Research

Research Strategy

The present global trend for efficiency, sustainability and the desire to push designs be faster and stronger, last longer and operate in extreme conditions has pushed the fundamental need for material development, specifically in the field of tribology. Advanced materials must be designed and paired for specific, often extreme, environments and operating conditions that range from the human body to outer space. In order to understand interfacial interactions and develop material solutions for various applications ranging from biomedical to aerospace, I have a multi-faceted, multi-scale and multi-disciplinary research strategy:

  • Study fundamentals of interfacial interactions, including wear and friction, across the macro, micro, nano and atomic length-scales
  • Evaluate material performance in different environments and explain performance through detailed characterization
  • Explore the importance of chemical, mechanical and physical interactions in interfaces and tribological systems and their impact on wear and friction
  • Utilize in situ techniques to probe the chemical and physical nature of interfacial interactions
  • Explore how surface organization, order and orientation across length-scales can affect interfacial performance
  • Develop science-based predictive modeling tools to assist with material selection and design
  • Utilize studies and models to develop application-driven materials, including multifunctional materials and composite systems utilizing micro- and nanotechnologies

News

Undergraduate Research Positions Available

Research Opportunities

Oportunity for hands on research experience.

Now Accepting Applications.

In the Tribology Laboratory, undergraduates will do experimental research focused on interfacial interactions of condensed matter. This includes studying the fundamental origins of friction, wear, surface deformation and adhesion on complex surfaces and materials ranging from cells to nanocomposites in environments ranging space to kilometers under water.

Active research includes analysis of materials that recently returned from the international space station, evaluating wear of dinosaur dental fossils, developing and patenting ultra-low wear polymer nanocomposites, studying and designing biocompatible and bio-inspired polymeric and hydrogel materials, and collaborating internationally on the physics of soft matter interactions. This research in tribology is at the intersection of mechanical engineering, materials science and surface physics.

Nanomechanical and Tribological Properties on Hadrosaurid Dinosaurs

Nanomechanical and Tribological Properties on Hadrosaurid

Prof. Greg Sawyer, Greg Erickson and Brandon Krick measured nanomechanical and tribological properties on hadrosaurid (duck-billed dinosaur) dental fossils from the American Museum of Natural History. Using custom instruments, we measured tissue hardness and wear rates that were preserved in the 65 million year old tooth. These properties are preserved in fossilized teeth because apatite mineral content is the major determinant of dental tissue hardness. Measured tissue wear rates were used to simulate the formation of hadrosaurid tooth chewing surfaces using a 3-D wear simulation. The simulation results in a surface profile nearly identical to a naturally worn hadrosaurid dental battery. The model revealed how each tissue (of differing wear rates) contributed to the formation of sophisticated slicing and grinding features in these reptiles tens of millions of years before mammals evolved analogous chewing capacity. This capacity to measure wear-relevant properties preserved in fossils provides a new route to study biomechanics throughout evolution. See Journal papers:
Science, October 5, 2012, pp.98-101.

Experiments back from the International Space Station

Space Tribometers and Samples back for analysis

Materials on the International Space Station Experiments Space Tribometerd

Materials on the International Space Station Experiments (MISSE) Space Tribometers were the first ever active tribometers directly exposed to the Low Earth Orbit Environment

The Tribology Laboratory at Lehigh University is under construction

The lab as of May 2013

The lab as of July, 3rd 2013

The main laboratory is located in Lehigh's Packard Laboratory.