∣ .
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We would like to re-express this in terms of the original vectors ai and not the
vectors ai with the zeros removed.

To do this, let A be the N × n matrix with columns a1, . . . , an. Observe
that

Vol(a1, . . . , an)2 = det


a11 · · · a1n

...
. . .

...
an1 · · · ann


T a11 · · · a1n

...
. . .

...
an1 · · · ann




= det


a11 · · · an1 0 · · · 0

...
. . .

...
a1n · · · ann 0 · · · 0




a11 · · · a1n
...

. . .
...

an1 · · · ann
0 0
...

...
0 0




= det(ATA).

Therefore Vol(a1, . . . , an) =
√

det(ATA).

Now consider the general case where ai can be any vectors in RN . We can
reduce this case to the previous one via rotation. Indeed, we can always find
an N × N rotation matrix Q such that the vectors bi = Qai belong to the
x1 · · ·xn-plane. Since rotation doesn’t change volume

Vol(a1, . . . , an) =
√

det(BTB)

where B is the N × n matrix with columns b1, . . . , bn. Since Q is a rotation
matrix, it satisfies QTQ = QQT = I. Therefore ai = QT bi and A = QTB. It
follows that

det(BTB) = det(BTQQTB) = det((QTB)T (QTB)) = det(ATA).

Hence we again get that Vol(a1, . . . , an) =
√

det(ATA). We have now proved
the following proposition.

Proposition 222. The volume of the n-dimensional parallelepiped in RN

spanned by a1, . . . , an is given by Vol(a1, . . . , an) =
√

det(ATA).

Remark 223. One can show that

det(ATA) =
∑
I

det

ai11 · · · ai1n
...

. . .
...

ain1 · · · ainn




2
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where the sum is taken over all increasing multi-indices of length n in RN .
This is a consequence of the Cauchy-Binet formula (which we won’t prove).
The above formula can be thought of as a generalized Pythagorean theorem.
Indeed, let P be the parallelepiped spanned by a1, . . . , an. For each increasing
multi-index I of length n, let PI be the parallelepiped obtained by projecting
P to the xi1 · · ·xin-coordinate plane. Then the formula says that Vol(P )2 =∑

I Vol(PI)
2.

16.2 Volume Forms

Equipped with the previous formula, we can now define volume forms on
general manifolds. Let M be an n-dimensional manifold in RN . As a first
attempt, we can try to define a volume form ω on M by

ωp(v1, . . . , vn) =
√

det(V TV )

where V is the N × n matrix with columns v1, . . . , vn. However, this is not a
differential form since it fails to satisfy the alternating property. The problem
is that ω does not take orientation into account.

As a second attempt, we can try to define a volume form by specifying it
in coordinates. Let ψ1, . . . , ψm be an atlas for M . For each i = 1, . . . ,m define
an n-form βi on Ui by

βi =
√

det [DψTDψ] dx1 . . . dxn.

These forms will piece together to define a form on M provided the compati-
bility conditions are satisfied:

βi = (ψ−1
j ◦ ψi)∗βj on ψ−1

i (ψj(Uj)).

Let f = ψ−1
j ◦ ψi. Let x1, . . . , xn be the coordinates on Ui and let y1, . . . , yn

be the coordinates on Uj. Then

f ∗βj =
√

det [Dψj(f(x))TDψj(f(x))] f ∗(dy1 . . . dyn)

=
√

det [Dψj(f(x))TDψj(f(x))] det(Df(x)) dx1 . . . dxn

= ±
√

det [Df(x)TDψj(f(x))TDψj(f(x))Df(x)] dx1 . . . dxn

= ±
√

det [Dψi(x)TDψi(x)] dx1 . . . dxn

= ±βi.
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Here we’ve used the fact that ψj ◦ f = ψi and the chain rule to get from the
third to the fourth line. Also the formula has the + sign if det(Df(x)) > 0
and the − sign if det(Df(x)) < 0. Thus the compatibility conditions will be
satisfied provided det(D(ψ−1

j ◦ ψi)) > 0 whenever defined. This motivates the
following definition.

