
Dynamic Programming

! A general approach to
problem-solving

! In most cases: work
backwards from the end

! Particular equations must be
tailored to each situation

! To develop insight, expose
to wide variety of DP
problems

Characteristics of DP Problems

! Stages, decision at each stage

! Each stage has assoc states

! Decision describes transition to
next stage

! Given current stage, subsequent
decisions must not depend on
previously chosen decisions or
states.

! Recursion relates cost/reward:
ft(i) = min {cij + ft+1(j)}

j

Example: Stagecoach Problem

A fortune-seeker in Missouri
decides to go west to join the
49’er gold rush in California.
The journey requires traveling
by stagecoach through unsettled
country, with serious danger of
attack by marauders. The
starting point and destination
are fixed, all possible routes
with life-insurance costs are
shown on next page.

Stagecoach Problem cont …

1

2

3

4

5

6

7

10

8

9

2

5

1

10

12

5
10

7

15

13

7

5

3

7

7
1

1

4

Which route
minimizes
total cost?

Optimized Investments

! $6000 to invest

! THREE investments – in thousands of $$$

! NPV of returns on each investment, {d1,d2,d3},
is as follows:
! r1(d1) = 7d1 + 2

! r2(d2) = 3d2 + 7

! r3(d3) = 4d3 + 5

! r1(0) = r2(0) = r3(0) = 0

! What are the stages, decision, states? Solve.

Investment Network

2,6

2,5

2,4

2,3

2,2

2,1

2,0

3,6

3,5

3,4

3,3

3,2

3,1

3,0

1,6 4,0

Stage 1

Stage 2 Stage 3

Stage 4

Resource Allocation Problem

! w units of resource available

! T activities to which resource can be alloc

! xt = implementation level of activity t

! gt(xt) = resource used by activity t

! rt(xt) = benefit for activity t

! Problem:
wxgxr

T

t
tt

T

t
tt ≤∑∑

== 11
)(s.t.)(max

Resource Allocation Solution

! = max benefit from t,t+1,…,T if d
units allocated to these activities

! Recursion:

{ }))(()(max)(

 allfor 0)(
*

1
*

*
1

tttttxt

T

xgdfxrdf

ddf

t
−+=

=

+

+

)(* dft

Example: Resource Allocation

ASSUMPTIONS

! Amt allocated may be any non-neg no.

! Benefit proportional to amount assigned

! Total benefit is sum of benefits

Work Crew Assignment
Tasks

201616125

221716106

171516144

131312133

967102

51351

00000

DCBA
Workers
Assigned

Intro to the Knapsack Problem

! xi = indicator for item i

! ci = benefit if i is chosen

! ai = amt of resource i uses

nix
bxaxaxa

xcxcxcz

i

nn

nn

,,2,1},1,0{
 s.t.

max

2211

2211

"

#

#

=∈
≤+++

+++=

Knapsack Example

! 10-pound knapsack

! Item Weight Benefit

1 4 lb 11

2 3 lb 7

3 5 lb 12

! How should the knapsack be filled to
maximize benefit?

Knapsack: Alt Recursion
! Before:

! Stage → item type

! State → capacity remaining

! Decision → number of type to include

! f*t(s) = maxdt {rt(dt) + f*t+1(s – gt(dt))}

! Alternative:
! Stage/State → capacity of knapsack

! Decision → which item type to include

! g*(w) = maxj {bj + g(w – wj) : wj ≤ w, j∈ {1,2,3}}

Knapsack: Turnpike Thm
! Order items according to benefit/unit wt

! Use at least one of item 1 if w ≥ w*

! Used as shortcut for large capacity knapsack

n

n
w
c

w
c

w
c ≥≥≥ #

2

2

1

1

1 1

2
1 1

2

* c ww
cc w
w

=
 

−  
 

Equipment Replacement E.g.

! Purchasing cost = $1000

! Time horizon = 5 years

Time,t Maint,mt Salvage,st

1 60 800

2 80 600

3 120 500

Equipment Replacement E.g.

! Goal: Minimize net costs
! Recursion:

! ctx = net cost if new machine purchased at
time t and operating until time x

! g*(t) = minx {ctx + g*(x)}
! t = 0,1,2,3,4
! t+1 ≤ x ≤ t+3, x ≤ 5

! Alternative recursion:
! Stage → time, t, State → age of machine
! f*t (x) = min cost from t to time 5 given

that at time t, machine is x-years-old

Example: Inventory Problem

! Demand = {1,3,2,4}

! Setup cost, K = $3

! Unit cost, c = $1/unit

! Holding cost, h = $0.50/unit

! Max of 5 units can be produced/month

! Max inventory at month’s end is 4 units

! Want to MINIMIZE total cost. Solve.

Inventory Example: Network

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

4,0

4,1

4,2

4,3

5,0

Month 1 Month 2 Month 3 Month 4

Month 5

1,4 2,4 3,4 4,4

