
A&A 438, 31–37 (2005)
DOI: 10.1051/0004-6361:20052658
c© ESO 2005

Astronomy
&

Astrophysics

Dissociative recombination of e + HCNH+:
Diabatic potential curves and dynamics calculations

A. P. Hickman1, R. D. Miles1, C. Hayden1, and D. Talbi2

1 Department of Physics, Lehigh University, 16 Memorial Dr. East, Bethlehem, PA, 18015, USA
e-mail: aph2@lehigh.edu

2 LETMEX, Muséum National d’Histoire Naturelle, 57 rue Cuvier, Case Postale 52, 75231 Paris Cedex 05, France
e-mail: talbi@mnhn.fr

Received 7 January 2005 / Accepted 13 April 2005

Abstract. Adiabatic and diabatic potential curves are obtained for linear HCNH. The electronic states of this molecule are
characterized by strong mixing of valence and Rydberg configurations. Molecular orbitals for these two classes of configurations
are determined separately and then combined. Large scale calculations at the level of single and double excitations from a multi-
configuration reference are performed. The calculations confirm the earlier results of Talbi & Ellinger (1998, Chem. Phys. Lett.,
288, 155). Diabatic potential curves are determined using the block diagonalization method and are used to estimate the width Γ
for electron capture by HCNH+. Rates for dissociative recombination through the CH bond and through the NH bond (which
lead to HNC + H and HCN + H, respectively) are calculated using a simple quasi-diatomic model. None of the calculated
results suggests a strong difference in the rates for production of HNC and HCN.
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1. Introduction

There has been much interest recently in the branching ratio of
the dissociative recombination (DR) process

e + HCNH+ →
{

HCN + H
HNC + H.

(1)

This process is important in the interstellar medium. Indeed,
among the puzzles still unresolved in astrochemistry is the ex-
planation for the variation of the HNC/HCN abundance ra-
tios observed in different locations in space. In dark cold
clouds (TMC-1) HNC/HCN is 1.55 (Irvine & Schloerb 1984).
In OMC-1, a region of high mass star formation, this same
abundance ratio changes drastically from 1/80 in the immedi-
ate vicinity of Orion-KL to values in the range of 1/5 for adja-
cent ridge positions (Schilke et al. 1992). In order to reproduce
the abundances observed for HCN and HNC, astrochemical
models have hypothesized that the dissociative recombination
of HCNH+ leads to an equal amount of HCN and HNC.

There have been several recent calculations of potential
curves for this system (Talbi & Ellinger 1998; Shiba et al.
1998; Semaniak et al. 2001), and several groups have discussed
the dynamics of the process (Tachikawa 1999; Semaniak et al.
2001). Talbi & Ellinger (1998) performed a quantum chemi-
cal ab initio study using a quasi-diabatic representation. They
found that the two lowest HCNH 2Σ dissociative states, which
lead to HCN and HNC fragments, respectively, cross the po-
tential energy surface of the HCNH+ ion near its minimum and

below the first vibrational level. They also found that each
of these dissociative states crosses the lowest series of
HCNH Rydberg states, but above the minima and between the
first and second vibrational levels. On the basis of these cross-
ings Talbi and Ellinger have suggested that if the total DR
of HCNH+ (including both the direct and the indirect mech-
anism) leads to equal amounts of HCN and HNC, the direct
process would be more efficient than the indirect.

The diabatic potential energy curves calculated by Shiba
et al. (1998) lead to a different conclusion. Shiba et al. (1998)
found that the two lowest HCNH 2Σ dissociative states (lead-
ing to HCN and HNC) do not cross the potential energy curve
of the ion. However, they did not include Rydberg orbitals in
their atomic basis set. Rydberg orbitals are crucial to describe
the two lowest 2Σ valence dissociative states of HCNH. Indeed,
from their analysis of the CI adiabatic wave functions, Talbi &
Ellinger (1998) showed that at the ion equilibrium geometry
the two lowest 2Σ states of HCNH are of Rydberg character
and change to dissociative character as the CH or NH bond
is stretched, leading respectively to HNC or HCN. Such a
change in character from Rydberg to valence dissociative can-
not appear in the calculations of Shiba et al. due to the lack of
Rydberg basis functions. The neglect of Rydberg orbitals might
explain why the diabatic dissociative states of Shiba et al. pass
below the ionic curve of HCNH rather than crossing it.

