Multiset Poker

Daniel Conus and Garth Isaak Lehigh University

MAA-EPADEL - November 12, 2016

4 Cards: Q_1 , Q_2 , K_1 , K_2 - Pick 2

Set	Prob	Multi Set	Prob
Q_1Q_2	<u>1</u>	Q_1Q_2	$\frac{1}{10}$
Q_1K_1	$\frac{1}{6}$	Q_1K_1	$\frac{1}{10}$
Q_1K_2	$\frac{1}{6}$	Q_1K_2	$\frac{1}{10}$
Q_2K_1	$\frac{1}{6}$	Q_2K_1	$\frac{1}{10}$
Q_2K_2	$\frac{1}{6}$	Q_2K_2	$\frac{1}{10}$
K_1K_2	$\frac{1}{6}$	K_1K_2	$\frac{1}{10}$
		Q_1Q_1	$\frac{1}{10}$
		Q_2Q_2	$\frac{1}{10}$
		K_1K_1	$\frac{1}{10}$
		K_2K_2	$\frac{1}{10}$

4 Cards: Q_1 , Q_2 , K_1 , K_2 - Multiset

Multi Set	Prob	Replace ment	Prob	Two Decks	Prob
Q_1Q_2	$\frac{1}{10}$	Q_1Q_2	$\frac{2}{16}$	Q_1Q_2	$\frac{4}{28}$
Q_1K_1	$\frac{1}{10}$	Q_1K_1	$\frac{2}{16}$	Q_1K_1	$\frac{4}{28}$
Q_1K_2	$\frac{1}{10}$	Q_1K_2	$\frac{2}{16}$	Q_1K_2	<u>4</u> 28
Q_2K_1	$\frac{1}{10}$	Q_2K_1	$\frac{2}{16}$	Q_2K_1	$\frac{4}{28}$
Q_2K_2	$\frac{1}{10}$	Q_2K_2	$\frac{2}{16}$	Q_2K_2	$\frac{4}{28}$
K_1K_2	$\frac{1}{10}$	K_1K_2	$\frac{2}{16}$	K_1K_2	$\frac{4}{28}$
Q_1Q_1	$\frac{1}{10}$	Q_1Q_1	$\frac{1}{16}$	Q_1Q_1	$\frac{1}{28}$
Q_2Q_2	$\frac{1}{10}$	Q_2Q_2	$\frac{1}{16}$	Q_2Q_2	$\frac{1}{28}$
K_1K_1	$\frac{1}{10}$	K_1K_1	$\frac{1}{16}$	K_1K_1	$\frac{1}{28}$
K_2K_2	$\frac{1}{10}$	K_2K_2	$\frac{1}{16}$	K_2K_2	$\frac{1}{28}$

Use 5 Cards: C, Q_1 , Q_2 , K_1 , K_2 - Pick 2

Set	Multi Set	Prob
Q_1Q_2	Q_1Q_2	$\frac{1}{10}$
Q_1K_1	Q_1K_1	$\frac{1}{10}$
Q_1K_2	Q_1K_2	$\frac{1}{10}$
Q_1K_2	Q_2K_1	$\frac{1}{10}$
Q_2K_2	Q_2K_2	$\frac{1}{10}$
K_1K_2	K_1K_2	$\frac{1}{10}$
CQ_1	$Q_1 Q_1$	$\frac{1}{10}$
CQ_2	Q_2Q_2	$\frac{1}{10}$
$C K_1$	K_1K_1	$\frac{1}{10}$
<i>C K</i> ₂	K_2K_2	$\frac{1}{10}$

Notation

$$\binom{n}{k}=\#$$
 k elt subsets from n set: $\binom{52}{5}=\frac{52!}{5!47!}=2,598,560$

$$\binom{n}{k}$$
 = # k elt multisets from n set: $\binom{52}{5}$ = $\frac{(52+4)!}{52!4!}$ = 3,819,816

$$\binom{n}{k_1, k_2, \dots, k_t} = multinomial \ coefficient: \ \binom{13}{1, 2, 10} = \frac{13!}{1!2!10!} = 858$$

