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Abstract. We compute ku∗(K(Zp, 2)) and ku∗(K(Zp, 2)), the connectiveKU -cohomology
and connectiveKU -homology groups of the mod-p Eilenberg-MacLane spaceK(Zp, 2), using
the Adams spectral sequence. We obtain a striking interaction between h0-extensions and
exotic extensions. The mod-p connective KU -cohomology groups, computed elsewhere, are
needed in order to establish higher differentials and exotic extensions in the integral groups.

1. Introduction

Algebraic topologists try to turn homotopy theory questions into algebraic ones.

We do this by assigning algebraic objects to topological spaces. There are many

standard topological spaces that occur all the time and several algebraic theories

that are in standard use. Eilenberg-MacLane spaces are important building blocks

in homotopy theory and any new information about them is potentially useful. This

paper focuses on the second mod p Eilenberg-MacLane space, K2 = K(Zp, 2). We use

Zp to denote Z/p, the integers mod p. The algebraic tool we use is complex K-theory.

It has long been known that KU∗(K2) is trivial, [2]. Although interesting, this gives

limited information. But if we move to the connective version of complex K-theory,

ku∗(−), we suddenly obtain an overwhelming amount of new information about K2.

Because KU∗(K2) is trivial, we know that the homotopy maps, [K2, BU ] and

[K2, U ] are trivial. Consider the connective Omega spectrum for BU , buk with

bu0 = Z ×BU . We have kun(X) ≃ [X, bun] and bun is (n− 1)-connected for n > 0.

Let v ∈ ku−2 be the Bott periodicity element. It gives maps bun+2 −→ bun. In this

paper, we give a complete computation of ku∗(K2). Our result shows that there are

many non-trivial elements in most [K2, bun], but mapping any such element a finite

number of times with v results in the trivial map.
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To simplify our discussion, let Kn = K(Zp, n) and K(Zp) be the stable Eilenberg-

MacLane spectrum.

There are a couple of interesting directions in which this research could go. First,

ku∗(K1) is well known and has no v-torsion so the suspension map ku∗(K2) −→
ku∗(K1) is trivial (ku

∗(K2) is all v-torsion). On the other hand, it is easy to compute

the stable result ku∗(K(Zp)). Every element here is killed by multiplication with a

single v so the suspension image must lie in the trivial part of ku∗(K2), a part to

which we pay little attention. However, it is easy to see that only one element is in

the image and it is in degree 2p+2. Our computation of ku∗(K2) is just the first step

in interpolating between ku∗(K1) and ku∗(K(Zp)). The results and the suspension

maps would be most interesting.

With such results, one could go after ko∗(Kn) and ko∗(Kn) using the exact se-

quences that come from the usual maps

· · · −→ bon+1 −→ bon −→ bun −→ bon+2 −→ · · · .

In [14] and [6] the authors use very partial results to give new information about

non-immersions of spin manifolds. More complete results would allow us to go much

further on this problem.

Our computation of ku∗(K2) is done with the Adams spectral sequence (ASS),

but we have a second tool to use as well. We already know the mod p connective

complex K-theory of K2 from [8]. Many (perhaps most) ASS computations result

only in an associated graded object because solving the extension problems for the

multiplication by p can be very difficult. However, using the long exact sequence for

ku∗(−) and its mod p version, we are able to solve all of these extension problems

giving an unusually complete answer.

In general, the more algebraic invariants we have for standard spaces in homotopy

theory, the better off we are.

In [14] and [6], the authors initiated a partial computation of the connective KU -

homology groups, ku∗(K(Z2, 2)), of the mod-2 Eilenberg-MacLane space K(Z2, 2) in

separate studies of Stiefel-Whitney classes of manifolds. We eventually turned to the

associated cohomology groups, ku∗(K(Z2, 2)), and were able to give a complete de-

termination, via the Adams spectral sequence (ASS). This generalized nicely to the
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odd primes, and then we found a duality result ([5]) relating these homology and co-

homology groups which enabled us to determine the homology groups ku∗(K(Zp, 2)).

Notation 1.1. We need to establish some notation. Whenever we have ku, we mean

it to be localized at the prime p. Adjustments must be made for odd primes because

we don’t work directly with ku, but with an Adams’ summand. It is well known that

BU splits at an odd prime. This splitting lifts to buk. The original source for BU is

[1, Corollary 8, page 91]. A stable version is proven in [9, Proposition 2.7]. We’ll skip

Adams’ notation. In the literature, the stable cohomology summand is often denoted

by ℓ. In a context where BP ⟨n⟩ is around for all n, the summand is naturally called

BP ⟨1⟩. We want something that reflects the obvious connection to ku∗(−), and so

we adopt for our notation kup∗(−) for the stable summand. This gives an Omega

spectrum, {bup∗} with kupn(X) ≃ [X, bup
n
]. With this notation, Adams’ original

theorem says

BU ≃ bup
2
× bup

4
× · · · × bup

2p−2
.

There is a corresponding stable splitting

bu ≃ bup× Σ2bup× Σ4bup× · · · × Σ2p−4bup

Consequently, if we compute kup∗(X), we also know ku∗(X). Note that for p = 2

there is no spliting. At p = 2, ku localized is kup. Because we are working with a

p-local space, K2, it is not really necessary to localize ku as well. But for us to work

with just the one summand, it is. Again, we repeat, ku and kup are always localized

at a prime p.

We begin with a description of the kup∗-module kup∗(K2). Note that kup
∗ = Z(p)[v]

with |v| = −2(p − 1). We find that depiction via ASS charts is the most insightful

way to envision the groups. There is a very nice interplay between extensions (mul-

tiplication by p) seen in Ext (h0-extensions) and exotic extensions. We depict the

ASS with cohomological (co)degrees increasing from right-to-left. We write |x| = d if

x ∈ kupd(K2) or the associated E2-term.

In kup∗(K2), there is a trivial submodule whose Poincaré series when p = 2 is

described at the end of Section 2. It plays no role and will be ignored from now

on. As a kup∗-module, kup∗(K2) is generated by certain products of elements of E0
2 ,

y0, yi = yp
i

0 , with |yi| = 2pi, (1.2)
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zj for j ≥ 0 with |zj| = 2(pj+1 + 1), (1.3)

and

q with |q| = 9 if p = 2 and |q| = 4p− 1 if p is odd. (1.4)

We give two descriptions of our answer. In Theorem 1.16 we give the E∞-term

of the ASS and then describe the exotic extensions from multiplication by p. Our

preferred description is to incorporate them together. That is done in Theorems 1.8

and 1.15.

Let TPi[v] := Zp[v]/(vi), the truncated polynomial algebra. The even-graded part

kupev(K2) is formed from shifted copies of kup∗-modules Ak and Bk, which can be

defined inductively as follows.

Definition 1.5. Let k0 = 1 if p is odd, and k0 = 2 if p = 2. Let Bk0−1 = 0. Let

A0 = ⟨z0⟩ for all p. Inductively

Bk is built from zp−1
k−1Bk−1, TPpk−k[v]zk, and yp−1

k−1Bk−1, if k ≥ k0

and

Ak is built from zp−1
k−1Bk−1, TPpk [v]zk, and yp−1

k−1Ak−1, if k ≥ 1

with extensions determined by

pzk = vzpk−1 for k ≥ 2, and pyp−1
k−1zk−1 = vp

k−1(p−1)zk. (1.6)

When we write something like zB, we mean that all elements of B are multiplied

by the element z. Saying “is built from” means that these are successive quotients

in a filtration as a kup∗-module. The extension formulas are only asserted up to

multiplication by a unit is Zp, and can both occur on an element. For example, in

Figure 1.10, we have, in grading 116 when p = 2, 2y3z3z4 = vy3z
2
2z4 + v8z24 .

Figure 1.10 should enable the reader to envision Ak and Bk for p = 2 and k ≤ 5,

and, by extrapolating, for all k. Elements connected by dashed lines are in A5 but

not in B5. The long red1 lines, sometimes slightly curved, are the exotic extensions.

The portion in gradings ≤ 102, not including the top v-tower or the extensions to

it, is y4A4 (or y4B4 if the dashed part is omitted). The portion in gradings ≥ 106,

not including the v-tower on z5 or the h0-extensions from it, is z4B4. The reader is

1Colors are present in online versions, but not in the print version.
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encouraged to understand how the case k = 5 of Definition 1.5 is embodied in Figure

1.10. We have depicted z4B4 and y4B4 in green.

The portion in the lower right corner of Figure 1.10 in grading ≤ 84 and height ≤ 7

is y3y4A3, and y2y3y4A2 is in gradings ≤ 74. In Figure 1.11, we present a schematic

of A3 and B3 at the odd primes. Again the dashed portion is in A3, but not B3, and

the triangle in the lower right portion is yp−1
1 yp−1

2 A1.

A generating set as a Zp[v]-module for Bk is{
zj

k−1∏
i=j

{zp−1
i , yp−1

i } : k0 ≤ j ≤ k

}
, (1.7)

while Ak has additional generators{
z1y1 · · · yk−1 p = 2

z0y
p−1
0 · · · yp−1

k−1 all p.