The theoretical and experimental study undertaken by
Semaniak et al. (2001) aimed at exploring CN formation
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from the dissociative recombination of HCNH+ confirmed the
easy formation of HCN and HNC from this process. Finally,
Tachikawa (1999) has shown by means of direct ab initio dy-
namics calculations that at low temperature the direct processes
dominates in the DR of HCNH+ even though he suggests for
the low temperature of the interstellar medium the dominant
formation of HNC.

Because of the differences among the studies described
above, many issues regarding the DR of HCNH+ are not yet
settled. In the present study, we report a calculation of diabatic
potential curves for linear HCNH using the block diagonaliza-
tion method (Pacher et al. 1988), and we use these curves and
coupling terms to estimate cross sections for the direct DR pro-
cess. Implementing the block diagonalization method required
a new set of electronic structure calculations, which also con-
firmed the earlier calculations of Talbi & Ellinger (1998) of the
adiabatic potential curves.

2. Potential curves

This section describes the ab initio electronic structure calcu-
lations that we performed to determine adiabatic and diabatic
potential curves. We first summarize briefly the block diagonal-
ization method used to determine diabatic curves, since imple-
menting this method requires a few extra steps in the procedure.

2.1. Block diagonalization method

The block diagonalization method (Pacher et al. 1988) provides
an effective technique for transforming the results of a standard
electronic structure calculation into diabatic potential curves.
An advantage of the method is that one can perform a con-
ventional calculation of the desired size and accuracy and then
obtain diabatic curves with comparable reliability. A second
advantage is that the numerical effort for the diabatization is
quite modest compared to the original calculation (which usu-
ally involves diagonalizing a very large, sparse matrix).

The method requires extra effort in the determination of
molecular orbitals (mo’s). Briefly, one must insure that the vari-
ation of the mo’s {φi} with molecular geometry is small. This
result can be achieved by setting up the calculation in such a
way that the adiabatic energies are invariant under a rotation of
certain molecular orbitals, and then selecting an appropriate ro-
tation at each geometry. For example, the MCSCF energies are
invariant under an arbitary rotation U of the mo’s in the active
space (Roos 1987; Schmidt & Gordon 1998). One can replace
a set of orbitals φ′i optimized in an MCSCF with a new set

φi =
∑

j

Ui jφ
′
j, (2)

and the MCSCF energies will not change. Pacher et al. (1988)
pointed out that one can take advantage of this degree of free-
dom by choosing U so that each mo in the set {φi} resembles
as closely as possible a corresponding orbital in a set of “ref-
erence” orbitals. The reference orbitals are defined in a way
that makes them easy to interpret and ensures that they are
slowly varying. We use the algorithm we previously imple-
mented (Spirko et al. 2000) based on a series of Jacobi rotations

to maximize the overlap of each φi with the corresponding ref-
erence orbital.

The configuration interaction (CI) electronic wave func-
tion Ψn for the nth state is represented as the sum of config-
urations Φm, each constructed from the mo’s φi:

Ψn =

N∑
m=1

cmnΦm. (3)

The number of coefficients N in the sum in Eq. (3) may be quite
large (of order 106). However, one can usually identify a small
set of Nα configurations (Nα ∼ 2–10) that make the dominant
contribution to Nα electronic states of interest. Then Nα will
be the dimension of the diabatic Hamiltonian, and for the di-
abatization one only needs the Nα × Nα matrix of values cmn

for the coefficients of the Nα dominant configurations in the
Nα states of interest. We denote this matrix by S. The diabatic
Hamiltonian matrix Hdiabatic can be expressed as a transforma-
tion of the diagonal matrix E whose nonzero elements are the
adiabatic eigenvalues E1, . . . , ENα :

Hdiabatic = T†ET, (4)

where (†) denotes the adjoint (transpose for a real transforma-
tion), and

T = S−1
(
SS†
)1/2
. (5)

This analysis of the adiabatic eigenvalues and eigenvectors
is straightforward and only involves matrices of order Nα.
Since Hdiabatic is explicitly constructed by a unitary transfor-
mation of the matrix E of adiabatic eigenvalues, the eigenval-
ues of the small matrix Hdiabatic will be exactly the same as the
chosen Nα eigenvalues of the large matrix determined by the
CI calculation.