Fact

$$\binom{n}{k} = \binom{n+k-1}{k}$$

Standard Bijection:

Map 4 element sets from $\{1,2,3,4,5,6,7,8,9\}$ to 4 element multisets from $\{1,2,3,4,5,6\}$ (and reverse)

set	stars and bars	multiset
1, 3, 4, 6	* * * *	1, 2, 2, 3
1, 4, 6, 9	* * * *	1, 3, 4, 6
2, 3, 4, 8		2, 2, 2, 5

Linear order of augmented deck

Low to high ranks: $2, 3, \dots, 9, 10, J, Q, K, A, C$

Low to high within ranks: \clubsuit , \diamondsuit , \heartsuit , \spadesuit

The standard bijection

Knight's Bijection:

Map 4 element sets from $\{1,2,3,4,5,6,7,8,9\}$ to 4 element multisets from $\{1,2,3,4,5,6\}$ (and reverse)

Set from $\{1,2,3,4,5,6,7,8,9\}$ avoiding $\{7,8,9\}$ maps to itself

set multiset 1, 3, 4, 6 1, 3, 4, 6

Knight's Bijection:

Map 4 element sets from $\{1,2,3,4,5,6,7,8,9\}$ to 4 element multisets from $\{1,2,3,4,5,6\}$ (and reverse)

- Place {7, 8, 9} in positions 1,2,3
- Fill in other elements in open spaces (in order)
- $\{7, 8, 9\}$ assume value of first element to their right

set	rearrange	multiset
2, 4, 5, 8	2, 8, 4, 5	2, 4, 4, 5
2, 4, 7, 8	7, 8, 2, 4	2, 2, 2, 4

The Knight's bijection

- A hand with no knight maps to itself
- Place knights in their location C♣, C♦, C♥, C♠
 = 1,2,3,4 left to right
- Place remaining cards in open spaces in order
- Knights take value of first regular card to their right

$$3 \stackrel{?}{\Rightarrow} 3 \stackrel{?}{\Rightarrow} 3 \stackrel{?}{\Rightarrow} 3 \stackrel{?}{\Rightarrow} 3 \stackrel{?}{\Rightarrow} 3 \stackrel{?}{\Rightarrow} 3 \stackrel{?}{\Rightarrow} 4 \stackrel{?}{\Rightarrow}$$

$$C \stackrel{?}{\Rightarrow} 3 \stackrel{?}{\Rightarrow} 5 \stackrel{?}{\Rightarrow} J \stackrel{?}{\Rightarrow} J$$

Knight's bijection
$$C: \binom{[n+k-1]}{k} \Leftrightarrow \binom{[n]}{k}$$

- Any set avoiding knights maps to itself
- Place knights in their location
- Place regular elements in order in open spots
- Knights take value of first regular element to their right

Proof idea:

- Stars and bars bijection with 'extra' elements as stars and 'regular' elements as bars
- Multiset version of Vandermonde identity $\binom{n+k-1}{k} = \sum \binom{n}{i} \binom{k-1}{k-i} \qquad \binom{n}{k} = \sum \binom{n}{i} \binom{i}{k-i}$

Playing poker with Knight's bijection

- No 'numerical' computations needed
- 'Normal' hands are themselves
- No 2 players can get the same card
- At most 4 instances of duplicated cards
- High card 'beats' one pair

General Poker Games

3 'Deals'

- Multiple Decks (t decks)
- Multiset bijection
- Dealing with replacement
- r ranks
- s suits
- hand size h

limit as $t \to \infty$ multideck is dealing with replacement

Notation for general poker

$$\lambda = \langle 0^{p_0}, 1^{p_1}, 2^{p_2}, \dots, \rangle$$
 $r = \sum p_i$ and $h = \sum i \cdot p_i$