The notation here means a product over all choices of one of the two elements in each

factor. For example,
2∏
i=1

{zp−1
i , yp−1

i } =
{
zp−1
1 zp−1

2 , zp−1
1 yp−1

2 , yp−1
1 zp−1

2 , yp−1
1 yp−1

2

}
.

An empty product is defined to equal 1.

The following theorem explains how the portion of kup∗(K2) in even gradings is a

direct sum of shifted versions of Ak and Bk.

Theorem 1.8. Let Mp[S] denote the set of monomials in the elements of a set S

raised to powers < p. Let

Mk = (Mp[zk, yk]− {zp−1
k , yp−1

k }) ·Mp[zi, yi : i > k], (1.9)

where Mp[zk, yk] − {zp−1
k , yp−1

k } = {ziky
j
k : 0 ≤ i, j ≤ p − 1 and {i, j} ≠ {0, p − 1}},

which is a set with p2 − 2 elements. Let MA
k be the set of monomials in Mk with no

z-factors, and MB
k = Mk −MA

k . Then

kupev(K2) =
⊕
k≥1

( ⊕
M∈MA

k

M · Ak ⊕
⊕

M∈MB
k

M ·Bk

)
plus a trivial kup∗-module.
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Note that the monomial 1 is in MA
k , so Ak appears by itself, but Bk does not. For

example, if p = 2, copies of Bk appear multiplied by each monomial of the form

zεkk y
δk
k z

εk+1

k+1 y
δk+1

k+1 · · · such that εk = δk and
∑

εi ≥ 1.



THE CONNECTIVE K-THEORY OF THE EILENBERG-MACLANE SPACE K(Zp, 2) 7

Figure 1.10. B5 and A5 when p = 2.
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Figure 1.11. Schematic of A3 and B3 for odd p.
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Now we describe the portion of kup∗(K2) in odd gradings. Let P [S] denote the

polynomial algebra on a set S, and TPi[S] = P [S]/(si : s ∈ S), the truncated

polynomial algebra. Let Λj = TPp[zi : i ≥ j]. Note that if p = 2, Λj is an exterior

algebra. For i ≤ j, let

zi,j = zi(zi · · · zj−1)
p−1. (1.12)

If j = i, then zi,j = zi.

Definition 1.13. For ℓ > k ≥ 1, let Sk,ℓ = TPk+1[v]⟨zk0,ℓ, . . . , zℓ−k−1+k0,ℓ⟩ with

pzi,ℓ = vzi−1,ℓ and pzk0,ℓ = 0.

For example, S5,8 with p = 2 is depicted in Figure 1.14.

Figure 1.14. S5,8 if p = 2

1040 1036z2,8 z4,8

t t t t t t

t t t t t t

t t t t t t

The following result describes the portion of kup∗(K2) in odd gradings. The ex-

ponent of p in an integer i is denoted simply by ν(i); the prime p is implicit. The

element q here has grading 9 or 4p− 1, as mentioned earlier.

Theorem 1.15. There is an isomorphism of kup∗-modules

kupodd(K2) ≈
⊕
i≥1

⊕
ℓ≥ν(i)+2

qyi−1
1 Sν(i)+1,ℓ ⊗ TPp−1[zℓ]⊗ Λℓ+1.

The non-visual, formulaic form of our result is as follows.
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Theorem 1.16. The kup∗-module kup∗(K2) is isomorphic to a trivial kup∗-module

plus a module whose associated graded is

P [y1]y
p−1
0 z0 ⊕

⊕
t≥1

TPpt [v]⊗ P [yt]zt (1.17)

⊕
⊕
t≥k0

TPpt−t[v]⊗ P [yt]ztΛt (1.18)

⊕
⊕
i≥1

⊕
ℓ≥0

TPν(i)+2[v]qy
i−1
1 zk0+ℓ,ℓ+ν(i)+2Λℓ+ν(i)+2. (1.19)

Multiplication by p in (1.17) and (1.18) is determined by (1.6) and in (1.19) as in

Definition 1.13.

Our initial interest in this project was kup∗(K2) ([14],[6]), but we first achieved

success in computing kup∗(K2). In [5, Example 3.4], the following result was proved.

Theorem 1.20. There is an isomorphism of kup∗-modules kup∗(K2) ≈ (kup∗+2pK2)
∨.

Here M∨ = Hom(M,Z/p∞), the Pontryagin dual, localized at p. A homotopy

chart for kup∗(K2) could be thought of as a shifted version of the homotopy chart of

kup∗(K2) viewed upside-down and backwards. For example, the element of kup108(K2)
∨

dual to the element v4y3z3z4 in Figure 1.10 corresponds to the generator of a Z4 in

kup104(K2) on which v4 acts nontrivially. This element can be seen in Figure 1.22.

A remarkable property, for which one explanation is given in Section 7, is that Bk

is self-dual as a kup∗-module. One way of stating this is to let B̃k denote Bk with its

indices negated. Then there is an isomorphism of kup∗-modules

Σ2(pk+1+pk+(k+1)p−k+1)B̃k ≈ B∨
k . (1.21)

For example, with p = 2, the second smallest generator Y of Σ208B̃5 is in grading

208 − 134 = 74 and has 2Y ̸= 0 and v4Y ̸= 0. (See Figure 1.10.) The second

generator Z of B∨
5 is dual to the class in position (74, 4) in Figure 1.10, and also

satisfies 2Z ̸= 0 and v4Z ̸= 0. The isomorphism (1.21) can be proved by induction

on k using Definition 1.5.

A complete description of the kup∗-module kup∗(K2) is immediate from Theorems

1.8, 1.15, and 1.20. However, one might like a complete description of its ASS. We can

write formulas for the E2-term and differentials, but will not do so here. In Theorem
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1.23 we give a complete description of the E∞-term of the ASS of kup∗(K2) with

exotic extensions included, in terms of the charts described in Section 1.

In [5], a comparison was made of a chart for A3 and its kup∗ analogue. Here we

present in Figure 1.22 the kup∗ analogue of Figure 1.10. This presents the portion of

the ASS of kup∗(K2) dual to A5 with p = 2 under the isomorphism of Theorem 1.20.

The ASS chart dual to B5 is obtained from this by removing the classes connected

by dashed lines, and lowering the remaining tower so that the bottom is in filtration

0. The resulting chart is isomorphic to the B5 part of Figure 1.10.
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Figure 1.22. Portion of kup∗(K2) corresponding to B5 and A5.
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We observe that in even gradings of the ASS for kup∗(K2), h0-extensions exactly

correspond to exotic extensions in the ASS of kup∗+2p(K2), and vice versa. As a typ-

ical example of the duality, the summands of kup82(K2), kup
82(K2)

∨, and kup78(K2)

in Figures 1.10 and 1.22 are all isomorphic to Z8 ⊕ Z2. But for the kup∗-module

structure, it is kup82(K2)
∨ and kup78(K2) that correspond, since in both, the element

that is divisible by 4, in position (82, 0) and (78, 7), resp., is also divisible by v7 for

A5 and by v4 for B5.

Theorem 1.23. The E∞-term of the ASS of kup∗(K2) with exotic extensions included

contains exactly the following.

• There is a trivial kup∗-module, which when p = 2 has generators corresponding to

those enumerated at the end of Section 2 with gradings decreased by 4, and similarly

when p is odd.

• For every Sk,ℓ occurring in a summand of Theorem 1.15, there is a chart of the

same form as Figure 1.14 with v-towers of height k + 1 on generators in gradings

2pℓ+1 + 2(p − 1)(i − k0 − 1) for 1 ≤ i ≤ ℓ − k. One must add to this the grading of

the other factors accompanying Sk,ℓ in Theorem 1.15.

• For each occurrence of Bk in Theorem 1.8, there is a summand

Σ2(pk+1+pk+kp−k+1)B̃k

with gradings increased by those of other factors accompanying Bk in 1.8. Here B̃k

is as defined prior to (1.21).

• For each summand yekAk in Theorem 1.8, there is a variant of Σ2(pk+1+pk+kp−k+1)B̃k

with gradings increased by 2epk. In this variant, the initial v-towers are pushed up

by k filtrations and surrounded with a triangle of classes of the sort appearing in the

lower left corner of Figure 1.22. See Remark 1.24.