2.2. Electronic structure calculations

These calculations were performed with the GAMESS code
(Schmidt et al. 1993). We used the Dunning-Hay double zeta
basis set (Dunning & Hay 1977), augmented with an additional
polarization function on each H, one additional diffuse sp
and one polarization function (six cartesian d functions) on C
and N, and two additional Rydberg s and p functions on the
midpoint of CN. The total number of basis functions was 56.
The exponents of the Rydberg functions were 0.026 and 0.016
for the s functions and 0.023 and 0.015 for the p functions.
The Rydberg exponents are the same as those previously used
by Talbi & Ellinger (1998).

Talbi & Ellinger (1998) originally discussed the special re-
quirements for an electronic structure calculation of dissociat-
ing potential curves for linear HCNH. It is important to treat
both the CH bond and the NH bond equally and in a manner
that correctly describes the dissociation process. The valence
space must therefore include both bonding and antibonding or-
bitals for the CH and the NH bonds. It is also important to
include diffuse Rydberg orbitals. The coupling between config-
urations involving these types of orbitals controls the electron
capture process, and the calculated adiabatic wave functions
exhibit considerable mixing of these types of configurations.
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Table 1. Equilibrium geometry for HCNH+.

RCH RCN RNH

1.916 a0 2.141 a0 2.041 a0

The calculations we performed were designed to probe the
dependence of the potential surface on the CH or NH coordi-
nate. For all calculations, we froze the parameters of the bonds
not being stretched at their equilibrium positions. These equi-
librium bond distances are given in Table 1. Talbi et al. (1988)
found that optimizing the other bond lengths did not signif-
icantly change the shape of the potential energy curves with
respect to the bond of interest.

Near the linear equilibrium geometry, the orbital occupancy
of HCNH+ is

· · · (σCN)2(σCH)2(σNH)2(πCN)4, (6)

where “· · ·” signifies the core 1s orbitals for C and N.
The direct mechanism for DR involves capture of an elec-
tron incident on this molecular ion into a dissociating state
of the corresponding neutral (Bardsley 1968; Giusti 1980;
Giusti-Suzor et al. 1983; Hickman 1987). Talbi & Ellinger
(1998) identified the HCNH orbitals involved as σ∗CH and σ∗NH.
These orbitals correspond to antibonding orbitals localized on
CH and NH, respectively. There are two possible dissociating
excited states of HCNH, which are described by the orbital
occupancies:

· · · (σCN)2(σCH)2(σNH)2(πCN)4(σ∗CH)1 (7)

and

· · · (σCN)2(σCH)2(σNH)2(πCN)4(σ∗NH)1. (8)

Occupancy (7) leads to dissociation along the CH coordi-
nate RCH. As RCH → ∞, the bonding orbital σCH and anti-
bonding orbital σ∗CH smoothly change into a pz orbital on C
and a 1s orbital on H. Similar behavior occurs in occupancy (8)
for σNH and σ∗NH as RNH → ∞. This smooth and chemically
sensible behavior is exactly what is desired for the orbitals
that will describe the diabatic states that describe dissociation
to HNC + H or to HCN + H.

We first describe the method we used to determine “refer-
ence” orbitals that exhibit this desired behavior. The method is
similar to the approach used by Talbi & Ellinger (1998). We
performed an MCSCF calculation for the 5Σ state of HCNH+

at the equilibrium geometry of HCNH+ (1Σ). The orbital occu-
pancy of this state is

· · · (σCN)2(πCN)4(σCH)1(σNH)1(σ∗NH)1(σ∗CH)1, (9)

and we took

σCH, σNH, σ
∗
NH, σ

∗
CH

as the active space. We then applied the method of Edmiston
& Ruedenberg (1963) to localize the orbitals. This proce-
dure involves finding an appropriate orbital rotation of the
form Eq. (2) and is available as an option in GAMESS

Table 2. Numbering convention used for the molecular orbitals.

