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Online Appendix - Existence of Equilibria

The analysis in this section is performed under more general payoff functions. Without taking an
explicit form, the payoffs of the expert and the decision maker, U e(a, θ, b) and Ud(a, θ), are as-
sumed to satisfy the following conditions: 1) U e(·) and Ud(·) are twice continuously differentiable,
2) U i

11(·) < 0, 3) U i
1(a, ·) = 0 for some a ∈ R, 4) U i

12(·) > 0, i = e, d, 5) Ud(a, θ) = U e(a, θ, 0) for
all (a, θ), and 6) U e

13(·) > 0 everywhere. Also define

a(r, s) =

argmax
a′

∫ s
r
Ud(a′, θ)dθ, if r < s,

ad(r), if r = s.

The emergence of off-equilibrium beliefs in the amateur model, which cannot be eliminated by
having all messages used, poses a challenge in the equilibrium characterization. A full character-
ization requires consideration of all possible off-equilibrium beliefs, which represent a very large
set. In the following, I illustrate the issues and provide a specification of beliefs that, coupled
with a mild condition on the expert’s payoff, ensures the existence of partitional equilibria.

I first show that, for whatever beliefs after false advice, the expert never fully reveals his
information. Intuitively, if the expert reveals θ, the amateur’s own information will become
useless, implying that the amateur will respond in exactly the same way as does the novice.
Since a biased expert does not fully reveal to the novice, he also will not do so to the amateur.

Proposition 5. There exists no separating equilibrium in the amateur model.

Proof. If the expert in the amateur model fully reveals his information, for all θ ∈ Θ, θ induces
ad(θ) on all interval types. Accordingly, a type-θ expert’s payoff is

∫ 1

0
U e(ad(θ), θ, b)dt. Suppose

there exists a fully separating equilibrium. For any η > 0, we can find a θ̄ < η that induces
ad(θ̄) in the equilibrium. Suppose θ̄ deviates by sending m′ that in the equilibrium is reserved
for θ′ = θ̄ + ε, where ε > 0 is such that ad(θ̄) < ad(θ̄ + ε) < ae(θ̄, b). The continuity of the
payoff functions and that Ud(a, θ) ≡ U e(a, θ, 0) guarantee that such an ε exists. Upon receiving
m′, all interval types with t /∈ (θ̄, θ̄ + ε) will take action ad(θ̄ + ε), which, given the choice
of ε and that U e

11(·) < 0, is strictly preferred over ad(θ̄) by θ̄. To the remaining types with
t ∈ (θ̄, θ̄ + ε), all being low-interval types, m′ is a false advice, and they take action under
off-equilibrium beliefs ψ(θ|tl). For any such beliefs, given that Ud

12(·) > 0, the set of induced
actions taken by these interval types is bounded by ad(0) and ad(θ̄ + ε). Since U e

11(·) < 0, we

1



have U e(ad(0), θ̄, b) ≤ U e(a′, θ̄, b) for all a′ ∈ [ad(0), ad(θ̄ + ε)]. Thus, the payoff for θ̄ to send m′

is, regardless of the specification of ψ(θ|tl), bounded below by

(A.1)

∫ θ̄

0

U e(ad(θ̄ + ε), θ̄, b)dt+

∫ θ̄+ε

θ̄

U e(ad(0), θ̄, b)dt+

∫ 1

θ̄+ε

U e(ad(θ̄ + ε), θ̄, b)dt.

Subtracting θ̄’s equilibrium payoff from (A.1) gives:∫ θ̄

0

[U e(ad(θ̄ + ε), θ̄, b)− U e(ad(θ̄), θ̄, b)]dt+

∫ θ̄+ε

θ̄

[U e(ad(0), θ̄, b)− U e(ad(θ̄), θ̄, b)]dt

+

∫ 1

θ̄+ε

[U e(ad(θ̄ + ε), θ̄, b)− U e(ad(θ̄), θ̄, b)]dt.