Proof. Theorem 1.20 and our results for kup∗(K2) give the kup∗-module structure of

kup∗(K2), but that is not the same as the ASS picture. Expanding on work done

in [6] and [14] and using methods such as those in Section 2, we were able to write

the E2-term of the ASS for kup∗(K2), and had conjectured the differentials (but not

the extensions) prior to embarking on our kup-cohomology project. We were unable

to prove the differentials, probably because we had not taken sufficient advantage of

the exact sequence with k(1)∗(K2). Now that we know the 2-orders and v-heights
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of generators (by grading, at least, if not by name), it is straightforward to see that

the differentials must be as we expected. The isomorphism (1.21) plays an important

role here; the left hand side gives the ASS form of the right hand side.

Remark 1.24. Regarding the unusual portion of the ASS chart for part of kup∗(K2)

in the lower left of Figure 1.22, this is obtained from [6, Fig. 4.2] with d6-differentials

on all odd-graded towers. For Ak, it will be a triangle going up to filtration k, with

all but the first two dots on the top row being part of Bk.

The structure of the rest of the paper is as follows. In Section 2, we compute the

E2-term of the ASS for kup∗(K2). In Section 3 we determine the differentials in this

ASS. In order to do so, we need to compare with k(1)∗(K2), where k(1) is a summand

of the spectrum for mod-p connective KU -theory, using the exact sequence

→ k(1)∗−1(K2) → kup∗(K2)
p−→ kup∗(K2) → k(1)∗(K2) → kup∗+1(K2)

p−→ . (1.25)

In Section 3, we restate results about k(1)∗(K2) from [8]. At the end of Section 3,

we show how the descriptions of kup∗(K2) in Theorems 1.8 and 1.15 are obtained

once we know the differentials and extensions. This exact sequence is also used in

determining the exotic extensions of (1.6), which is done in Section 4. In Section 5,

we propose complete formulas for the exact sequence (1.25), and then in Section 6, we

show that our proposed formulas account for all elements of k(1)∗(K2) exactly once.

The main point of Section 6 is to prove that there are no additional exotic extensions

in kup∗(K2). An exotic extension p · A = B implies that A is not in the image

from k(1)∗−1(K2), and B does not map nontrivially to k(1)∗(K2), so once we have

shown that all elements are accounted for, there can be no more extensions. Many

of our formulas in Section 5 are forced by naturality. However, many others occur

in regular families, but with surprising filtration jumps. We could probably prove

that the homomorphisms must be as we claim, by showing that there are no other

possibilities, but we prefer to forgo doing that. In the optional Section 7, we discuss

in more detail how the charts are obtained and provide an explanation for the duality

result (1.21).
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2. The E2-term of the ASS for kup∗(K2)

We will need some notation. By H∗K2, we understand H∗(K(Zp, 2);Zp). Let E

denote an exterior algebra, P a polynomial algebra, and TPn[x] = P [x]/(xn) the

truncated polynomial algebra. In all cases these will be over Zp, the integers mod

p. Let E denote the augmentation ideal of an exterior algebra, and E1 = E[Q0, Q1],

where Qi are the Milnor primitives. Because Q2
i = 0 we have homology groups,

H∗(−;Qi), defined for E1-modules. We let ⟨y1, y2, . . .⟩ denote the Zp-span of classes

yi.

The Adams spectral sequence (ASS) for kup∗(K2) hasE
s,t
2 = Exts,tA (H∗(bup), H∗K2),

where A is the mod p Steenrod algebra and H∗(bup) ≈ A/A(Q0, Q1). Using a

standard change of rings theorem, [10], this is Exts,tE1
(Zp, H∗K2). This converges to

kup−(t−s)(K2). We depict this with Es,t
2 in position (t − s, s) as usual, but label the

axis with codegrees, the negative of the homotopical degree, so the left side of the

chart will have positive gradings and refer to cohomological grading. In an attempt

to avoid confusion, we rewrite this as G
−(t−s),s
2 . With this notation, the differentials

are dr : G
a,b
r −→ Ga+1,b+r

r , multiplication by the element v ∈ kup−2(p−1) (also consid-

ered in G
−2(p−1),1
r ), is v : Ga,b

r −→ G
a−2(p−1),b+1
r , and multiplication by the element

representing p ∈ kup0, (h0 ∈ G0,1
r ), is h0 : G

a,b
r −→ Ga,b+1

r .

In the paragraph preceding Remark 2.19, we will define elements zj ∈ G
2(pj+1+1),0
2

for j ≥ 0 and elements

zi,j ∈ G
2(pj+1+1+(p−1)(j−i)),0
2

as in (1.12) satisfying the properties in Definition 1.13.

Definition 2.1. For j ≥ k0, we define Wj = ⟨zj,j, zj−1,j, . . . , zk0,j⟩.

We also have yi ∈ G2pi,0
2 for i ≥ 0, and

q ∈ G9,0
2 if p = 2, and in G4p−1,0

2 if p is odd. (2.2)

Cf. (1.3), (1.2), and (2.2). One last definition, let Λj+1 = TPp[zi : i ≥ j + 1].

A picture of P [v]⊗W5 as a P [v, h0]-module with p = 2 appears in Figure 2.3.
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Figure 2.3. A depiction of P [v]⊗W5
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The remainder of this section is devoted to the proof of the following result.

Theorem 2.4. The E2 term of the Adams spectral sequence for the kup∗(K2) is

isomorphic as a P [h0, v]-module to

P [v, y1]⊗ E[q]⊗
(⊕
j≥k0

(Wj ⊗ TPp−1[zj]⊗ Λj+1)
)

⊕
(
P [h0, v, y1]⊗ E[vk0q]

)
⊕

(
P [y1]⊗

{
⟨yp−1

0 z0⟩ p odd

⟨y0z0, z1, h0y0z0 = vz1⟩ p = 2.

)
plus a trivial P [h0, v]-module.

Some of the algebra structure of this E2 will be useful later. For example, the

product structure among the zj’s will be clear, and also the formula

(v2q)2 = v4z2, (2.5)

holds when p = 2 since, as we shall see, in H∗(K2), x
2
9 −Q0x17 ∈ im(Q1).

We will give a detailed proof when p = 2, and then sketch the minor changes for

odd p. There are two parts to proving this theorem. First, we must give a com-

plete description of the E1-module structure of H∗K2. Second, we have to compute

Ext∗,∗E1
(Z2,−) of this. We begin the first part.

Serre ([11]) showed that H∗K2 is a polynomial algebra on classes u2j+1 in degree

2j +1 for j ≥ 0 defined by u2 = ι2 and u2j+1+1 = Sq2
j

u2j+1 for j ≥ 0. We easily have

Q0(u2) = u3, Q0(u3) = 0, Q0(u2j+1) = u22j−1+1 for j ≥ 2,

and

Q1(u2) = u5, Q1(u3) = u23, Q1(u5) = 0, Q1(u2j+1) = u42j−2+1 for j ≥ 3.
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Let x5 = u5 + u2u3 and write H∗K2 as an associated graded object:

P [u22]⊗ E[x5]⊗
(
E[u2]⊗ P [u3]

)
⊗j≥2

(
E[u2j+1+1]⊗ P [(u2j+1)

2]
)

From this, we can read off

Lemma 2.6.

H∗(H
∗K2;Q0) = P [u22]⊗ E[x5]

Letting x9 = u9 + u33 and x17 = u17 + u2u
3
5, we rewrite again as

P [u22]⊗ TP4[x9]⊗ TP4[x17]⊗j>4 E[(u2j+1)
2]

⊗
(
E[u2]⊗ P [u5]

)
⊗

(
E[u3]⊗ P [u23]

)
⊗j>4

(
E[u2j+1]⊗ P [(u2j−2+1)

4]
)
.

Again we read off

Lemma 2.7.

H∗(H
∗K2;Q1) = P [u22]⊗ TP4[x9]⊗ TP4[x17]⊗j>4 E[(u2j+1)

2]

An associated graded version of this is

Lemma 2.8.

H∗(H
∗K2;Q1) = P [u22]⊗ E[x9]⊗ E[x17]⊗j>2 E[(u2j+1)

2]

The bulk of the work here is finding a nice splitting of H∗K2 as an E1-module.

Let N be the E1-submodule with single nonzero elements in gradings 5, 7, 8, 9,

and 10 with generators x5 = u5 + u2u3, x7 = u2u5, and x9 = u9 + u33, satisfying

Q0x7 = Q1x5 and Q0x9 = Q1x7 = x10. It has a Q0-homology class x5 and a Q1-

homology class x9. This class x9 is called q in Theorem 2.4 and in all other sections.

A picture of N is in Figure 2.9. In pictures such as this, straight lines indicate

Q0 = Sq1 and curved lines Q1.

Figure 2.9. An E1-module N .

5
9

7

10t t t t t
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The E1-submodule P [u22]⊕P [u22]⊗N carries the Q0-homology of H∗K2, while the

remaining Q1-homology is, written in our usual way as an associated graded version,

P [u22]⊗ E[x9]⊗ E[x17, u
2
2j+1, j > 2]. (2.10)

We will exhibit a Q0-free E1-submodule R whose Q1-homology is exactly the above

E. Moreover, N ⊗R contains an E1-split summand S which maps isomorphically to

⟨x9⟩ ⊗R.