Number Orbital Number Orbital

1 1sN 8 σ∗NH

2 1sC 9 σ∗CH

3 σCN 10 σRyd

4 πCN(x) 11 σRyd

5 πCN(y) 12 π∗CN(x)

6 σCH 13 π∗CN(y)

7 σNH

(Schmidt et al. 1993). Examination of the rotated orbitals con-
firmed that near the equilibrium geometry, the orbitals were
localized on the CH or NH bonds and clearly exhibited bond-
ing and antibonding character. Following Pacher et al. (1988),
we defined the reference orbitals at other geometries using the
same set of mo coefficients. These coefficients lead to “shifted
mo’s” that are no longer orthogonal, so they must be symetri-
cally orthogonalized (Szabo & Ostlund 1982). This procedure
has been shown (Carlson & Keller 1957) to produce the set
of orthonormal mo’s closest to the original set. This method
produced the desired mo’s for geometries near the ion’s equi-
librium, but in the limits RCH → ∞ or RNH → ∞, the dis-
sociating orbital did not correctly approach the limit of an
isolated hydrogen 1s. We were able to obtain the correct
asymptotic behavior by adding another step to the method. We
used the symmetrically orthogonalized mo’s as the initial guess
for another MCSCF calculation of the 5Σ state of HCNH+ at the
new geometry, and then we applied the method of Edmiston
& Ruedenberg (1963) to localize just orbitals σ∗NH and σ∗CH.
This method reduces exactly to the our original procedure
near the equilibrium and also produced the correct behavior
asymptotically.

The fact that Rydberg and valence configurations may mix
very strongly in the wave functions of HCNH excited states
led us to develop a systematic procedure for obtaining opti-
mized valence and Rydberg mo’s separately. The valence or-
bitals were determined from a series of calculations on the
1Σ ground state of HCNH+. We first performed an MCSCF us-
ing a large active space,

πCN, σCH, σNH, σ
∗
NH, σ

∗
CH, π

∗
CN.

This MCSCF wave function correctly describes dissociation
along either the CH or the NH bond. Then we performed a CI
using all single and double excitations from this active space.
The number of CSF’s was 710 748. We used the natural or-
bitals from this calculation to construct the valence orbitals
for HCNH. First, we reordered the natural orbitals to corre-
spond to the numbering convention given in Table 2, and we
also rotated the four sigma orbitals corresponding to σCH, σNH,
σ∗NH, and σ∗CH so that they matched the reference orbitals as
closely as possible, using the method described earlier (Spirko
et al. 2000).
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A second MCSCF calculation was performed to determine
Rydberg orbitals for the HCNH. The Rydberg configurations
of 2Σ HCNH have the orbital occupancy

· · · (σCN)2(σCH)2(σNH)2(πCN)4(σRyd)1, (10)

where σRyd is a large, diffuse Rydberg orbital centered on CN.
To calculate these orbitals we consider the first two 6Σ states
of HCNH, which have orbital occupancies of the form

· · · (σCN)2(πCN)4(σCH)1(σNH)1(σ∗NH)1(σ∗CH)1(σRyd)1.

We performed an MCSCF calculation for the 6Σ states, using
an active space with two Rydberg orbitals,

σCH, σNH, σ
∗
NH, σ

∗
CH, σRyd(1), σRyd(2),

and averaging over the first two states. This calculation pro-
vides the six sigma orbitals that correspond to the four
valence orbitals σCH, σNH, σ∗NH, σ∗CH, plus two Rydberg or-
bitals σRyd(1) and σRyd(2). However, the indeterminancy in the
MCSCF wave function means that the six orbitals in the active
space are mixed in an unpredictable way, and all may include
both valence and Rydberg components. Using a variation of
our rotation method, we rotate the six MCSCF orbitals so that
the first four of them are aligned as closely as possible with
the reference orbitals σCH, σNH, σ∗NH and σ∗CH. This rotation
ensures that the first four MCSCF orbitals have valence char-
acter and a form similar to the corresponding (rotated) natural
orbitals of the ion. The last two MCSCF orbitals have predom-
inantly Rydberg character. We performed an independent rota-
tion of these two orbitals so that one had primarily s character,
and the other primarily p character. This rotation also preserves
the relative sign of the Rydberg orbitals from one geometry to
another.