(A.2)

We can choose η sufficiently small such that, for any ε that satisfies the above criterion of
choosing the deviating message, the first and the third positive terms in (A.2) dominate the
second negative terms for some θ̄ < η. The strict incentive for some θ to deviate poses a
contradiction to the existence of fully separating equilibrium.

In the CS model, when the indifference condition is satisfied under a partitional strategy of
the expert (p.7-8) where N ≥ 2, it follows that the following incentive-compatibility conditions
are satisfied: 1) every boundary type θi will (weakly) prefer sending messages in Mi over any
other messages; and 2) θ in the interior of every Ii—the interior types—will (strictly) prefer
the same. The expert’s strategy thus constitutes an informative partitional equilibrium. In the
amateur model, even if the indifference condition holds under such strategy, in which1

(A.3) V e(Mi, θi, b) = V e(Mi+1, θi, b), i = 1, . . . , N − 1, θ0 = 0 and θN = 1,

since the off-equilibrium beliefs may generate a “benefit of lying” under false advice the incentive-
compatibility conditions is not necessarily satisfied.

Before illustrating how “benefit of lying” may arise, I pause to characterize the induced
actions of the amateur under a partitional strategy. I distinguish between two types of induced
actions, effectively induced and ineffectively induced. An action a is effectively induced by m if
the amateur updates her beliefs µ(θ|m, ts) using Bayes’ rule and there exists θ ∈ Θ such that,
in her maximization problem of which a is the solution, µ(θ|m, ts) 6= φ(θ|ts).

Lemma 4. A high-interval type th takes effectively induced actions if and only if she receives

1. substituting advice: her threshold t ∈ Ii, i = 1, . . . , N−1, and the expert reveals that θ ∈ Ij,
i < j ≤ N ; or

2. complementary advice: her threshold t ∈ Ii, i = 1, . . . , N − 1, and the expert reveals that
θ ∈ Ii,

and she takes ineffectively induced actions if and only if she receives

1With a slight abuse of notations, I use V e(Mi, θi, b) to stand for V e(m, θi, b) for all m ∈Mi.
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3. redundant advice: her threshold t ∈ IN , and the expert reveals that θ ∈ IN ; or

4. false advice: her threshold t ∈ Ii, i = 2, . . . , N , and expert reveals that θ ∈ Ik, 1 ≤ k < i.

A low-interval type tl takes effectively induced actions if and only if she receives

5. substituting advice: her threshold t ∈ Ii, i = 2, . . . , N , and the expert reveals that θ ∈ Ik,
1 ≤ k < i; or

6. complementary advice: her threshold t ∈ Ii, i = 2, . . . , N , and the expert reveals that θ ∈ Ii,

and she takes ineffectively induced actions if and only if she receives

7. redundant advice: her threshold t ∈ I1, and the expert reveals that θ ∈ I1;

8. false advice: her threshold t ∈ Ii, i = 1, . . . , N − 1, and the expert reveals that θ ∈ Ij,
i < j ≤ N .

Proof. I prove the cases for high-interval types; the cases for low-interval types are similar.
Consider first Conditions 1 and 2. Suppose th with t ∈ Ii, i = 1, . . . , N−1, receives m indicating
that θ ∈ Ij. For j > i, th’s updated beliefs under Bayes’ rule are µ(θ|m, th) = 1/(θj − θj−1) for
θ ∈ (θj−1, θj] and zero elsewhere. For j = i, th’s updated beliefs are µ(θ|m, th) = 1/(θi − t) for
θ ∈ [t, θi] and zero elsewhere. In both cases, there exists θ ∈ [0, 1] such that µ(θ|m, th) 6= φ(θ|th),
and the resulting actions are effectively induced. This proves the sufficiencies. The necessities
is proved by contrapositive. Suppose th with t ∈ Ii, i = 1, . . . , N − 1, receives m indicating that
θ ∈ Ij, j < i. Note that then Θσ(m) ∩ th = ∅; Bayes’ rule cannot be applied, and the resulting
action cannot be effectively induced. Finally, suppose th with t ∈ IN receives m indicating that
θ ∈ IN . Her updated beliefs are µ(θ|m, th) = 1/(1 − t) for [t, 1] and zero elsewhere. This is
equivalent to φ(θ|th) for all θ ∈ [0, 1], and the resulting action cannot be effectively induced.
Since there are only two types of actions, effectively induced and ineffectively induced, and
they are mutually exclusive, the sufficiencies (necessities) in Conditions 3 and 4 for ineffectively
induced actions follow from the above necessities (sufficiencies) for effectively induced actions.