Regular 13 rank poker:

$$\langle 0^{10}, 1^2, 2^0, 3^1 \rangle$$
 is 3 of a kind

$$\langle 0^{10}, 1^1, 2^2 \rangle$$
 is 2 pair

With r = 17 ranks and hand size h = 13:

$$\langle 0^{10}, 1^4, 2^0, 3^3 \rangle$$
 is three 3 of a kinds

$$\langle 0^{11}, 1^3, 2^1, 3^0, 4^2 \rangle$$
 is two 4 of a kind and a pair

$$\lambda = \langle 0^{p_0}, 1^{p_1}, 2^{p_2}, \dots, \rangle$$

t decks

$$\frac{\binom{r}{p_0,p_1,p_2,\dots}\cdot\prod\binom{st}{i}^{p_i}}{\binom{rst}{h}}$$

Multiset

$$\frac{\binom{r}{p_0,p_1,p_2,\dots}\cdot\prod\binom{s}{i}^{p_i}}{\binom{rs}{h}}$$

Dealing with replacement

$$\frac{\binom{r}{p_0,p_1,p_2,\dots}\cdot\binom{h}{(0)^{p_0},(1)^{p_1},(2)^{p_2},(3)^{p_3},\dots}\cdot s^h}{(rs)^h}$$

13 ranks, 4 suits, 5 card hands 2 pair (including flushes): $\langle 0^{10}, 1^1, 2^2 \rangle$

5 decks:

$$\frac{\binom{13}{10,1,2} \cdot \binom{20}{1} \binom{20}{2}^2}{\binom{260}{5}}$$

multiset:

$$\frac{\binom{13}{10,1,2} \cdot \binom{4}{1} \cdot \binom{4}{2}^2}{\binom{52}{5}}$$

Dealing with replacement:

$$\frac{\binom{13}{10,1,2}\cdot\binom{5}{1,2,2}\cdot 4^5}{52^5}$$

17 ranks, 6 suits, 13 card hands two 4 of a kind and a pair (including flushes): $\langle 0^{11},1^3,2^1,3^0,4^2\rangle$

1 deck:

$$\frac{\binom{17}{11,3,1,2} \cdot \binom{6}{1}^{3} \binom{6}{2} \binom{6}{4}^{2}}{\binom{102}{13}}$$

multiset:

$$\frac{\binom{17}{11,3,1,2} \cdot \binom{6}{1}^3 \binom{6}{2} \binom{6}{4}^2}{\binom{102}{13}}$$

Dealing with replacement:

$$\frac{\binom{17}{11,3,1,2} \cdot \binom{13}{1,1,1,2,4,4} \cdot 6^{13}}{102^{13}}$$

$$\lambda = \langle 0^{p_0}, 1^{p_1}, 2^{p_2}, \dots, \rangle$$

t decks

$$\frac{\binom{r}{p_0,p_1,p_2,\dots}\cdot\prod\binom{st}{i}^{p_i}}{\binom{rst}{h}}$$

Multiset

$$\frac{\binom{r}{p_0,p_1,p_2,\dots}\cdot\prod\binom{s}{i}^{p_i}}{\binom{rs}{h}}$$

Dealing with replacement

$$\frac{\binom{r}{p_0,p_1,p_2,\dots}\cdot\binom{h}{(0)^{p_0}\left(1\right)^{p_1}\left(2\right)^{p_2}\left(3\right)^{p_3}\dots}\cdot s^h}{(rs)^h}$$

Multiset vs. regular probabilities (as percents %)

	multiset	regular
Straight flush 5 kind flush 4 kind flush full house flush 5 kind 3 kind flush 2 pair flush straight pair flush 4 kind full house 3 kind 2 pair High card	.001 .016 .016 .02 .09 .09 .13 .27 .30 .56 .80 7.10 8.90 34.10	.001 0 0 0 0 0 .20 .39 0 .02 .14 2.87 4.75 49.68
1 pair	47.62	42.3

regular poker hands $\binom{52}{5} = 2,598,960$ multiset poker hands $\binom{52}{5} = \binom{56}{5} = 3,819,816$

(ロ) (部) (注) (注) 注 り(()

- A hand with no knight maps to itself
- Place knights in their location C♣, C♦, C♥, C♠
 = 1,2,3,4 left to right
- Place remaining cards in open spaces in order
- Knights take value of first regular card to their right

The Knight's bijection

$$3 \stackrel{?}{\Rightarrow} 3 \stackrel{$$