At this point we combine the mo’s from the 1Σ HCNH+ CI
and the 6Σ HCNH MCSCF. Specifically, using the numbering
in Table 2, we take orbitals 1−9 from the 1Σ HCNH+ cal-
culations to represent the core and valence space, and or-
bitals 10−11 from the 6Σ HCNH calculations for the Rydberg
space. The remaining orbitals (the virtual space) come entirely
from the 6Σ HCNH calculations. The rotations we have per-
formed on each set of orbitals ensures that each of the first
nine 6Σ HCNH MCSCF orbitals is replaced by a similar (but
not identical) orbital from the ion. The chemical interpretation
of each orbital is maintained. The Gram-Schmidt orthogonal-
ization automatically performed by GAMESS ensures that an
orthonormal set of orbitals is used; note that the valence and
Rydberg orbitals will not be mixed since the valence orbitals
are specified first.

We used the combined set of orbitals for the final CI
for HCNH. The active space is

πCN, σCH, σNH, σ
∗
NH, σ

∗
CH, σRyd(1), σRyd(2),

and we include all single and double excitations from this
space. The large active space provides a wave function that in-
cludes an even-handed description of the valence and Rydberg
states discussed by Talbi & Ellinger (1998). The total number
of CSF’s in this calculation was 1 598 948.

Fig. 1. The four lowest adiabatic potential curves of linear HCNH as
a function of RCH. The dotted line is the ion curve. The tic marks on
the curves indicate the points at which calculations were performed.
The solid curve is a spline. (The calculated energies have been shifted
uniformly by +90 au.) The symbol (×) denotes the calculations of
Talbi & Ellinger (1998), shifted vertically to agree with the present
results at the ion equilibrium position.

The results of the final CI are analyzed as described in
Sect. 2.1. For the way we have set up the calculation, the value
of Nα is four. There were four dominant configurations in the
wave functions corresponding to the first four adiabatic ener-
gies. The two corresponding to occupancies (7) and (8) make
the dominant contribution to the lowest states as RCH → ∞ and
RCH → ∞, respectively. Two more configurations correspond
to occupancy (10), one for each of the Rydberg orbitals σRyd.
These configurations lead to diabatic Rydberg potentials paral-
lel to the HCNH+ curve. All four configurations are strongly
mixed for molecular geometries close to the ion equilibrium
geometry.

We also performed structure calculations for linear
HCNH+. For these calculations, either the RCH coordinate or
the RNH coordinate was varied, and the others were fixed at the
equilibrium values of HCNH+ given in Table 1. We used the
same set of orbitals and the same active space used for the final
CI calculations for HCNH, and we included single and double
excitations from the active space. The total number of CSF’s
was 734 390.

Figures 1–4 show some of the results. Figure 1 shows the
adiabatic potential curves as a function of RCH and the com-
parison with the results of Talbi & Ellinger (1998). Figure 2
shows the diagonal elements of the 4 × 4 Hdiabatic as a func-
tion of RCH. Since the most important coupling is between the
Rydberg and valence configurations, we have separately diag-
onalized the 2 × 2 Rydberg block and the 2 × 2 dissociating
block of Hdiabatic. Figures 3 and 4 show the corresponding re-
sults as functions of the RNH. These results clearly show that
there are two dissociating diabatic curves. Comparison of the
CH curves and the NH curves indicates that each surface has a
saddle point near the equilibrium position of the ion.
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Fig. 2. The four diagonal elements of the diabatic Hamiltonian as a
function of RCH. The dotted line is the ion curve. (The calculated ener-
gies have been shifted uniformly by +90 au.) The v = 0 level of the ion
and a harmonic oscillator wave function is shown (RCH motion only).
The symbols (◦) and (�) indicate the diabatic curves dominated by
the antibonding orbital σ∗CH and σ∗NH, respectively.

Fig. 3. The four lowest adiabatic potential curves of linear HCNH as
a function of RNH. The dotted line is the ion curve. The tic marks on
the curves indicate the points at which calculations were performed.
The solid curve is a spline. (The calculated energies have been shifted
uniformly by +90 au.) The symbol (×) denotes the calculations of
Talbi & Ellinger (1998), shifted vertically to agree with the present
results at the ion equilibrium position.