Using Lemma 4, the profile of actions effectively induced on th, t ∈ Ii, i = 1, . . . , N − 1, is

ρ(m, th) =

{
a(t, θi), for m ∈Mi (complementary advice),

a(θj−1, θj), for m ∈Mj, i < j ≤ N (substituting advice);

and that induced on tl, t ∈ Ii, i = 2, . . . , N is

ρ(m, tl) =

{
a(θi−1, t), for m ∈Mi (complementary advice),

a(θk−1, θk), for m ∈Mk, 1 ≤ k < i (substituting advice).

The profile of actions ineffectively induced by redundant advice is ρ(m, th) = a(t, 1) and ρ(m, tl) =
a(0, t). The profile of actions induced by false advice depends on the off-equilibrium beliefs. To
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illustrate the “benefit of lying,” suppose the indifference condition holds with N = 3 in a pro-
posed equilibrium. Consider boundary type θ1 (Figure 3).2 If θ1 is the true state, all high-interval
types will have t ≤ θ1 and all low-interval types t > θ1. Suppose θ1 sends m ∈ M1, indicating
that θ ∈ [0, θ1]. Then, all high-interval types will take action a(t, θ1), t ∈ [0, θ1], and all low-
interval types will take action a(0, θ1) (the second line in Figure 3). Given that θ1 satisfies the
indifference condition, he will be indifferent between inducing these actions and those induced
by m ∈M2, which are a(θ1, θ2) and a(θ1, t), t ∈ (θ1, θ2] (not shown in the figure).

Deviation

Proposed Equilibrium

t

t

0 θ1 θ2 1

θ

θM1 M3

high-interval types’
thresholds

low-interval types’
thresholds

actions
induced: a(θ2, 1) a? a(θ2, t)

high-interval types’
thresholds

low-interval types’
thresholds

actions
induced: a(t, θ1) a(0, θ1)

Figure 1: Incentives for Deviations

Now, suppose θ1 lies by sending m ∈ M3, indicating that θ ∈ (θ2, 1]. All high-interval types
will take a(θ2, 1) and all low-interval types with t ∈ (θ2, 1] will take a(θ2, t) (the first line in
Figure 3). These interval types cannot detect the lie and are effectively induced to take these
actions. And to θ1 these actions are less favorable than those induced by M1 (or M2). To the
low-interval types with t ∈ (θ1, θ2], the advice can be detected as false. Without any restriction,
one can come up with off-equilibrium beliefs so that the ineffectively induced actions taken by
these low-interval types will be closer to θ1’s ideal than is a(0, θ1), the effectively induced action
taken by these types in the proposed equilibrium. This creates a benefit of lying, which is absent
in the CS model. It is conceivable, especially in equilibria with more steps, that such benefit of
lying may outweigh the cost of inducing less favorable actions. What equilibria may emerge in
situations of this sort require ad hoc and detailed specifications of beliefs.

The following proposition states, however, that there is a set of off-equilibrium beliefs that,
together with a mild restriction on the expert’s payoff, ensures the sufficiency of the indifference
condition for the existence of partitional equilibria. Denote ψ to be the set of off-equilibrium
beliefs of all interval types: ψ =

⋃
{t,s}∈T×{l,h} ψ(θ|ts).

