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1 Introduction

1.1 Overview and goals

The Magnetic Levitation System, MagLev for short, is inherently nonlinear and open loop unstable. Ma-
glev trains and magnetic bearings are two of the most important related applications. In this project we
consider a single degree of freedom magnetic suspension system. The experiment will explore issues
associated with nonlinearity, instability, and robustness of control design to modeling errors.

1.2 Apparatus

The levitation system consists of a position sensor, actuator, and controller. Figure 1.2 shows a conceptual
schematic of this system. The actuator provides the force necessary to counteract gravity and to stabilize
the equilibrium. It is an electromagnet whose field strength depends on the amount of current flowing in
the coil. We can thus control the magnetic force by adjusting this current. Fortunately, the equilibrium is
passively stabilized in the lateral directions via the field gradient, so we only need to consider control over
the vertical displacement. A suspension system also requires a mechanism for sensing the position of the
object. Here, we use an optical approach with a IR light source and associated sensor. As the ball moves
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Figure 1-2: System schematic consisting of actuator, position sensor, and controller.

the amount of current flowing in the coil. We can thus control the magnetic force

by adjusting this current. The actuator exerts force by pulling on and releasing the

ball, giving us active control over the vertical axis. The equilibrium is only passively

stabilized in the lateral directions via the field gradient. A suspension system also

requires a mechanism for sensing the position of the object, a ball in this case. Here,

we use an optical approach with a light source and corresponding sensor. As the ball

moves up and down, the amount of light detected changes accordingly. The controller

looks at the position of the ball and compares it to the reference input position,

adjusting the force as needed. The relationship between force, current, and air gap is

nonlinear. We use a micrometer fixture to measure this relationship as shown in the

picture of Figure 1-4 and the layout of Figure 1-5. Traditionally, these equations are

linearized about an operating point. Instead, we use feedback linearization, which

overcomes the operating point dependency and allows the suspension to work over a

wide range of air gaps. This thesis details the design and implementation of the the
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Figure 1: System schematic consisting of actuator position sensor and controller.

up and down, the amount of light detected changes accordingly. The controller looks at the position of the
ball and compares it to the reference position, adjusting the current as needed to suspend the ball.

1.3 Matlab Files

The relevant files are located on the C drive.

• C:\33-942 Magnetic Levitation

• Run the file startup.m to set the matlab path

• Find a Maglev Simulation code on the controls lab drive MagLevSimulation.m

2 Modeling

There are two forces acting on the ball, the gravitational force, mg, and the magnetic force, which is given
by

Fm = k
i2

x2
(1)

where x is gap spacing between the pole of the electromagnet and the ball, i is the current through the
inductor, and k is an electromagnetic force constant, which is dependent on the material properties and
physical structure of the magnet. The magnetic force relation is a simplified approximation for the system;
it ignores many non-ideal characteristics. Specifically, the equation does not account for effects including
finite core reluctance, saturation of the core, magnetic hysteresis, and eddy currents in the core.

Assuming the downward direction represents positive displacement, the dynamics of the system can be
described by

mẍ = mg − k i
2

x2
. (2)
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Figure 4-1: Free-body diagram showing forces acting on the ball.

the free-body diagram in Figure 4-1 with the downward direction positive.

mẍ = mg ° Fm (4.1)

The physics of the setup is similar to that developed in [9, chap. 3] and in [13, pgs.22-

23, 84-86]. The key equation to take from [13] is the force on the ball produced by

the electromagnet, which is modeled as

Fm = C

µ
i

x

∂2

. (4.2)

Here x is the distance from the pole face to the ball, as shown in Figure 4-1. Substi-

tuting into equation (4.1) gives

mẍ = mg ° C

µ
i

x

∂2

. (4.3)

Our goal is to derive a diÆerential equation with x as the output variable and i as
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Variable Description Units Value
x Vertical displacement (m)
Fm Magnetic force exerted on ball (N)
m Mass of ball (kg) 0.0218
k Constant (Nm2/A2 2.48× 10−5

i0 Equilibrium Current (A) 0.8
x0 Equilibrium Position (m) 0.009
g Gravitational acceleration (N/m2) 9.81

Figure 2: Free body diagram of maglev ball.

Lab Work 1: State Space System Modeling

This system (2) can be written in an equivalent state space form, which is useful for simulation purposes.
Since this is a second order system, it requires two state variables to completely define the dynamics.
Define the state variables x1 = x and x2 = ẋ, and construct the state space system

2.1 Model Linearization

The suspension of a ball with an electromagnet is difficult because it is open-loop unstable and there is
a nonlinear relationship between force, current, and gap between the pole of the electromagnet and ball.
Equilibrium is reached when the magnetic force balances the gravitational force. Intuitively it makes sense
that the system is unstable. Imagine the ball is sitting at the equilibrium point under a fixed magnetic field, a
small deviation towards the magnet will increase the magnetic force perturbation or a small deviation away
from the magnetic will decrease the magnetic force allowing the ball to fall, also growing the perturbation.
One effective method to stabilize a nonlinear system around an operating point is to take the first order
approximation of the system around that operating point, a linearization, and then proceed with standard
control techniques for linear systems.