3. Dynamics calculations

The dynamics of DR has been discussed by many au-
thors (Mitchell & Guberman 1988; Giusti-Suzor et al. 1983;
Hickman 1987; Krause et al. 1992; Sarpal et al. 1994;
Guberman 1997; Schneider et al. 2000; Orel et al. 2000; Larson
& Orel 2001; Tennyson et al. 2003; Orel & Larson 2003;
Guberman 2003). Many molecular ion targets have been con-
sidered, but the present system e+HCNH+ is one of the largest
and most complex. Here we will implement a relatively sim-
ple approach that allows us to concentrate on the branching
ratio for producing HCN and HNC. We will model each of
these two channels as independent, quasi-diatomic processes.

Fig. 4. The four diagonal elements of the diabatic Hamiltonian as a
function of RNH. The dotted line is the ion curve. (The calculated en-
ergies have been shifted uniformly by +90 au.) The v = 0 level of
the ion and a harmonic oscillator wave function is shown (RNH motion
only). The symbols (◦) and (�) indicate the diabatic curves dominated
by the antibonding orbital σ∗CH and σ∗NH, respectively.

This approach is supported by a normal mode analysis of lin-
ear HCNH+, which indicates very weak coupling between the
in-line vibrational motions of the two hydrogens. Therefore we
will calculate and compare the rates for DR for the process

e + H(CNH)+ → H + (CNH) = H + HNC, (11)

and for the competing process

e + (HCN)H+ → (HCN) + H = H + HCN, (12)

where the bond distances in (CNH) and (HCN) are held fixed
for the purposes of each calculation.

The treatment adopted here follows the formulation of
Giusti-Suzor et al. (1983) and of Hickman (1987). We con-
sider only the direct process, but we include the nonlocal na-
ture of the coupling terms. We solve the nuclear Schroedinger
equation
(
�

2

2M
d 2

dR 2
− V∗(R) + E

)
F(R) = Vel(R)F(R)

−iπVel(R)χ0(R)
∫ ∞

0
χ0(R′)Vel(R

′)F(R′) dR, (13)

where M is the reduced mass; R is the dissociating coordi-
nate RCH or RNH; V∗(R) is the dissociating potential; E is
the asymptotic kinetic energy of nuclear motion on V∗(R),
and χ0(R) is the vibrational wave function for HCNH+ in RCH

or RNH. We have assumed that the only vibrational channel
open is v = 0, in other words, that the energy of the incident
electron is below the threshhold for vibrational excitation of
the target HCNH+.

We determined χ0(R) for the RCH coordinate by fitting a few
calculated points near the minimum of HCNH+ to a Morse po-
tential (as a function of RCH for fixed RNH). A similar procedure
was used to determine χ0(R) for the RNH coordinate. We then
used the analytic wave functions for the Morse potential, which



36 A. P. Hickman et al.: Dissociative recombination of e + HCNH+

can be written using Laguerre polynomials (Morse 1929). We
used the reduced masses for CH and for NH, respectively.

The electronic coupling term Vel(R) is defined as the ma-
trix element of the electronic Hamiltonian between the incident
electron wave function and the electronic resonance state that
dissociates to the desired products:

Vel(R) = 〈Ψe+HCNH+ |Hel|Ψdissoc〉. (14)

All of the necessary quantities can be directly obtained from
the diabatic potential curves. V∗(R) corresponds to the diago-
nal, dissociating elements of the diabatic Hamiltonian shown
in Figs. 2 and 4. The coupling terms Vel(R) are related to the
Rydberg-valence coupling. By considering the asymptotic nor-
malization of the continuum scattering functions that would be
used to form Ψe+HCNH+ , and comparing the Rydberg functions
that have a similar form near the molecular ion core, one finds
(Talbi et al. 1989) that

Vel(R) � (n∗)1.5〈ΨRydberg|Hel|Ψdissoc〉. (15)

Here n∗ is the effective quantum number of the Rydberg state; it
is related to the R-dependent binding energy EB of the Rydberg
state relative to its parent ion by EB = 1/(2n2). The matrix ele-
ment on the right hand side of Eq. (15) is just the off diagonal
diabatic matrix element determined by the block diagonaliza-
tion. The cross section for dissociative recombination of elec-
trons of energy ε is

σ(ε) =
π2

ε

λ

2
�k
M

lim
R→∞
∣∣∣F(R)

∣∣∣2 (16)

where λ is the ratio of the spin degeneracy of the dissociative
state to that of the initial ion state and has the value λ = 2
in the present case. The factor �k/M is the asymptotic relative
velocity of the dissociating fragments.