Proposition 6. There exists a set of off-equilibrium beliefs ψ∗ such that, provided U e
12(·) is

sufficiently large, the boundary types {θi}N−1
i=1 that satisfy (A.3) always constitute an equilibrium.

2There could be a benefit of lying for boundary types whenever N ≥ 3. However, for the interior types, such
benefit also arises for N = 2. Thus, the indifference condition is not always sufficient even for two-step equilibria.
Indeed, in the CS model, incentive compatibility for the interior types is a consequence of that for the boundary
types. As will be discussed below, this is also not true in the amateur model.
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Proof. I first construct ψ∗ and state the cases of the expert’s payoff V e(m, θ, b) under ψ∗. I
then show that, if ψ = ψ∗ and U e

12(·) is sufficiently large, then (A.3) is sufficient for the following
to always hold: for all θ ∈ [θi−1, θi],

(A.4) V e(Mi, θ, b) = max
j
V e(Mj, θ, b), i, j = 1, . . . , N.

The set of off-equilibrium beliefs ψ∗ is constructed as follows. Suppose there exists a monotone
solution, {θ1, . . . , θN−1} ⊂ (0, 1), to (A.3). If a high-interval type th with t ∈ (θi, θi+1], i =
0, . . . , N − 1, receives a false advice, her beliefs are that θ is distributed on [t, θi+1] with density
1/(θi+1− t) and zero elsewhere; if a low-interval type tl with t ∈ (θi, θi+1] receives a false advice,
her beliefs are that θ is distributed on (θi, t) with density 1/(t − θi) and zero elsewhere. Then,
when θ ∈ [θi−1, θi] sends m ∈Mi under the partitional strategy and deviates from it by sending
m ∈Mg, g 6= i, the profile of his expected payoff will be

(A.5) V e(m, θ, b) =



∫ θk−1

0

U e(a(θk−1, θk), θ, b)dt

+
i−1∑

r=k−1

∫ θr+1

θr

U e(a(t, θr+1), θ, b)dt

+

∫ θ

θi

U e(a(t, θi+1), θ, b)dt

+

∫ 1

θ

U e(a(θk−1, θk), θ, b)dt,

if m ∈Mk, 1 ≤ k < i,

∫ θi−1

0

U e(a(θi−1, θi), θ, b)dt

+

∫ θ

θi−1

U e(a(t, θi), θ, b)dt

+

∫ θi

θ

U e(a(θi−1, t), θ, b)dt

+

∫ 1

θi

U e(a(θi−1, θi), θ, b)dt,

if m ∈Mi,

∫ θ

0

U e(a(θj−1, θj), θ, b)dt

+

∫ θi

θ

U e(a(θi−1, t), θ, b)dt

+

j−1∑
r=i

∫ θr+1

θr

U e(a(θr, t), θ, b)dt

+

∫ 1

θj

U e(a(θj−1, θj), θ, b)dt,

if m ∈Mj, i < j ≤ N.

Using the second and the third cases in (A.5), the expected payoff for θi to send m ∈ Mi and
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m ∈Mi+1 are, respectively,∫ θi−1

0

U e(a(θi−1, θi), θi, b)dt+

∫ θi

θi−1

U e(a(t, θi), θi, b)dt+

∫ 1

θi

U e(a(θi−1, θi), θi, b)dt(A.6) ∫ θi

0

U e(a(θi, θi+1), θi, b)dt+

∫ θi+1

θi

U e(a(θi, t), θi, b)dt+

∫ 1

θi+1

U e(a(θi, θi+1), θi, b)dt.(A.7)

Thus, the indifference condition (A.3) becomes the following second-order difference equation:

V (θi−1, θi, θi+1, b) =

∫ θi−1

0

[U e(a(θi, θi+1), θi, b)− U e(a(θi−1, θi), θi, b)]dt

+

∫ θi

θi−1

[U e(a(θi, θi+1), θi, b)− U e(a(t, θi), θi, b)]dt

+

∫ θi+1

θi

[U e(a(θi, t), θi, b)− U e(a(θi−1, θi), θi, b)]dt

+

∫ 1

θi+1

[U e(a(θi, θi+1), θi, b)− U e(a(θi−1, θi), θi, b)]dt = 0,

(A.8)

i = 1, . . . , N − 1, θ0 = 0, θN = 1. Suppose there is a strictly increasing partition, θ0, . . . , θi, that
satisfies (A.8). That U e