Definition 224. An n-dimensional manifold is called orientable if there is an
atlas for M with the property that det(D(ψ−1

j ◦ ψi)) > 0 whenever defined.
Such an atlas is called an oriented atlas for M .

Definition 225. Given an oriented n-dimensional manifold M equipped with
an oriented atlas, there is a unique n-dimensional form ω on M such that

ψ∗i ω =
√

det[DψTDψ] dx1 . . . dxn

on Ui for all i. This form ω is called the volume form for M .

16.3 Orientation

Let V be an n-dimensional vector space. An ordered basis for V is an ordered
list of vectors v1, . . . , vn such that v1, . . . , vn forms a basis for V . For example,
e1, e2, e3 is an ordered basis for R3 and e2, e1, e3 is another (different) ordered
basis for R3. Given two ordered bases v1, . . . , vn and w1, . . . , wn for V , there
is a unique change of basis matrix A satisfying Avi = wi for i = 1, . . . , n.

Definition 226. Let V be an n-dimensional vector space. An orientation on
V is a function

or : {ordered bases for V } → {±1}
which satisfies the following property:

or(v1, . . . , vn) = sign(detA)or(w1, . . . , wn) (5)

whenever v1, . . . , vn and w1, . . . , wn are two ordered bases for V and A is the
associated change of basis matrix.

Given a vector space V and an orientation or on V we say an ordered basis
v1, . . . , vn is positively oriented if or(v1, . . . , vn) = 1 and negatively oriented if
or(v1, . . . , vn) = −1. Note in particular that swapping two basis vectors turns
a positively oriented basis into a negatively oriented basis and vice versa. In
other words or(v1, . . . , vi, . . . , vj, . . . , vn) = −or(v1, . . . , vj, . . . , vi, . . . , vn).
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Example 227. The standard orientation on R3 is

or(v1, v2, v3) =

{
+1, if v1, v2, v3 is right handed

−1, if v1, v2, v3 is left handed.

There is also an “unstandard” orientation on R3 given by

or(v1, v2, v3) =

{
+1, if v1, v2, v3 is left handed

−1, if v1, v2, v3 is right handed.

Proposition 228. Let V be an n-dimensional vector space. Then there are
exactly two orientations on V .

Proof. Property (5) implies that an orientation function is completely deter-
mined by its value on a single ordered basis. Thus there are at most two
orientation functions. On the other hand, fix an ordered basis v1, . . . , vn. De-
fine

or(w1, . . . , wn) = det(A) and or(w1, . . . , wn) = − det(A)

where A is the change of basis matrix from v1, . . . , vn to w1, . . . , wn. Then or
and or are orientation functions.

There is an equivalent definition of oriented manifolds in terms of orienta-
tions on tangent spaces.

Definition 229. An n-dimensional manifold M in RN is orientable if for each
p ∈ M we can choose an orientation orp on TpM in such a way that orp
varies smoothly with p. Here varying smoothly with p means that for any
parameterization ψ : U → RN the function orψ(x)((Dψ)(x)e1, . . . , (Dψ)(x)en)
is constant on each connected component of U .

Proposition 230. A manifold M is orientable in the sense of Definition 224
if and only if it is orientable in the sense of Definition 229.

Proof. (Sketch) Assume that M has an oriented atlas. Let p be a point in M
and choose a parameterization ψ : U → RN such that p = ψ(x). Let orp be
the orientation on TpM such that

orp(Dψ(x)e1, . . . , Dψ(x)en) = 1.
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If we had picked a different parameterization φ, we would still choose the same
orientation orp on TpM because the change of coordinates map between φ and
ψ is orientation preserving.

On the other hand, suppose there is a smooth choice of orientation orp on
each TpM . Let (ψi)i∈I be an atlas for M . We can assume the domains Ui are
connected. If

orψ(x)((Dψ)(x)e1, . . . , (Dψ)(x)en) = 1

on Ui, define φi : Ui → RN by φi(x) = ψi(x). On the other hand, if

orψ(x)((Dψ)(x)e1, . . . , (Dψ)(x)en) = −1

on Ui, then let Ũi be the reflection of Ui across the x1 axis and define φi : Ũi →
RN by

φi(x1, x2, . . . , xn) = ψi(−x1, x2, . . . , xn).

