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ME 433 – STATE SPACE CONTROL 

Lecture 6 
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State Observer 
Problem Definition: “An unforced system is said to be observable if 
and only if it is possible to determine any (arbitrary initial) state x(0) by 
using only a finite record, y(τ) for 0≤τ ≤T, of the output” 

Theorem: “A system is observable if and only if the matrix  

is full-rank.” 
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State Observer Design 
We consider the linear, time-invariant system 

€ 

˙ x = Ax + Bu,
y = Cx + Du.

and we look for an “observer” of the state of the form 

In this case we have the error                        dynamics  

€ 

˜ ˙ x = (A − LC) ˜ x 

We should note that we can modify the dynamics (eigenvalues) of the 
error system by proper selection of the gain L. If the system is 
observable, it is always possible to find an observer gain L to set the 
eigenvalues of the error dynamics at arbitrary values. 

€ 

ˆ ˙ x = Aˆ x + Bu + L y − ˆ y ( ),
ˆ y = Cˆ x + Du.

€ 

˜ x = x − ˆ x 
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State Observer Design 
By noting that  

we can conclude that the observer eigenvalue placement problem is 
similar to the controller eigenvalue placement problem  

By making 

we can use the same eigenvalue placement formulas developed by 
state feedback control design. After obtaining K,  we obtain L as 

€ 

eig A − LC{ } = eig A − LC( )T{ } = eig AT −CTLT{ }

€ 

A = AT ,B = CT
€ 

eig A − BK{ }

€ 

L = KT
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State Observer Design 
Examples :    
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Reduced State Observer Design 
We consider the linear, time-invariant system 

€ 

˙ x = Ax + Bu,
y = Cx + Du.

Let us assume that p of the n states can be measured. Let us partition 
the state vector as  

where x1 ∊ Rp, and x2 ∊ Rn-p. The system dynamics can be written as 

And the observation of the system is given by 
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€ 

˙ x 1 = A11x1 + A12x2 + B1u,
˙ x 2 = A21x1 + A22x2 + B2u.

€ 

y = C1x1⇒ x1 = C1
−1y
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Reduced State Observer Design 

€ 

ˆ x 2 = Ly + z
where  

Since x1 ∊ Rp is measurable, we only need to estimate x2 ∊ Rn-p. We 
propose 

If we choose 

€ 

˙ z = Fz + Gy + Hu.

€ 

˙ e 2 = Fe2,           e2 = x2 − ˆ x 2€ 

F = A22 − LC1A12
H = B2 − LC1B1

GC1 = A21 − LC1A11 + FLC1

the dynamics of the estimation error is governed by 

Proof: In class. 
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Output Feedback 
Separation Principle: 

1.  Design the control law under the assumption that all state variables 
in the process can be measured. 

2.  Design an observer to estimate the state of the process for which 
the control law of step 1 was designed. 

3.  Combine the full-state control law design of step 1 with the 
observer design of step 2 to obtain the compensator design. 

In other words, 

€ 

u = −Kˆ x 
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Output Feedback 
We consider now the following feedback law 

€ 

u = −Kˆ x 

€ 

˙ x = Ax + Bu,
y = Cx + Du.

€ 

ˆ ˙ x = Aˆ x + Bu1 + u2

ˆ y = Cˆ x + Du1

€ 
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Output Feedback 

€ 

˙ x = Ax − BKˆ x 
y = Cx −DKˆ x 

Observer 

€ 

ˆ ˙ x = A − LC − BK( ) ˆ x + LCx
ˆ y = C −DK( ) ˆ x 

System 
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Output Feedback 
We consider now the following feedback law 

€ 

u = −Kˆ x 

€ 

˙ x = Ax + Bu,
y = Cx + Du.

€ 

ˆ ˙ x = Aˆ x + Bu1 + u2

ˆ y = Cˆ x + Du1

€ 

K

€ 

L

+ 

- 
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Output Feedback 

Observer 

€ 

ˆ ˙ x = A − LC − BK( ) ˆ x + Ly
ˆ y = C −DK( ) ˆ x 

State Feedback 

€ 

u = −Kˆ x 

Output Feedback 

€ 

ˆ ˙ x = A − LC − BK( ) ˆ x + Ly
u = −Kˆ x 

€ 

Acont = A − LC − BK( ),Bcont = L
Ccont = −K,Dcont = 0

€ 

Gcont (s) =
U(s)
Y (s)

= −K sI − A − LC − BK( )[ ]−1L
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Stabilizability and Detectability 
If the uncontrollable part of a system is stable, we say that the system 
is stabilizable. An the uncontrolled part often can be ignored by the 
control designer. 

If the unobservable part of a system is stable, we say that the system is 
detectable. An the unobservable part often can be ignored by the 
control designer. 