11(·) < 0, a(·, ·) is strictly increasing in its arguments, and the continuity
of V (θi−1, θi, θ

′, b) in θ′ ensure that there exists a unique θi+1 > θi that satisfies (A.8).

Turning to incentive compatibility, I begin by showing that (A.4) holds for θi, i = 1, . . . , N−1,
that satisfy (A.3). If N = 2, there exists no other set of messages that θi can send, and (A.4) is
satisfied vacuously. So, consider N ≥ 3. Suppose θi sends message m ∈ Mi+n, 2 ≤ n ≤ N − i.
Then, from the third case in (A.5) his expected payoff is∫ θi

0

U e(a(θi+n−1, θi+n), θi, b)dt+
i+n−2∑
r=i

∫ θr+1

θr

U e(a(θr, t), θi, b)dt

+

∫ θi+n

θi+n−1

U e(a(θi+n−1, t), θi, b)dt+

∫ 1

θi+n

U e(a(θi+n−1, θi+n), θi, b)dt.

(A.9)

Subtracting (A.9) from (A.7), we have

D3 =

∫ θi

0

[U e(a(θi, θi+1), θi, b)− U e(a(θi+n−1, θi+n), θi, b)]dt

+

∫ θi+1

θi

[U e(a(θi, t), θi, b)− U e(a(θi, t), θi, b)]dt

+
i+n−2∑
r=i+1

∫ θr+1

θr

[U e(a(θi, θi+1), θi, b)− U e(a(θr, t), θi, b)]dt

+

∫ θi+n

θi+n−1

[U e(a(θi, θi+1), θi, b)− U e(a(θi+n−1, t), θi, b)]dt

+

∫ 1

θi+n

[U e(a(θi, θi+1), θi, b)− U e(a(θi+n−1, θi+n), θi, b)]dt.
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Note that (A.8) implies that the expert’s ideal action ae(θi, b) ∈ (a(θi−1, θi), a(θi, θi+1)). Since
a(θi+n−1, θi+n) > a(θi, θi+1), a(θi+n−1, t) > a(θi, θi+1) for t ∈ (θi+n−1, θi+n), and a(θj, t) >
a(θi, θi+1) for t ∈ (θj, θj+1), j = i + 1, . . . , i + n − 2, given U e

11(·) < 0 and the maximum of
U e(a, θi, b) is achieved for a ∈ (a(θi−1, θi), a(θi, θi+1)), the first, third, fourth and fifth terms are
positive. Also, the second term vanishes. Thus, D3 > 0. Next, suppose θi sends m ∈ Mi−η,
1 ≤ η ≤ i− 1. From the first case in (A.5), his expected payoff is∫ θi−η−1

0

U e(a(θi−η−1, θi−η), θi, b)dt+

∫ θi−η

θi−η−1

U e(a(t, θi−η), θi, b)dt

+
i−1∑
r=i−η

∫ θr+1

θr

U e(a(t, θr+1), θi, b)dt+

∫ 1

θi

U e(a(θi−η−1, θi−η), θi, b)dt.

(A.10)

Subtracting (A.10) from (A.6), we have

D4 =

∫ θi−η−1

0

[U e(a(θi−1, θi), θi, b)− U e(a(θi−η−1, θi−η), θi, b)]dt

+

∫ θi−η

θi−η−1

[U e(a(θi−1, θi), θi, b)− U e(a(t, θi−η), θi, b)]dt

+
i−2∑
r=i−η

∫ θr+1

θr

[U e(a(θi−1, θi), θi, b)− U e(a(t, θr+1), θi, b)]dt

+

∫ θi

θi−1

[U e(a(t, θi), θi, b)− U e(a(t, θi), θi, b)]dt

+

∫ 1

θi

[U e(a(θi−1, θi), θi, b)− U e(a(θi−η−1, θi−η), θi, b)]dt.