Then (φi)i∈I is an oriented atlas for M .

Given an oriented n-dimensional manifold M we can equivalently define
the volume form ω by

ωp(v1, . . . , vn) = orp(v1, . . . , vn)
√

det(V TV ).

Technically orp(v1, . . . , vn) isn’t defined if v1, . . . , vn are not linearly indepen-
dent in TpM , but in this case the volume form outputs 0.

17 Manifolds with Boundary

Recall that an n-dimensional manifold with boundary is a subset M of RN

that looks locally like either an n-dimensional plane or half of an n-dimensional
plane near each of its points. In this section we give the formal definition of a
manifold with boundary.

Definition 231. The n-dimensional half-space is Hn = {x ∈ Rn : xn ≥ 0}.
The boundary of Hn is the (n−1)-dimensional plane ∂Hn = {x ∈ Rn : xn = 0}.

Definition 232. An n-dimensional manifold with boundary in RN is a set
M ⊂ RN such that for each p ∈M there exist
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(i) an open set U ⊂ Rn,

(ii) an open set V ⊂ RN containing p, and

(iii) an embedding ψ : U → RN such that ψ(U ∩Hn) = M ∩ V .

If p = ψ(t) with t ∈ ∂Hn we say that p belongs to ∂M . If p = ψ(t) with
t ∈ Hn \ ∂Hn, we say that p is an interior point of M .

Example 233. The closed upper hemisphere

M = {(x, y, z) ∈ R3; x2 + y2 + z2 = 1 and z ≥ 0}

is a 2-dimensional manifold with boundary. The boundary is the equatorial
circle. The following figure illustrates a parameterization forM near an interior
point p and a parameterization for M near a boundary point q.

Note that U1 ∩H2 is an entire disk while U2 ∩H2 is half of a disk.

Example 234. The closed unit ball B3 = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1}
is a 3-dimensional manifold with boundary in R3. The boundary is the unit
sphere S2.

Remark 235. If M is an n-dimensional manifold with boundary then ∂M is
an (n − 1)-dimensional manifold without boundary. Local parameterizations
for ∂M can be constructed by restricting local parameterizations for M to
∂Hn.
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An n-dimensional manifold M with boundary still has an n-dimensional
tangent space TpM at each point p ∈ M . If p is an interior point, we define
the tangent space in the usual fashion. If p is a boundary point, pick a local
parameterization ψ : U → RN with ψ(x) = p with x ∈ ∂Hn. Then we define
TpM to be the span of the columns of Dψ(x). This is still an n-dimensional
subspace of RN . Suppose p ∈ ∂M and consider a tangent vector v ∈ TpM .
Then by definition v = Dψ(x)u for some vector u ∈ Rn. We can classify v into
one of three types according to whether the n-th component of u is positive,
negative, or zero. We say that

(i) v points inward if un > 0

(ii) v points outward if un < 0

(iii) v is tangent to ∂M if un = 0.

The outward normal to ∂M at a point p ∈ ∂M is the unique vector ν ∈ TpM
such that ν is perpendicular to Tp∂M and ν points outward.

If M is oriented, then ∂M inherits a natural orientation from M . More pre-
cisely, let v1, . . . , vn−1 be an ordered basis for Tp∂M . Then ν(p), v1, . . . , vn−1

is an ordered basis for TpM . We say that v1, . . . , vn−1 is positively or nega-
tively oriented in Tp∂M according to whether ν(p), v1, . . . , vn−1 is positively or
negatively oriented in TpM .

Example 236. Let M be cylindrical shell

{(x, y, z) ∈ R3 : x2 + y2 = 1, −1 ≤ z ≤ 1}.

At each p ∈ M let N(p) be the outward pointing normal vector to TpM .
Orient M so that v, w forms a positively oriented basis for TpM if and only if
N(p), v, w is right handed.