It is premature to state this because we haven’t defined R and S yet, but for the

record:

Proposition 2.11. As an E1 module, H̃∗K2 is isomorphic to T ⊕ F where F is free

over E1 and T is

P [u22]⊗
(
⟨u22⟩ ⊕N ⊕R⊕ S

)
A start on R and S.

For this to make sense, we need to find R and S. The module R is a direct sum

of shifted versions of modules Lk, k ≥ 0, which have generators g2i, 0 ≤ i ≤ k, with

Q1g2i = Q0g2i+2 for 0 ≤ i < k, Q0g0 ̸= 0, and Q1g2k = 0. For example, L3 is depicted

in Figure 2.12.

Figure 2.12. The E1-module L3.

g0 g2

g4

g6
t t t t t t t t

A splitting map, ⟨x9⟩ ⊗ Lk −→ N ⊗ Lk, for the epimorphism N ⊗ Lk → ⟨x9⟩ ⊗ Lk

is defined by

x9g2i 7→ x9 ⊗ g2i + x7 ⊗ g2i+2 + x5 ⊗ g2i+4 for 0 ≤ i ≤ k − 2,

x9g2k−2 7→ x9 ⊗ g2k−2 + x7 ⊗ g2k, and x9 ⊗ g2k 7→ x9 ⊗ g2k.

The E1-module Mj

Let

x2j+1 = u2j+1 +


u2u

3
5 j = 4

u2u3u
2
5u

2
9 j = 5

u3u
2
5u

2
9u

2
17 j = 6

0 j > 6

and w2j−1 =


u2u3u

2
5 j = 4

u3u
2
5u

2
9 j = 5

0 j > 5.
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Then Q0x2j+1 = u22j−1+1 + Q1w2j−1, so Q0x2j+1 and u22j−1+1 represent the same Q1-

homology class. Define E1-modules Mj inductively by M3 = 0, and for j ≥ 4 there is

a short exact sequence of E1-modules

0 → u22j−2+1Mj−1 →Mj →M ′
j → 0, (2.13)

where M ′
j = ⟨x2j+1, Q0x2j+1⟩ and Q1x2j+1 = u22j−2+1Q0x2j−1+1. The above definitions

of the x2j+1 are necessary to get this formula to work right.

There is an isomorphism of E1-modules Mj ≈ Σ2j+1Lj−4 given by

Σ2j+1g2i 7→


x2j+1 i = 0

u22j−2+1x2j−1+1 i = 1

u22j−2+1u
2
2j−3+1x2j−2+1 i = 2

u22j−2+1u
2
2j−3+1 · · ·u22j−i−1+1x2j−i+1 2 < i ≤ j − 4

(2.14)

And we have

H∗(Mj;Q1) =


⟨u29, u17⟩ j = 4

⟨u217, u29u17⟩ j = 5

⟨u233, u217u29u17⟩ j = 6

⟨u22j−1+1, u
2
2j−2+1 · · ·u29x17⟩ j > 6

(2.15)

The E1-module R

Let

R =
⊕
j≥4

Mj ⊗ E[u22j+1, u
2
2j+1+1, . . .]. (2.16)

Then H∗(R;Q1) = E[x17, u
2
9, u

2
17, . . .], since monomials in E without x17 appear from

a first term (of the two in (2.15)) in H∗(Mj ⊗ E;Q1), where j is minimal such that

u22j−1+1 appears in the monomial, while those with x17, and also containing a product

u29 · · ·u22j−2+1 of maximal length, occur as a second term in H∗(Mj ⊗ E;Q1).

Proof of Proposition 2.11. We have the E1-submodule T given in Proposition 2.11.

Because this contains all of the Q0 and Q1 homology, what remains must be free over

E1 by [13].
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Proof of Theorem 2.4. We compute ExtE1(Z2, T ) with T as in Proposition 2.11. We

will not be concerned with the free E1-module F but later we will give the Poincaré

series for it. Each copy of E1 in F gives a Z2 in G∗,0 that corresponds to Q0Q1.

That

Ext∗,∗E1
(Z2, P [u

2
2]) = P [v, h0, y1]

with y1 ∈ G4,0
2 should be clear, given our labeling conventions. We normally work

with the reduced cohomologies, so the y01 generator above would be ignored. The y1

notation is particularly useful when we consider all primes p. It is yp
1

0 where y0 ∈ G2,0
2 .

So |y1| = 2p.

We compute ExtE1(Z2, N) in two ways using two different filtrations of N . From

this we see that the generator of the towers can be thought of either as v2x9 or h
2
0x5.

Using Figure 2.9 as our guide, our first filtration is ⟨x5, x8⟩, ⟨x7, x10⟩, and ⟨x9⟩. The
Ext on x9 ∈ G9,0 is just P [v, h0]. For the other two, we get h0-towers on x10 ∈ G10,0

and x8 ∈ G8,0. The extensions in N show these two h0-towers are connected by

multiplication by v. In addition, a d1 is forced on us by the extensions. Figure 2.17

describes this completely.

Figure 2.17. The first computation of ExtE1(Z2, N)

10 8 5 3 10 8 5 3

⇒ v2x9

Again referring to Figure 2.9, our second filtration is ⟨x9, x10⟩, ⟨x7, x8⟩, and ⟨x5⟩.
Now our Ext groups are P [v, h0] on x5 ∈ G5,0, P [v] on x8 ∈ G8,0 and x10 ∈ G10,0.

Again, the d1 is forced by the extensions in N . Figure 2.18 describes the result.
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Figure 2.18. The second computation of ExtE1(Z2, N)

⇒

10 8 5 3

= h20x5

10 8 5 3

This concludes the computation of Ext for P [u22]⊗ (⟨u22⟩ ⊕N) of Proposition 2.11.

The result is the second line of Theorem 2.4.

We need to compute Ext for P [u22] ⊗ (R ⊕ S) and show it is the same as the top

line in Theorem 2.4. Since S ≈ ⟨x9⟩ ⊗ R, all we need to do is P [u22] ⊗ R and ignore

the E[x9]. Similarly we can ignore the P [u22] and the P [y1] because for every power

of u22 we will have a copy of the answer indexed by powers of y1. All we have left now

is R, but R is just many copies of the various Mj and the indexing for the number of

copies is given by the Λj+1.

All that remains is to show that ExtE1(Z2,Mj) ≈ P [v] ⊗ Wj−2 with Wj−2 as in

Definition 2.1.2 Recall that Mj = Σ2j+1Lj−4. We can filter Lj−4 into pairs of ele-

ments g2i, Q0g2i, for 0 ≤ i ≤ j − 4. Then ExtE1(Z2,Mj) has a P [v] on each element

Σ2j+1Q0g2i which we denote by zj−i−2,j−2 ∈ G2j+2+2i,0. The element zj−2,j−2 is often

called zj−2. There is no d1, but undoing the filtration does solve the extension prob-

lem and gives us h0zk,j−2 = vzk−1,j−2. This completes our computation and thus our

proof.

Remark 2.19. To illustrate the last computation in the proof, consider the generators

of the v-towers for ExtE1(Z2,M7). They are z5, z
2
4 , z

2
3z4, and z

2
2z3z4, which is what

we have called z5,5, z4,5, z3,5, and z2,5, as pictured in Figure 2.3. For future reference,

we note that (with ∼ meaning homologous)

zj = Q0x2j+2+1 ∼ u22j+1+1 = Q0u2j+2+1 = Q0Qj+2ι2 = Qj+2Q0ι2. (2.20)

2The reason for this awkward shift is that the gradings for zj which give the elegant statements in
Definition 1.5 and elsewhere are not particularly convenient in developing the E2 statement.
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We now describe briefly the changes required when p is odd. We have

H∗(K2) = P [y0]⊗ P [g1, g2, . . .]⊗ E[u0, u1, . . .],

with |y0| = 2, |gj| = 2(pj + 1), |ui| = 2pi + 1, Q0y0 = u0, Q0ui = gi, Q1y0 = u1,

Q1u0 = g1, Q1ui = gpi−1, i ≥ 2. Let y1 = yp0. Then, similarly to the case p = 2,

H∗(H
∗K2, Q0) = P [y1]⊗ E[yp−1

0 u0].