Similar to the above, since a(θi−1, θi) > a(θi−η−1, θi−η), a(θi−1, θi) > a(t, θi−η) for t ∈ (θi−η−1, θi−η),
and a(θi−1, θi) > a(t, θj+1), for t ∈ (θj, θj+1), j = i− η, . . . , i− 2, the first, second, third and fifth
terms are positive, while the fourth term vanishes. Thus, D4 > 0. That D3 > 0 and D4 > 0
imply that (A.4) holds for θi, i = 1, . . . , N − 1.

I show next that given (A.8) and for sufficiently large U e
12(·), all θ ∈ (θi−1, θi) prefer sending

m ∈ Mi over m ∈ Mi+1, and all θ ∈ (θi, θi+1) prefer sending m ∈ Mi+1 over m ∈ Mi, i =
1, . . . , N − 1, so that (A.4) holds for all interior θ. Consider an arbitrary θ ∈ (θi−1, θi). From the
third case in (A.5), his expected payoff from sending m ∈Mi+1 is∫ θ

0

U e(a(θi, θi+1), θi, b)dt+

∫ θi

θ

U e(a(θi−1, t), θi, b)dt

+

∫ θi+1

θi

U e(a(θi, t), θi, b)dt+

∫ 1

θi+1

U e(a(θi, θi+1), θi, b)dt.

(A.11)
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Subtracting his expected payoff from sending m ∈Mi in (A.5) from (A.11), we have

D5 =

∫ θi−1

0

[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]dt

+

∫ θ

θi−1

[U e(a(θi, θi+1), θ, b)− U e(a(t, θi), θ, b)]dt

+

∫ θi

θ

[U e(a(θi−1, t), θ, b)− U e(a(θi−1, t), θ, b)]dt

+

∫ θi+1

θi

[U e(a(θi, t), θ, b)− U e(a(θi−1, θi), θ, b)]dt

+

∫ 1

θi+1

[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]dt.

(A.12)

Differentiating D5 with respect to θ gives

∂D5

∂θ
=

∫ θi−1

0

∂[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]

∂θ
dt

+

∫ θ

θi−1

∂[U e(a(θi, θi+1), θ, b)− U e(a(t, θi), θ, b)]

∂θ
dt

+

∫ θi+1

θi

∂[U e(a(θi, t), θ, b)− U e(a(θi−1, θi), θ, b)]

∂θ
dt

+

∫ 1

θi+1

∂[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]

∂θ
dt

+ [U e(a(θi, θi+1), θ, b)− U e(a(θ, θi), θ, b)]θ.

Since a(θi, θi+1) > a(θi−1, θi), a(θi, θi+1) > a(t, θi) for t ∈ (θi−1, θ), and a(θi, t) > a(θi−1, θi)
for t ∈ (θi, θi+1), U e

12(·) > 0 implies that the first four terms are positive and the last term is
negative; when θ decreases from θi, there are negative effects on D5 from the first four term and
a positive effect from the last term. However, for a sufficiently large U e

12(·) at θ, the negative
effects outweigh the positive. A sufficiently large U e

12(·) then ensures, given (A.8), D5 ≤ 0 for θ.
Consider next an arbitrary θ ∈ (θi, θi+1). From the first case in (A.5), his expected payoff from
sending m ∈Mi is∫ θi−1

0

U e(a(θi−1, θi), θ, b)dt+

∫ θi

θi−1

U e(a(t, θi), θ, b)dt

+

∫ θ

θi

U e(a(t, θi+1), θ, b)dt+

∫ 1

θ

U e(a(θi−1, θi), θ, b)dt.