The boundary ofM consists of two circles. On the upper circle, the outward
normal to ∂M is given by ν(p) = e3. On the lower circle, the outward normal
to ∂M is given by ν(p) = −e3. A vector w ∈ Tp∂M is positively oriented if
and only if ν(p), w is positively oriented in TpM . In turn, this is the case if
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and only if N(p), ν(p), w is right handed.

The above figure depicts a negatively oriented tangent vector u to the up-
per boundary circle and a positively oriented tangent vector w to the lower
boundary circle.

18 Operations on Forms

We can define all the usual operations (e.g. wedge product, exterior derivative,
etc.) for forms on manifolds simply by doing everything in charts.

Definition 237. Let α be a k-form on M and let (ψi)i∈I be an atlas for M .
For each i define βi = d(ψ∗i α). This is a (k + 1)-form on Ui. Then dα is the
unique (k + 1)-form on M whose such that ψ∗i (dα) = βi on Ui.

Remark 238. In order for this definition to make sense, we must verify that
the βi’s satisfy the change of coordinates formula. This is a consequence of
the fact that exterior derivative commutes with pullback:

(ψ−1
j ◦ ψi)∗βj = (ψ−1

j ◦ ψi)∗dψ∗jα = d(ψ−1
j ◦ ψi)∗ψ∗jα = dψ∗i α = βi

on ψ−1
i (ψj(Uj)). Thus dα is well-defined.

Definition 239. Let α and β be forms on M and let (ψi)i∈I be an atlas for
M . For each i let βi = ψ∗i α ∧ ψ∗jβ. This is a form on Ui. Define α ∧ β to be
the unique form on M such that ψ∗i (α ∧ β) = βi on Ui.

Remark 240. Again this is well-defined because wedge product commutes
with pullback.
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Example 241. Let α be the 1-form on S2 given by αp(v) = v · e3. Let
f : S2 → R be the function f(x, y, z) = z. We claim that α = df . To check this,
we need to verify that the equation holds in every chart in an atlas. Consider,
for example, the local parameterization ψ(x, y) = (x, y,

√
1− x2 − y2). We

saw in Example 217 that

ψ∗α = − x√
1− x2 − y2

dx− y√
1− x2 − y2

dy.

Also we have ψ∗f =
√

1− x2 − y2. Thus

d(ψ∗f) =
∂

∂x
(
√

1− x2 − y2) dx+
∂

∂y
(
√

1− x2 − y2) dy

= − x√
1− x2 − y2

dx− y√
1− x2 − y2

dy = ψ∗α

and so α = df in the coordinates induced by ψ. Likewise, one could check that
α = df in all the other charts in an atlas for S2.

We would also like to define pullback for smooth maps between manifolds.
In order to do this, we need to decide what we mean by a smooth map from one
manifold to another. As with everything else, we say a map between manifolds
is smooth if it is smooth when we look at it in charts.

Definition 242. Let M ⊂ Ra and N ⊂ Rb be manifolds and let f : M → N
be a continuous function. Assume that N ⊂ RL. Let (ψi)i∈I be an atlas for
M . Then f is smooth if for every i the function f ◦ ψi is smooth.

Remark 243. Note that f ◦ψi sends Ui into Rb. Thus f ◦ψi sends Euclidean
space to Euclidean space and so we know how to decide if it is smooth.

Example 244. Define a map f : S2 → S2 by f(x, y, z) = (−x,−y,−z). This
is called the antipodal map. Let ψ(x, y) = (x, y,

√
1− x2 − y2). Then

(f ◦ ψ)(x, y) = (−x,−y,−
√

1− x2 − y2)

is a smooth function from the open unit ball in R2 into R3. Likewise, one
could check that f ◦φ is smooth for all other charts φ in an atlas for S2. Thus
the antipodal map is smooth.

Associated to a smooth map f : M → N is a differential Df . For each
p ∈ M , the differential Df(p) is a linear map from TpM to Tf(p)N . It is
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defined by taking the derivative of f in charts. More precisely, pick a vector
v ∈ TpM . Then we can find a local parameterization ψ : U → Ra and a point
x ∈ U such that p = ψ(x). There is a unique vector u such that Dψ(x)u = v.
Define Df(p)v = D(f ◦ ψ)(x)u. It is now possible to define pullback via the
usual formula.