Let N = ⟨yp−1
0 u0, q = yp−1

0 u1, Q0q = Q1(y
p−1
0 u0)⟩. Then P [y1] ⊕ P [y1] ⊗ N carries

the Q0-homology and part of the Q1-homology. Similarly to (2.10), the rest of the

Q1-homology is

P [y1]⊗ E[q]⊗ E[w1]⊗ TPp[g2, g3, . . .],

where w1 = u2 + u0g
p−1
1 . There are E1-submodules Mj for j ≥ 2, defined inductively

by M2 = ⟨w1, g2 = Q0w1⟩, M ′
j = ⟨uj, gj = Q0uj⟩ for j ≥ 3, and for j ≥ 3, there exists

a short exact sequence of E1-modules

0 → gp−1
j−1Mj−1 →Mj →M ′

j → 0,

with Q1uj = gpj−1. There is an isomorphism of E1-modules Mj ≈ Σ2pj+1Lj−2, where

Lj is similar to Figure 2.12, but with ith generator (i ≥ 0) in grading 2(p− 1)i rather

than 2i.

Let

R =
⊕
j≥2

Mj ⊗ TPp−1[gj]⊗ TPp[gj+1, . . .].

Then H∗(R;Q1) = E[w1]⊗ TPp[g2, g3, . . .], and so, similarly to Proposition 2.11, up

to free E1-modules

H∗K2 ≈ P [y1]⊗ (⟨y1⟩ ⊕N ⊕R⊕ qR). (2.21)

Similarly to Figure 2.18, ExtE1(Zp, N) can be read off from Figure 2.22. This gives

the third summand and vq part of the second summand in Theorem 2.4, while the ⟨y1⟩
part of (2.21) gives the non-vq part of the second summand. For the first summand in

Theorem 2.4, we replace gj by zj−1, and then note that ExtE1(Zp,Mj) ≈ P [v]⊗Wj−1,

similar to Figure 2.3. For example, M3 has v-towers on g3 and g
p
2, which are renamed

z2 = z2,2 and zp1 = z1,2, the generators of the v-towers of W2. This completes our

sketch of proof of Theorem 2.4 when p is odd.
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Figure 2.22. Computation of ExtE1(Zp, N)

t t ttt tt

4p
yp−1
0 g1

vq2p+ 1 3

· ·
·

We explain here the reason for the k0 in Definition 1.5. In Theorem 2.4, yp−1
0 z0 and

z1 are in the part that is not multiplied by higher z’s when p = 2, but when p is odd,

they form the module M2, whose Ext is P [v]⊗W1, which is multiplied by higher z’s.

Since Bk’s are multiplied by higher z’s, but Ak’s are not, this explains why z1 is in

B1 when p is odd, but not when p = 2. The reason for the split in Theorem 2.4 is

the difference in the submodules N . Its second class is yp−1
0 Q1y0 in each. Applying

Q1 yields y
p−2
0 (Q1y0)

2. This is 0 when p is odd, but not when p = 2. The reason that

the portion of Ext corresponding to N is not multiplied by higher z’s is that it gives

part of the Q0-homology, and this is not multiplied by higher z’s.

We close this section with enumeration of the unimportant Z2-classes in kup
∗(K2)

when p = 2.

More on the E1-free part when p = 2

If we compute the ExtE1(Z2, F ) for the E1 free part of H∗K2, we just get a Z2

corresponding to the top element for each copy of E1. If we find the Poincaré series

(PS) for the free part, all we have to do to get the PS for these elements is multiply

by x4

(1+x)(1+x3)
. The Poincaré series for free part is obtained by subtracting the PS for

the non-free part of Proposition 2.11 from that of H∗K2. This is:

∏
k≥0

1

(1− x2k+1)
− 1

(1− x4)

(
1 + x5 + x7 + x8 + x9 + x10

)
− 1

(1− x2)(1− x4)

(⊕
j≥4

(
x2

j+1(1 + x9)(1 + x)(1− x2j−6)
∏
k≥j

(1 + x2
k+1+2)

))
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The first term is the PS for H∗K2. The second is the PS for P [u22] ⊗ (⟨1⟩ ⊕ N).

The last term is more complicated but does the S and R terms. The (1− x4) in the

denominator is for the P [u22]. The x9 is the shift that takes R to S. The (1 + x) is

because they are Q0 free. The x
2j+1(1−x2j−6)/(1−x2) is for the odd part of Mj and

the remainder is for Λ.

This is easy to put into a computer and calculate. For example, the number of free

generators in degree 79 is 245.

3. Differentials in the ASS of kup∗(K2)

The main theorem of this section determines the differentials in the ASS for kup∗(K2).

Theorem 3.1. The differentials in the spectral sequence whose E2-term was given in

Theorem 2.4 are as follows. All v-towers are involved, either as source or target, in

exactly one of these. Here M refers to any monomial (possibly = 1) in the specified

algebra. Recall that Λj = TPp[zi : i ≥ j], which is an exterior algebra if p = 2. Also,

recall yt = yp
t−1

1 . We give reference numbers to the differentials when p is odd, but

references to these also apply to the corresponding differential when p = 2, as the

proofs are extremely similar.

First with p = 2.

dν(i)+2(y
i
1) = h

ν(i)
0 v2qyi−1

1 , i ≥ 1;

dν(i)+2(y
i
1zjM) = vν(i)+2qyi−1

1 zj−ν(i),jM,

j ≥ ν(i) + 2, M ∈ Λj;

d2t−t(h
t−2
0 v2qy2

t−1−1
1 M) = v2

t

ztM,

t ≥ 2, M ∈ P [yt];

d2t−t(qy
2t−1−1
1 zj−(t−2),jM) = v2

t−tztzjM,

j ≥ t ≥ 2, M ∈ P [yt]⊗ Λj+1.
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Now with p odd.

dν(i)+2(y
i
1) = h

ν(i)+1
0 vqyi−1

1 , i ≥ 1; (3.2)

dν(i)+2(y
i
1zjM) = vν(i)+2qyi−1

1 zj−ν(i)−1,jM, (3.3)

j ≥ ν(i) + 2, M ∈ Λj;

dpt−t(h
t−1
0 vqyp

t−1−1
1 M) = vp

t

ztM, (3.4)

t ≥ 1, M ∈ P [yt];

dpt−t(qy
pt−1−1
1 zj−(t−1),jM) = vp

t−tztzjM, (3.5)

j ≥ t ≥ 1, M ∈ P [yt]⊗ TPp−1[zj]⊗ Λj+1.

The proof occupies the rest of this section, except that at the end of the section we

explain briefly how this leads to our description of kup∗(K2) in Section 1, except for

the exotic extensions.

By [12, Theorem A], QjQ0ι2 is in the image from BP ∗(K2), and hence must be a

permanent cycle in our ASS. Thus by (2.20), zj is a permanent cycle, and so (3.3)

follows from (3.2), and (3.5) follows from (3.4), using pzi,ℓ = vzi−1,ℓ, as noted in 1.13.

The differentials (3.2) follow from the result of [3] that H2pi+1(K2;Z) ≈ Z/pν(i)+2⊕⊕
Zp. See also [4, Proposition 1.3.5] when p = 2. The ASS converging to H∗(K2;Z)

has E2 = ExtA0(Z2, H
∗K2), where A0 = ⟨1, Q0⟩. We depict this E2 similarly to our

ASS for kup∗(K2). It has an h0-tower for each element of H∗(H
∗K2, Q0), which was

described in Lemma 2.6. These come in pairs in grading 2pi and 2pi+1 corresponding

to yi1 and y
i−1
1 yp−1

0 u0. In order to get the Z/pν(i)+2, there must be a dν(i)+2-differential,

as pictured on the right hand side of Figure 3.6.

Similarly to Figures 2.17 and 2.18, we have, for p = 2 and i ≥ 1, an h0-tower in the

ASS for kup∗(K2) arising from G4i+1,2, called either h20y
i−1
1 x5 or v

2yi−1
1 q. There is also

an h0-tower arising from yi1 ∈ G4i,0. The classes y1 and x5 correspond to cohomology

classes u22 and u5 + u2u3. Under the morphism kup∗(K2) → H∗(K2;Z), these towers

map across, as suggested in Figure 3.6. We deduce the dν(i)+2-differential claimed in

(3.2), promulgated by the action of v. Note that x9 = q.
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Figure 3.6. kup∗(K2) → H∗(K2;Z)

2pi2pi+ 1 2pi2pi+ 1
kup∗(K2) H∗(K2;Z)

−→

The situation when p is odd is extremely similar, using Figure 2.22. The difference

is that the h0-tower in 2pi+1 in the kup∗ ASS starts in filtration 1 rather than 2. Its

generator can be called vyi−1
1 q.

In Figure 3.7, we depict many of the differentials asserted in Theorem 3.1 in grading

≤ 36 when p = 2. Regarding the third (final) summand in Theorem 2.4, which is

P [y1] ⊗ A1 when p = 2, we have included y1A1, y
3
1A1, and y51A1. Not included are

the portions involving (3.2) and (3.3) when i is odd, as this portion self-annihilates.