The general solution to Eq. (13) includes the possibility
that the electron is captured and then re-emitted before the neu-
tral products can be formed by dissociation. Re-emission cor-
responds to a “survival probability” of less than 1.00. In the
limit that the survival probability is 1.00, Eq. (16) reduces to
the simpler form

σ(ε) =
π2

ε

λ

2
�k
M

∣∣∣〈χ0(R)|Vel(R)|F0(R)〉∣∣∣2 , (17)

where F0(R) is the solution to Eq. (13) with the right hand side
set equal to zero. [The asymptotic behavior of F0(R) must be
normalized to (2M/k) sin(kR + δ), where δ is the phase shift.]
Equation (17) clearly shows that the DR cross section depends
on the matrix element of the electronic coupling between the
initial vibrational state and the final scattering state.

For the e + HCNH+ reaction at low electron energies, the
values of ε are much smaller than the asymptotic nuclear ki-
netic energy E, and hence the energy dependence of the cross
section for direct DR is dominated by the 1/ε factor in Eqs. (16)
or (17). In this case εσ(ε) is nearly a constant, and the rate con-
stant for DR may be well approximated by

α(T ) = α(300)(300/T )0.5. (18)

We have evaluated both Eqs. (16) and (17) numerically, us-
ing values appropriate either to the CH bond or the NH bond.

We approximated Vel by its value at the equilibrium bond
length RCH or RNH. In general, the results based on the simpler
model Eq. (17) appears to be more realistic. The results based
on Eq. (16) were much smaller, indicating a very small survival
probability, and were not consistent with recent laboratory ex-
periments. It is possible that vibrational modes of HCNH that
are not linear (such as bending) play an important role in stabi-
lizing the neutral molecule by causing transitions to electronic
states not strongly coupled to the electron continuum. We also
note that our handling of the survival probablilty is consistent
with the approximation of Tachikawa (1999).

Our numerical results confirm that εσ(ε) is nearly constant;
the precise values we obtained were 2.93 eV Å2 for disso-
ciation of the RCH bond and 2.84 eV Å2 for the RNH bond.
These values correspond to α(300) = 1.22 × 10−7 cm3/s (for
the CH bond breaking) and α(300) = 1.18 × 10−7 cm3/s (for
the NH bond breaking). Taking into account all the uncer-
tainties in our calculation, we conclude that our model yields
similar values of order 1 × 10−7 cm3/s for each DR chan-
nel. For comparison, Semaniak et al. (2001) obtained α(T ) =
2.8×10−7 cm3/s (300/T )0.65, and Adams & Smith (1988) mea-
sured 3.5 × 10−7 cm3/s at T = 300 K. These measurement are
summed over all final states of DR, including channels not in-
cluded in our simple model.

Our major conclusion is that for the potential curves and
couplings we determine, the direct mechanism is effective and
can account for a substantial part of the large rate constants ob-
served. We see no evidence that the rates for formation of HCN
and HNC should be substantially different. Although the indi-
rect mechanism may play a role as well, we have not attempted
to include this mechanism. Any treatment of the indirect mech-
anism within the framework of our linear model would be
rather crude; other work Tachikawa (1999) has found that bend-
ing motion plays a strong role in the indirect process.

4. Concluding remarks

We have performed electronic structure calculations for neu-
tral HCNH and the molecular ion HCNH+, including a dia-
batization using the block diagonalization method. The results
confirm the earlier calculations of Talbi & Ellinger (1998), who
concluded that the dissociating curves cross the ionic curves
near the equilibrium position. We have also investigated the rel-
ative rates for dissociative recombination (DR) leading to the
final channels H + HNC and H + HCN. Implementing the di-
rect mechanism of DR and a simple quasi-diatomic model, we
find similar rates (of order 1 × 10−7 cm3/s) for the production
of HNC and HCN. Further investigation of this difficult prob-
lem is needed for a definitive treatment of all the vibrational
modes as well as direct and indirect processes.
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