Definition 245. Let f : M → N be a smooth map and let α be a k-form on
N . Then f ∗α is the k-form on M given by

(f ∗α)p(v1, . . . , vk) = αf(p)(Df(p)v1, . . . , Df(p)vk).

Equivalently, f ∗α is the unique k-form on M with coordinate representations
ψ∗i (f

∗α) = (f ◦ ψi)∗α on Ui.

19 Integrating Forms on Manifolds

If M is an orientable n-dimensional manifold and ω is an n-form on M we
should be able to integrate ω over M . Like with everything else, the way to
do this is via charts. Let ψ1, . . . , ψm be an atlas for M . As a first attempt, we
could try to set ∫

M

ω =

∫
U1

ψ∗1α + . . .+

∫
Um

ψ∗mα.

However, this is not a good definition. It overcounts the integral of α over the
regions where the coordinate charts overlap.

To get around this, we’d like to weight each of the pieces on the right hand
side so that the total weight at every point is 1. The technical device for doing
this is called a partition of unity.

Definition 246. Let ψ1, . . . , ψm be an atlas for M . A partition of unity
subordinate to (ψi) is a collection of smooth functions f1, . . . , fm : M → R
such that

(i) fi ≥ 0,

(ii) fi = 0 outside ψi(Ui),

(iii) f1(p) + . . .+ fm(p) = 1 for all p ∈M .
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Think of the fi as a weight associated to each chart.

We will need the following fact.

Fact. Let ψ1, . . . , ψm be an atlas for the manifold M . Then there is a partition
of unity f1, . . . , fm subordinate to ψ1, . . . , ψm.

Equipped with this, we can define the integral of a form over a manifold.

Definition 247. Let M be an oriented n-dimensional manifold and let ω be
an n-form on M . Let ψ1, . . . , ψm be an oriented atlas for M and let f1, . . . , fm
be a subordinate partition of unity. Then we define∫

M

ω =

∫
U1

ψ∗1(f1α) + . . .+

∫
Um

ψ∗m(fmα).

Remark 248. Partitions of unity are very useful as a theoretical tool. How-
ever, we would never use the above formula to actually compute an integral.
In practice, to compute the integral of a form over a manifold, we can use
a collection of charts with no overlap that cover M up to a set of measure
zero. For example, the parameterizations ψ(x, y) = (x, y,

√
1− x2 − y2) and

φ(x, y) = (x, y,−
√

1− x2 − y2) have disjoint images and cover all of S2 apart
from the equator. Since the equator has zero area, we can safely neglect it
when computing an integral. Thus we have∫

S2

α =

∫
{x2+y2<1}

ψ∗α +

∫
{x2+y2<1}

φ∗α,

which avoids the need to write down an explicit partition of unity.

We can define the integral of a form over a manifold with boundary in the
same way.

Definition 249. Let M be an oriented n-dimensional manifold with boundary
and let ω be an n-form on M . Let ψ1, . . . , ψm be an oriented atlas for M and
let f1, . . . , fm be a subordinate partition of unity. Then we define∫

M

ω =

∫
U1∩Hn

ψ∗1(f1ω) + . . .+

∫
Um∩Hn

ψ∗1(fmω)

Stokes’ theorem continues to hold on manifolds with boundary.
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Theorem 250 (Stokes’ Theorem). Let M be an oriented n-dimensional man-
ifold with boundary and let α be an (n− 1) form on M . Then∫

M

dα =

∫
∂M

α.