What is shown is (3.2) for i = 2, 4, and 6, (3.4) for (t, k) = (1, 0), (1, 1), (1, 2), and

(2, 0), and (3.5) with t = 1, k = 0, and j = 4.
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Figure 3.7. Some differentials with p = 2
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In order to establish the remaining differentials, we will need the following descrip-

tion of k(1)∗(K2), which is proved in [8]. We shift by 1 the subscripts of the classes zj
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and wj used there. The formulas for r(j) and r′(j) are as in [8]. We recapitulate some

of their properties. Those stated here but not there are easily proved by induction.

Proposition 3.8. [8] For j ≥ 0, zj is the reduction of the class in kup∗(K2) and

satisfies |zj| = 2(pj+1 + 1). The classes wj satisfy |w1| = 2p2 + 1, |w2| = 2p3 − 2p2 +

6p − 3, and wj+2 = yp−1
j wjz

p−1
j+1 . The integers r(j) and r′(j) satisfy the following

properties.

r(0) = 1, r(1) = p, r(j + 2) = r(j) + pj+1(p− 1) + 1; (3.9)

r′(0) = p− 1, r′(1) = p2 − p,

r′(j + 2) = r′(j) + pj+2(p− 1)− 1, (3.10)

r(j)− r′(j − 1) = j, (3.11)

r(j) + r′(j) = pj+1, (3.12)

r(j + 2) + r′(j) = pj+2 + 1, (3.13)

(p− 1)(r(j − 1) + j − 1) < pj, (3.14)

pj+1 − pj ≤ r′(j) < pj+1 − pj−1. (3.15)

Theorem 3.16. [8] For any p, k(1)∗(K2) is a trivial k(1)∗-module plus⊕
j>0

TPr(j)[v]⊗ P [yj+1]⊗ TPp−1[yj]⊗ E[wj]⊗ E[wj+1]⊗ Λj+1

⊕
⊕
j≥1

TPr′(j−1)[v]⊗ P [yj]⊗ E[wj]⊗ TP p[zj]⊗ Λj+1

⊕ P [y1]⊗
(
E[yp−1

0 z0]⊕

{
E[z1] p = 2

0 p odd

)
⊕
⊕
j≥1

P [y1]⊗ E[q]⊗ E[zpj ]⊗ Λj+1.

The last line was not discussed in [8]; it is from free E[Q1] summands which are not

part of free E1 summands, and plays a very important role.

Now we continue the proof of Theorem 3.1. We have already proved (3.2) and

(3.3). As already noted, the zj’s are infinite cycles by [12], and so the differentials in

(3.5) are implied as soon as the corresponding differential in (3.4) is proved.

As a warmup, we consider the cases t = 2 and 3 of (3.4) when p = 2. We make

extensive use of the exact sequence (1.25). Referring to Figure 3.7 is useful.

In even gradings ≤ 14, k(1)∗(K2) = 0 in positive filtration, by Theorem 3.16. Thus

the map kup∗(K2) → k(1)∗(K2) implies that in the ASS for kup∗(K2), v
sz2 must be
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hit by a differential or divisible by 2 for s ≥ 2. In grading < 8, there is nothing

that can divide it, and the only odd-grading v-tower in that range is on v2y1q. Thus

d2(v
2y1q) = v4z2, the case t = 2, M = 1 of (3.4). Since d2(y

2k
1 ) = 0 by (3.2), the case

t = 2 of (3.4) follows for any M by the derivation property. An analogous argument

does not work at the odd primes.

Similarly vsz3 must be hit or divisible for s ≥ 4, and examination of options in

Figure 3.7 shows that we must have d5(h0v
2y31q) = v8z3, preceded by extensions.

Since d5(y
8
1) = h30v

2y71q, we deduce the case t = 3, M ∈ P [y81] of (3.4) using the

derivation property, (2.5) and h0z2 = 0. We do not have a priori knowledge that y41z3

is a permanent cycle in the ASS of kup∗(K2). However, if it supported a nonzero

differential, then the tower of v-height 4 on y41z3 in the ASS of k(1)∗(K2) would have

to map to vtC for 0 ≤ t ≤ 3 for some C in positive filtration in grading 51 in the ASS

of kup∗(K2). Then v4C must be dr(B) with r ≥ 5 and B in filtration 0 in grading

42. (B cannot have higher filtration since everything is v-towers, and v3C cannot

be hit.) But the only possible B is y61z2, and we already know that v4y61z2 ∈ im(d4).

(Ordinarily this would not preclude the possibility ofB supporting a differential, but it

does since everything is v-towers.) Thus y41z3 is a permanent cycle, and consideration

of its image in k(1)∗(K2) implies that vsy41z3 is hit by a differential for some s ≥ 4.

The only element in odd grading < 42 not yet accounted for is h0v
2y71q in grading

33, and so this must be the source of the differential. This is the case t = 3, M = y41

of (3.4). The validity for all M = y8i+4
1 (and t = 3) now follows similarly to what we

did for M = y8i1 at the beginning of this paragraph.

Now we switch our attention to the odd primes. The situation when p = 2 is

extremely similar. We want to prove the following version of (3.4).

dpt−t(h
t−1
0 vqy

(i+1)pt−1−1
1 ) = vp

t

yip
t−1

1 zt. (3.17)

Now we work toward proving this. We illustrate with p = 5, but it should be clear

how it generalizes to an arbitrary prime. One new thing is the Divisibility Criterion

as invoked in [8]. Each mod (p − 1) value of i can be considered separately. We

will consider (3.17) with p = 5 and i = 4ℓ; other congruences follow similarly. We

index the differential (3.17) by (ℓ, t). We write T (for vertical Tower) for the class

ht−1
0 vqy

(4ℓ+1)5t−1−1
1 , and M (for Monomial) is y4ℓ5

t−1

1 zt. We will often afflict T and

M with the parameters (ℓ, t). We write |T | for 1
2
(|T | + 1). The 1

2
avoids extraneous
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factors of 2 that always cancel out. The +1 is so that this indicates the grading (times
1
2
) of the class that it hits. |M | denotes 1

2
times the grading of M , and M ′ equals 1

2

times the grading of vhM , where h is the v-height of M in k(1)∗(K2). We wish to

show that the differentials must be as claimed.

There are three types of constraints on the differentials involving these classes.

Constraint C1 is that if T →M (by which we mean that a certain T class supports a

differential hitting viM for some i and a certain monomial M), then |T | ≤M ′. (This

says that the v-tower on M cannot be hit while its image in k(1)∗(K2) is nonzero.)

Constraint C2 says that if T (5ℓ + 1, t − 1) → M1 and T (ℓ, t) → M2, then |M2| >
|M1|. Since |T (5ℓ+ 1, t− 1)| = |T (ℓ, t)|, this says that as you move up an h0 tower3,

differentials must get longer (unless they are hitting into an h0 tower, which is not

the case here.)

Constraint C3 says that if T2 →M1, then there exists M3 such that |M1| ≥ |M3| ≥
M ′

1 and either

M ′
3 ≤ |T2|

or

T3 →M3 has already been proved, and |T3| ≤ |T2|.
The reason for C3 is that there must be extensions into the M1-tower from grading

M ′
1 to |T2|+4. The nonzero classes on the v-tower (onM3) supporting the extensions

must go to at least |T2| + 4, and it has nonzero classes at least to M ′
3 + 4, and if

T3 → M3 was already proved, it has nonzero classes to |T3| + 4. Note that we are

saying that the v-tower onM1 maps to 0 in k(1)∗(K2) once we get to gradingM ′
1 (and

hence in gradings ≤ M ′
1 it is either hit by differentials or is divisible by p). There

might be classes of higher filtration in k(1)∗(K2) to which it could map, but, if so, we

can modify the generator of the M1 tower by the class on the tower sitting above it.

Also note that it is possible that extensions from the tower M3 don’t start from the

generator, if there are h0-extensions on the tower for awhile. See Figure 3.18. There

is an exception to the C3 requirement for T (ℓ, 1) →M(ℓ, 1). Here the extension into

v4y4ℓ1 z1 is obtained from the special class y4ℓ1 y
4
0z0.