(A.13)
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Subtracting (A.13) from the expected payoff from sending m ∈Mi+1 in (A.5), we have

D6 =

∫ θi−1

0

[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]dt

+

∫ θi

θi−1

[U e(a(θi, θi+1), θ, b)− U e(a(t, θi), θ, b)]dt

+

∫ θ

θi

[U e(a(t, θi+1), θ, b)− U e(a(t, θi+1), θ, b)]dt

+

∫ θi+1

θ

[U e(a(θi, t), θ, b)− U e(a(θi−1, θi), θ, b)]dt

+

∫ 1

θi+1

[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]dt.

(A.14)

Differentiating D6 with respect to θ gives

∂D6

∂θ
=

∫ θi−1

0

∂[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]

∂θ
dt

+

∫ θi

θi−1

∂[U e(a(θi, θi+1), θ, b)− U e(a(t, θi), θ, b)]

∂θ
dt

+

∫ θi+1

θ

∂[U e(a(θi, t), θ, b)− U e(a(θi−1, θi), θ, b)]

∂θ
dt

+

∫ 1

θi+1

∂[U e(a(θi, θi+1), θ, b)− U e(a(θi−1, θi), θ, b)]

∂θ
dt

− [U e(a(θi, θ), θ, b)− U e(a(θi−1, θi), θ, b)]θ.

Since a(θi, θi+1) > a(θi−1, θi), a(θi, θi+1) > a(t, θi) for t ∈ (θi−1, θ), and a(θi, t) > a(θi−1, θi) for
t ∈ (θi, θi+1), U e

12(·) > 0 implies that the first four terms are positive. While the last term is
negative, similar to the above, for a sufficiently large U e

12(·) at θ, the positive effects on D6 from
the first four terms outweigh the negative effect from the last term; (A.8) then implies D6 ≥ 0
at θ. When U e

12(·) is sufficiently large for all interior types, (A.4) holds for all of them.

The off-equilibrium beliefs specified in the proof—that for t ∈ (θi, θi+1], th and tl believe that
θ is uniformly distributed on, respectively, [t, θi+1] and (θi, t)—are sufficient for the incentive
compatibility condition to hold for the boundary types. However, since the interior types induce
a set of actions not induced by the boundary types, a sufficiently large U e

12(·) is called into
the picture to ensure that incentive compatibility also holds for them. Figure 4 illustrates the
rationale with an example of two-step equilibrium.

Given that the indifference condition holds, the boundary type θ1’s expected payoff from the
profile of actions a(0, θ1) and a(t, θ1), t ∈ [0, θ1], is the same from that from a(θ1, 1) and a(θ1, t),
t ∈ (θ1, 1] (the two upper lines). Consider the actions induced when the interior type θ sends
messages in M1 and M2. If we compare the profile of actions in the lower pair of lines with those
in the upper pair, we can see that they are the same except for t ∈ (θ, θ1]. While θ1 gives no
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Figure 2: Actions Induced by Boundary and Interior Types

false advice when he sends messages in either M1 and M2, there is one when θ sends m ∈ M2.
The specification of ψ∗, which allows incentive compatibility to hold for θ1, (ineffectively) induce
the action a(0, t) (with asterisk) for the interior type if he sends messages in M2, which is the
same as the action effectively induced by m ∈M1.

If we could fix the profile of actions, that U e
12(·) > 0 would have guaranteed that θ < θ1

strictly prefers to send messages in M1 over M2. However, when the expert’s type changes, the
profile of actions also changes, and, insofar as the actions taken by t ∈ (θ, θ1] are concerned, θ is
indifferent between M1 and M2. Thus, we have to ensure that, overall, θ prefers M1 enough for
t /∈ (θ, θ1] so that even with the indifference for t ∈ (θ, θ1] the incentive compatibility still holds.
For this, a sufficiently large U e

12(·) is required. A large U e
12(·) means that the ideal action of a

higher θ is sufficiently higher than that of a lower θ. This additional restriction is nothing but
a strengthening of the already existing sorting condition.
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