Proof. This follows by applying the Euclidean Stokes’ theorem in each chart.
More explicitly, let ψ1, . . . , ψm be an oriented atlas for M . Then∫

M

dα =

∫
U1∩Hn

ψ∗1(f1dα) + . . .+

∫
U1∩Hn

ψ∗m(fmdα)

=

∫
U1∩Hn

ψ∗1(d(f1α)) + . . .+

∫
U1∩Hn

ψ∗m(d(fmα))

−
∫
U1∩Hn

ψ∗1((df1)α)− . . .−
∫
U1∩Hn

ψ∗m((dfm)α)

Now observe that dfi is zero outside of ψi(Ui) and so∫
U1∩Hn

ψ∗1((df1)α) + . . .+

∫
U1∩Hn

ψ∗m((dfm)α)

=

∫
M

(df1)α + . . .+

∫
M

(dfm)α

=

∫
M

d(f1 + . . .+ fm)α = 0

since f1 + . . .+ fm = 1. Therefore∫
M

dα =

∫
U1∩Hn

ψ∗1(d(f1α)) + . . .+

∫
U1∩Hn

ψ∗m(d(fmα))

=

∫
U1∩Hn

dψ∗1(f1α) + . . .+

∫
U1∩Hn

dψ∗m(fmα)

=

∫
U1∩∂Hn

ψ∗1(f1α) + . . .+

∫
U1∩∂Hn

ψ∗m(fmα) =

∫
∂M

α,

as desired.

20 Distinguishing the Sphere and the Torus

We’ll end the course by using differential forms to show that the sphere and
torus are genuinely different manifolds.
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Definition 251. Two manifolds M and N are called diffeomorphic if there is
a smooth bijection f : M → N which has a smooth inverse f−1 : N →M .

Intuitively two manifolds are diffeomorphic if they are intrinsically equiv-
alent. One can think of diffeomorphic manifolds as two copies of the same
abstract space that are situated differently in their ambient Euclidean spaces.
For example, a sphere and an ellipsoid are diffeomorphic. Also a torus and
a (smoothed out) coffee cup are diffeomorphic. However, we expect that a
sphere and a torus are not diffeomorphic since the torus has a hole in it while
the sphere doesn’t.

Theorem 252. The sphere S2 and the torus T are not diffeomorphic.

This will follow from a pair of lemmas about the structure of the differential
forms on these manifolds.

Lemma 253. There is a closed 1-form on T which is not exact.

Lemma 254. Every closed 1-form on S2 is exact.

Given the lemmas, we can prove the theorem as follows.

Proof. (Theorem 252) Assume for contradiction that the sphere and the torus
are diffeomorphic. Then there is a smooth bijection f : S2 → T with smooth
inverse f−1 : T → S2. By Lemma 253, there is a closed 1-form α on T that is
not exact. Then f ∗α is a closed 1-form on S2. By Lemma 254, there exists
a smooth function g on S2 such that f ∗α = dg. But this implies that α =
(f−1)∗f ∗α = (f−1)∗(dg) = d((f−1)∗g) is exact. This is a contradiction.

It remains to prove the lemmas.

Proof. (Lemma 253) Think of T as the manifold obtained by rotating the circle
(x− 2)2 + z2 = 1 in the xz-plane around the z-axis. Let

C = {(x, y, 0) ∈ R3 : x2 + y2 = 4}

be the central circle inside T . Then there is a projection π : T → C given by

π(x, y, z) =
2(x, y)

‖(x, y)‖
.
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Let ω be the length form on C. Then ω is closed since it is a 1-form on a
1-manifold. Thus α = π∗ω is a closed 1-form on T 2.

We claim that α is not exact. Suppose for contradiction that α is exact.
Then π∗ω = dg for some function g on T . Now consider the curve γ : [0, 2π]→
T given by γ(t) = (2 cos t, 2 sin t, 1). By Stokes’ theorem we have∫

γ

π∗ω =

∫
γ

dg = g(γ(2π))− g(γ(0)) = 0.

On the other hand π∗γ(t) = (2 cos t, 2 sin t) traverses the central circle C ex-
actly once and so ∫

γ

π∗ω =

∫
π∗γ

ω = length(C) = 4π.

This is a contradiction. Hence α is a closed 1-form on T which is not exact.