3Note that h0T (5ℓ+ 1, t− 1) = T (ℓ, t).
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Figure 3.18. The role of M3

|M1| M3

|T2|

|T2|+ 4

M ′
1

With the above conventions, we have |T | = 5t(4ℓ + 1) + 1, |M | = 5t(4ℓ + 5) + 1,

and M ′ = |M | − 4r′(t − 1), where 4r′(t − 1) has the values 16, 80, 412, and 2076

for t = 1, 2, 3, and 4. Increasing from t to t + 2 increases this by 42 · 5t+1 − 4. We

consider the cases in order of increasing |M | and, for equal values of |M |, increasing
ℓ. We tabulate a representative sample in Table 1. We omit listing values of ℓ ≡ 3, 4

mod 5 because they behave similarly to ℓ ≡ 2.
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ℓ t |T | |M | M ′ ℓ t |T | |M | M ′

0 1 6 26 10 36 1 726 746 730

1 1 26 46 30 37 1 746 766 750

2 1 46 66 50 7 2 726 826 746

0 2 26 126 46 40 1 806 826 810

5 1 106 126 110 41 1 826 846 830

6 1 126 146 130 42 1 846 866 850

7 1 146 166 150 8 2 826 926 846

1 2 126 226 146 45 1 906 926 910

10 1 206 226 210 46 1 926 946 930

11 1 226 246 230 47 1 946 966 950

12 1 246 266 250 9 2 926 1026 946

2 2 226 326 246 50 1 1006 1026 1010

15 1 306 326 310 51 1 1026 1046 1030

16 1 326 346 330 52 1 1046 1066 1050

17 1 346 366 350 1 3 626 1126 714

3 2 326 426 346 10 2 1026 1126 1046

20 1 406 426 410 55 1 1106 1126 1110

21 1 426 446 430 56 1 1126 1146 1130

22 1 446 466 450 57 1 1146 1166 1150

4 2 426 526 446 11 2 1126 1226 1146

25 1 506 526 510 60 1 1206 1226 1210

26 1 526 546 530 61 1 1226 1246 1230

27 1 546 566 550 62 1 1246 1266 1250

0 3 126 626 214
...

5 2 526 626 546 154 1 3086 3106 3090

30 1 606 626 610 0 4 626 3126 1050

31 1 626 646 630 5 3 2626 3126 2714

32 1 646 666 650 30 2 3026 3126 3046

6 2 626 726 646 155 1 3106 3126 3110

35 1 706 726 710 156 1 3126 3146 3130

Table 1: Cases in order

Before presenting a general argument, we illustrate with an example, starting with

M1 = M(1, 3). We will see that it builds a chart which is y1001 times Figure 1.11.
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In Table 1, we have |M1| = 1126. Its v-tower is truncated at height p3 = 125 by a

differential on T (1, 3), with |T (1, 3)| = 626, using our grading conventions. Playing

the role of M3 is M(6, 2) with |M3| = 726. We have M ′
1 = 714. It is v3M3 which

supports the extension in ”grading“ 714. Note that for 0 ≤ i ≤ 2, h0v
iM3 ̸= 0, and

so p · viM3 is not a v-multiple of M1. (In Figure 1.11, the class yp−1
2 z2 corresponds to

M3.) From Table 1, we see thatM ′
3 = 646, which means that in “grading” ≤ 646, the

v-tower on M3 is either hit by a differential or divisible by p. Table 1 says it is hit by

a differential in 626. In “gradings” from 646 to 630, it is divisible by p. It has its own,

distinct, M3 class, namely M(31, 1). In Figure 1.11, this latter class corresponds to

yp−1
1 yp−1

2 z1.

Now we start the proof. We begin with a lemma.

Lemma 3.19. For M =M(ℓ′, t′) with |M(5ℓ+ 1, t− 1)| < |M | < |M(ℓ, t)|, we have

t′ < t, |T (ℓ, t)| < |T (ℓ′, t′)|, and |M(5ℓ+ 1, t− 1)| < M ′.

Proof. The given inequalities quickly force t′ < t. The inequality |T (ℓ, t)| < |T (ℓ′, t′)|
follows immediately. Finally, the given inequalities prevent M ′ ≤ |M(5ℓ + 1, t − 1)|.

To prove the differentials, we use induction on our ordering of the M ’s. If the

differentials are not as posed, consider the smallest |M | such that T (ℓ, t) → M with

M ̸=M(ℓ, t).

We cannot have |M | > |M(ℓ, t)|, because |M(ℓ, t)| would contradict the minimality

of |M |. We cannot have |M | ≤ |M(5ℓ+ 1, t− 1)| by constraint C2.

If |M(5ℓ + 1, t− 1)| < |M | < |M(ℓ, t)|, by constraint C3 and the lemma, we must

have M3 with |M(5ℓ+ 1, t− 1)| < M ′ ≤ |M3| < |M |. Because |M3| < |M |, we know

T3 →M3 by induction. From the lemma, we get |T (ℓ, t)| < |T3|, but that contradicts
constraint C3.

We must have T (ℓ, t) → M(ℓ, t), and M(5ℓ + 1, t− 1) is eligible for our M3. This

completes most of the proof of (3.17) and hence of Theorem 3.1.

Underlying the above analysis has been an assumption that the M -classes are

always hit by T -classes. We show now that it could not have occurred that an M -

class supported a differential. Assume that M = yip
t−1

1 zt is the M -class of lowest
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grading which supports a differential. We now revert to letting |x| denote the actual

grading of a class x, not divided by 2.

In k(1)∗(K2), M supports a v-tower of v-height r′(t− 1) by 3.16. We will show at

the end of the proof that there is a number ∆ ≤ t such that viM maps nontrivially

to kup∗+1(K2) if and only if i ≤ r′(t − 1) − ∆. (Usually ∆ = 1.) The image of

M in kup|M |+1(K2) is a class C of positive filtration such that vr
′(t−1)−∆C ̸= 0 and

vr
′(t−1)−∆+1C = 0 ∈ kup∗(K2), so there must be a differential in the ASS of kup∗(K2)

from a filtration-0 class hitting a class of filtration ≥ r′(t − 1) − ∆ + 2 in grading

|M | + 1 − 2(p − 1)(r′(t − 1) − ∆ + 1). (The reason that the differential must start

from filtration 0 is that in even gradings, E2 consists entirely of v-towers starting

in filtration 0.) This differential cannot come from another such M because of our

lowest-grading assumption. It cannot come from a product of one or more z’s times

one of these M ’s because z’s are infinite cycles. We must rule out the possibility that

this differential is one of type (3.3). They are distinguished by having the smallest

z-subscript at least 2 greater than the p-exponent of the exponent of y1.

The differential to C has subscript ≥ r′(t − 1) − ∆ + 2, and so the class in (3.3)

would be yℓp
r′(t−1)−∆

1 Z for some positive integer ℓ, where Z is a product of zj’s with

j ≥ r′(t−1)−∆+2, and each j appears at most p−1 times, except that the smallest

j might appear p times. Equating this grading with |M |− 2(p− 1)(r′(t− 1)−∆+1),

and cancelling a common factor 2 from all terms yields

ℓpr
′(t−1)−∆+1 +

∑
j

(pj+1 + 1) = ipt + pt+1 + 1− (p− 1)(r′(t− 1)−∆+ 1). (3.20)

Using (3.12) and (3.14) and ∆ ≤ t, the right hand side of (3.20) equals pt(i + 1) +

(p− 1)(r(t− 1)+∆− 1)+1 ≡ (p− 1)(r(t− 1)+∆− 1)+1 mod pt, with (p− 1)(r(t−
1) + ∆ − 1) + 1 ≤ pt (strict if t > 2). Since r′(t − 1) −∆ > t, this implies that the∑
j

on the left hand side of (3.20) must contain at least (p− 1)(r(t− 1) +∆− 1) + 1

summands. We obtain∑
pj ≥ p · pr′(t−1)−∆+2 + (p− 1)(pr

′(t−1)−∆+3 + · · ·+ pr
′(t−1)+r(t−1))

= pr
′(t−1)+r(t−1)+1 = pp

t+1,

so
∑
pj+1 ≥ pp

t+2, and hence pt(i+ 1) > pp
t+2. Thus i ≥ pp

t−t+2 > pp
t−2t.
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Since dpt−t+1(y
pp

t−t−1

1 ) is defined,

dr(y
pp

t−t−1

1 ) = 0 for r ≤ pt − t, (3.21)

and by the lowest-grading assumption, dpt−t(h
t−1
0 vqy

(i−ppt−2t+1)pt−1−1
1 ) = vp

t
y
(i−ppt−2t)pt−1

1 zt

and y
(i−ppt−2t)pt−1

1 zt is a permanent cycle. Since

yip
t−1

1 zt = y
(i−ppt−2t)pt−1

1 zt · yp
pt−t−1

1 ,

we deduce that yip
t−1

1 zt survives to Ept−t and (3.17), using the derivation property of

differentials.

Now we consider the need for ∆ in the above argument. The worry is that maybe

part of the v-tower onM in k(1)∗(K2) might be in the image from kup∗(K2), due to a

filtration jump from a lower tower, as sketched in Figure 3.22, so that only a smaller

part of the M -tower in k(1)∗(K2) maps to kup∗+1(K2).