Let x0 and i0 represent some equilibrium point, i.e.

ẍ0 = 0, and mg = k
i20
x20
. (3)

Define the new variables, x̄ and ī as perturbations around the equilibrium x0 and i0, i.e.

x = x0 + x̄,

i = i0 + ī.
(4)

For small perturbations around the equilibrium, the nonlinear system (2) can be well described by the first
order approximation,

Fm ≈ k
i0

2

x02
+
∂Fm

∂x

∣∣∣∣
i0,x0

x̄+
∂Fm

∂i

∣∣∣∣
i0,x0

ī,

Fm ≈ k
i0

2

x02
+−2k

(
i20
x30

)
x̄+ 2k

(
i0
x20

)
ī.

(5)

3



With this approximation, we have a linear system which represents the dynamics well for small perturba-
tions around the equilibrium,

m¨̄x− k1x̄ = −k2ī (6)

where k1 = 2k
i20
x3
0

and k2 = 2k i0
x2
0
.

For k1 > 0, the poles of the system are at

s1 = −
√
k1
m
, s2 =

√
k1
m
. (7)

Notice there is a right half plane pole, which represents the open-loop instability of the system. Clearly,
compensation efforts have to focus on moving the right-half plane pole into the stable left-half plane.
Lab Work 2:

1. Construct a pole zero map and bode plot of the open loop system for varying values of k1 (2). k1
can be used to describe uncertainty in the system, so, we should understand how the dynamics
change with varying values of k1.

2. For the value of k1 provided in Figure 2, plot the position of the closed-loop poles with a propor-
tional controller. Is there anyway to stabilize this system with proportional control?

3. What is the simplest controller that could be used to stabilize the system? How can we pull the
closed-loop poles into the LHP? Note, that we don’t really know the value of k1 exactly, and there
are other unmodeled dynamics, so there must be some consideration for uncertainty.

3 Maglev Control

A lead compensator along with sufficiently high gain will pull the pole over into the left-half plane. The
drawback of this approach is that it is only valid for small deviations around an operating point. It is
however, simple and straightforward to implement, and leads to natural representation in state-space form,
which allows easy computation.

3.1 Lead Control

A lead compensator has the form
Gc(s) = K(ατs+ 1), (8)

which, you can note, is just a PD controller. The uncompensated plant has zero phase margin (phase is
180 deg for all frequencies). Lead compensation can be used to add phase in the neighborhood of the
crossover frequency. A more practical lead compensator has the form

Gc(s) = K
ατs+ 1

τs+ 1
. (9)

The pole is added to make the system strictly proper. Otherwise the gain would be unrealizable at high
frequencies, and would amplify noise. The network has a low frequency zero followed by a higher fre-
quency pole. Therefore, when the phase from the zero starts to take effect the magnitude has not yet begun
to rise significantly, and it is possible to leave the crossover frequency unchanged. Typically, α is set to
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about 10, i.e. the pole-zero pair is a decade apart in frequency, and the crossover frequency is placed at the
geometric mean of the pole-zero pair for maximum phase improvement.

Lab Work 3: Lead Control Design via Root Locus Analysis

Use root-locus design techniques to design a lead compensator which stabilizes the linearized system

1. Design a lead controller by using the zero to cancel out the LHP pole, then the lead pole or
controller gain can be chosen to satisfy design requirements. Design a controller which satisfies a
damping coefficient of the ζ = 0.7.

2. Why might this controller design not be suitable for the actual physical system. How can we
design the controller to ensure it still works for a the physical system. Think about model uncer-
tainty.

The maximum phase is given by

φm = sin−1 α− 1

α + 1
(10)

The lead compensator will move the poles into the left-half plane but we must properly choose the param-
eters to achieve desired performance.

Lab Work 4: Lead Control Design via Bode Analysis

Use bode design techniques to design a lead compensator which stabilizes the linearized system

1. Use bode analysis to show that a PD controller can be well approximated by a practical lead
controller.

2. Use the bode plot of the lead controller to show why a lead controller “adds phase” to the system.

3. Design a Lead compensator to achieve a phase margin of 30◦and a cross over frequency which
satisfies speed of response requirement specified by the setting time.

• ts < 1

• PM > 30◦

4. Draw the bode plot of the compensated system to show satisfaction of the PM at the desired cross
over frequency.

5. Draw the root locus of the compensated system, how does this compare the previous control
design via root-locus techniques.

6. You can test the lead compensator with the matlab simulation file MagLevSimulation.m. Or
build your own simulation. It may be easier to start with a very simple simulation using built
in matlab functions tf and lsim. Then use the simulation file to add more complexity to the
simulation such as measurement noise and for generating nicer plots.

4 Maglev Modeling: Inclusion of circuit dynamics
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A Model Identification

T =
G

1 + CG
(11)

With lead compensator of the form

C = K
z + zc
z + pc

(12)

where K =, zc =, and pc =. written in terms of the model parameters the closed loop transfer function is

T =
2000k1 + 4439k1z

−1 + 2878k1z
−2 + 439k1z

−3

(155120k1 + 200k2 − 8× 109) + (57560k1)z−1 + ()z−2 + ()z−3
(13)
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