Remark 255. Let

ψ(s, t) = (2 cos s, 2 sin s, 0) + cos t(cos s, sin s, 0) + sin t(0, 0, 1)

and let ψ1, ψ2, ψ3, ψ4 be the restrictions of ψ to (0, 3π
2

)×(0, 3π
2

), (0, 3π
2

)×(π, 5π
2

),
(π, 5π

2
)× (0, 3π

2
), (π, 5π

2
)× (π, 5π

2
) respectively. The ψ1, ψ2, ψ3, ψ4 form an atlas

for the torus.

The 1-form α essentially measures how a much curve in the torus T rotates
around the z-axis. Therefore α is given in coordinates by ψ∗i (α) = 2 ds. (The
factor of 2 is there because ω is the length form on C and not the angle form.
Because C has radius 2, length and angle are related by a factor of 2.) It is
easy to see that α is closed from this expression because d(2 ds) = 0.

On the other hand, α is not exact. Even though 2 ds = d(2s) is exact in
every coordinate chart, the functions 2s do not satisfy the change of coordi-
nates formula and hence do not piece together to give a well-defined function
on T . For example, ψ1 thinks the s coordinate of (

√
2,
√

2, 1) is π/4 while ψ3

thinks the s coordinate of (
√

2,
√

2, 1) is 2π + π/4. So there is no well-defined
value for the function s at the point (

√
2,
√

2, 1).

To check that every closed 1-form on S2 is exact, we first need to prove
some preliminary results.
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Proposition 256. Let γ : [0, 1] → S2 be a smooth curve. Then γ is not
surjective.

Proof. (Sketch) The crucial point is that

L = length(γ) =

∫ 1

0

‖γ′(t)‖ dt

is finite. Let k be a positive integer and pick points p0, p1, . . . , pk along γ
that split γ into k pieces each of length L/k. Let Bi be a ball of radius L/k
centered at pi. Then the image of γ is contained in the union of the balls Bi

for i = 0, 1, . . . , k. Consequently, the image of γ has area at most

k∑
i=0

Area(Bi) =
k∑
i=0

πL2

k2
=
πL2(k + 1)

k2
.

Letting k → ∞, the number on the right hand side goes to 0. Therefore,
the image of γ cannot cover a set of positive area. In particular, γ cannot be
surjective.

Remark 257. There does exist a continuous curve γ : [0, 1] → S2 which is
surjective. (The interested reader can look up Hilbert’s space-filling curve.)

Proposition 258. Every smooth, closed curve γ : [0, 1]→ S2 is homotopic in
S2 to a point.

Proof. Let γ : [0, 1] → S2 be a smooth, closed curve. By the previous propo-
sition, γ is not surjective. Without loss of generality, we can assume that the
north pole (0, 0, 1) is not in the image of γ. Consider the straight line homo-
topy from γ to the south pole (0, 0,−1) in R3. Since γ does not pass through
the north pole, none of the lines in the straight line homotopy pass through
the origin. Therefore, we can renormalize to get a homotopy

h(s, t) =
(1− s)γ(t) + s(0, 0,−1)

‖(1− s)γ(t) + s(0, 0,−1)‖

from γ to (0, 0,−1) in S2.

Proposition 259. Let α be a closed 1-form on S2 and let γ : [0, 1]→ S2 be a
smooth, closed curve. Then

∫
γ
α = 0.
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Proof. By the previous proposition, there exists a homotopy h : [0, 1]× [0, 1]→
S2 from γ to a point. Hence by Stokes’ theorem∫

γ

α =

∫
∂h

α =

∫
h

dα = 0,

as required.

Finally we can prove Lemma 254.

Proof. (Lemma 254) Let α be a closed 1-form on S2. Define a function g : S2 →
R by setting

g(p) =

∫
γp

α

where γp is some curve from the south pole to p in S2. Note that if γ1
p and γ2

p

are two curves from the south pole to p, then γ1
p − γ2

p is a closed curve in S2

and so ∫
γ1p

α−
∫
γ2p

α = 0.

Consequently g(p) is well-defined, i.e., it does not depend on the particular
choice of curve γp. It remains to show that dg = α. This follows by essentially
the same argument as in Example 161.
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