Figure 3.22. An unwanted possibility

tc

tc′

t
c

tc′

|M1| |M2| |M1| |M2| |M1|+ 1
kup∗(K2) k(1)∗(K2) kup∗+1(K2)

The monomials Mε = yiεtεztε (ε = 1, 2) have |Mε| = 2(ptε(iε + p) + 1) and are

truncated in k(1)∗(K2) in grading M ′
ε = |Mε| − 2(p − 1)r′(tε − 1). In kup∗(K2), M2

is truncated in grading |T2| = |vpt2M2| = 2(pt2(i2 + 1) + 1). In Figure 3.22, elements

c are in grading M ′
2, and c

′ is in grading M ′
1 + 2(p− 1). The necessary condition for

nontrivial image in k(1)∗(K2) (and hence ∆ > 1) is

|T2|+ 2(p− 1) ≤M ′
1 + 2(p− 1) ≤M ′

2. (3.23)

If this occurs, then we might have ∆ as large as
M ′

2 −M ′
1

2(p− 1)
+ 1. We now show in

Lemma 3.24 that if (3.23) holds, then (M ′
2 −M ′

1)/(2(p − 1)) < t, establishing the

claim made earlier about ∆ ≤ t.
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We restrict to p = 5, i = 4ℓ for simplicity, and so that the reader can refer to Table

1 as an aid. The argument easily generalizes to any prime and any congruence. We

divide everything by 2 as was done above, and also subtract off the +1 which occurs

in formulas for |M | and |T |, so the numbers will be 1 smaller than those in the table.

Lemma 3.24. If t1 > t2 and

5t2(4ℓ2 + 1) + 4 ≤ 5t1(4ℓ1 + 5)− 4r′(t1 − 1) + 4 ≤ 5t2(4ℓ2 + 5)− 4r′(t2 − 1),

then
1
4

(
5t2(4ℓ2 + 5)− 4r′(t2 − 1)− (5t1(4ℓ1 + 5)− 4r′(t1 − 1))

)
< t1 − 1.

Proof. If there is a counterexample to this, then there is one with ℓ1 = 0, since ℓ2

could be decreased by 5t1−t2ℓ1, so it suffices to use ℓ1 = 0. Let Q(k) = (52k − 1)/24

(called q(k) in [8, Lemma 5.3]). Then, using [8, Lemma 5.5], for t = 2k+δ with δ = 1

or 2,

5t+1 − 4r′(t− 1) = 52k+δ + 16 · 5δQ(k) + 4k + 4 · 5δ−1.

Since 16 · 5δQ(k) + 4k + 4 · 5δ−1 < 3 · 52k+δ, the hypothesis of the lemma says that

5t1+1−4r′(t1−1) mod 4 ·5t2 lies in the mod-(4 ·5t2) interval [5t2 , 5t2+1−4r′(t2−1)−4].

Let t1 = 2k1 + δ1 and t2 = 2k2 + δ2. The condition is restated as

52k1+δ1 + 16 · 5δ1Q(k1) + 4k1 + 4 · 5δ1−1 (3.25)

lies in the mod-(4 · 5t2) interval

[5t2 , 5t2 + 16 · 5δ2Q(k2) + 4k2 + 4 · 5δ2−1 − 4]. (3.26)

Let δ2 = 1. The reduction mod 4 · 5t2 of (3.25) is

5t2 + 16 · 5δ1Q(k2) + 4k1 + 4 · 5δ1−1. (3.27)

Let δ1 = 2. Then 5t2 +16 ·5δ1Q(k2) > 4 ·5t2 and equals 52k2+2−(2000Q(k2−1)+100),

so (3.27) will first be in the interval (3.26) when 4k1 + 20 = 2000Q(k2 − 1) + 100,

hence k1 = 500Q(k2 − 1) + 20, so t1 = 1000Q(k2 − 1) + 42. The left hand side

of the conclusion of the lemma is 1
8
(M ′

2 −M ′
1) with M ′

1 and M ′
2 as in (3.23). For

k1 = 500Q(k2 − 1) + 20, the value of M ′
1 is at the left end of the interval (3.26), and

so 1
8
(M ′

2 −M ′
1) equals

1
4
times the length plus 4 of (3.26), which is

20Q(k2) + k2 + 1 = 500Q(k2 − 1) + k2 + 21 = 1
2
t1 + k2.
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Since k2 ≪ t1, this is less than t1 − 1, as claimed. If k1 is increased from the value

500Q(k2 − 1) + 20, the value of t1 increases, while M ′
2 −M ′

1 decreases, since M ′
1 is

moving through the interval, so the inequality asserted in the lemma is satisfied more

strongly.

Now, with δ2 = 1 continuing, let δ1 = 1. Since k1 > k2, (3.27) lies outside the

interval (3.26) until 80Q(k2) + 4k1 + 4 = 4 · 5t2 , so

k1 = 52k2+1 − 20Q(k2)− 1 = 100Q(k2) + 4

and t1 = 200Q(k2) + 9. Again 1
8
(M ′

2 −M ′
1) = 20Q(k2) + k2 + 1 ≈ 1

10
t2 + k2, so the

conclusion of the lemma is satisfied more strongly.

A similar analysis works when δ2 = 2. In this case 1
8
(M ′

2−M ′
1) ≈ 1

2
t1+k2 if δ1 = 1,

and 1
8
(M ′

2 −M ′
1) ≈ 1

10
t1 + k2 if δ1 = 2.

We close this section by explaining how Theorems 2.4 and 3.1 lead to the descrip-

tions of kup∗(K2) given in Theorems 1.8 and 1.15, modulo exotic extensions. We

begin with the portion in even gradings and restrict our attention to odd p. All ele-

ments in the P [h0, v, y1] part of Theorem 2.4 support differentials of type (3.2). Note

that yp
k−1

0 = yp−1
0 yp

k−1−1
1 =

∏k−1
j=0 y

p−1
j . The first is easiest to write, the second occurs

in Theorem 2.4, and the third in 1.5 and Figure 1.11. From 1.5, yp
k−1

0 z0 is in Ak for

k ≥ 1, the bottom right element in Figure 1.11. Then

P [y1]y
p−1
0 z0 =

⊕
MA

k · yp
k−1

0 z0 ⊂
⊕

MA
kAk. (3.28)

The first part occurs in Theorem 2.4 and the last part in Theorem 1.8.

Now we consider P [y1]⊗
⊕

j≥1Wj⊗TPp−1[zj]⊗Λj+1 in Theorem 2.4. The
⊕

part

is all monomials zℓM with ℓ ≥ 1 and M ∈ Λℓ. From Theorem 3.1, yi1zℓM supports a

differential (3.3) if ℓ ≥ ν(i) + 2, while those with ν(i) ≥ ℓ− 1 are hit by differentials

(3.4) and (3.5), yielding v-towers with heights as given in 1.5. These are all monomials

in
⊕

ℓ≥1 P [yℓ, yℓ+1, . . .]zℓΛℓ. From 1.5 or (1.7), the generators of the v-towers in Bk

are all

zj

k−1∏
i=j

{zp−1
i , yp−1

i }, 1 ≤ j ≤ k.

Let (zℓM)i be the yei z
e′
i factors of M . Then MkBk consists of all monomials zℓM

such that (zℓM)i equals y
p−1
i or zp−1

i for ℓ ≤ i < k, but not for i = k, and so every



38 DONALD M. DAVIS AND W. STEPHEN WILSON

monomial zℓM is in a unique MkBk. From Theorem 3.1, zℓM has v-height pℓ if

and only if M contains no z-factors, which explains the split into MA
k and MB

k in

Theorem 1.8.

Now we address the odd gradings. The P [h0, v, y1]vq part of Theorem 2.4 is totally

removed either as sources (3.4) or targets (3.2) of differentials. See grading 17 in Fig-

ure 3.7 for a nice illustration. The qyi−1
1 Sν(i)+1,ℓ part of Theorem 1.15 is formed from

TPν(i)+2[v]qy
i−1
1 Wℓ in 2.4 using (3.3). The generators of Sν(i)+1,ℓ are z1,ℓ, . . . , zℓ−ν(i)−1,ℓ,

but to see the differential from (3.3), one should write zt,ℓ = zt,t+ν(i)+1Z
ℓ
t+ν(i)+1, where

Zj
i = (zi · · · zj−1)

p−1 for j > i, with Zi
i = 1. (3.29)

The remaining generators of qyi−1
1 Wℓ, namely qyi−1

1 zj,ℓ with ℓ − ν(i) ≤ j ≤ ℓ, sup-

port differentials (3.5). There can be no unexpected exotic extensions among these

summands for the reason noted at the end of Section 1. The ker(p) elements in the

S summands play a very important role in the exact sequence.

4. Exotic extensions

In this section, we prove the following expansion of (1.6).

Theorem 4.1. If i ≥ 0 and k ≥ k0,

pyiky
p−1
k−1zk−1 = vp

k−1(p−1)yikzk

with an additional term vyiky
p−1
k−1z

p
k−2 if k ≥ k0 + 2.

The additional term is seen in Ext, and will be ignored in the rest of this section. We

have included the factor yik, which is not automatic since yik is not a permanent cycle.

Since, for example, yk+1 = ypk, we need not consider yi for i > k. It is automatic that

this formula can be multiplied by zj’s, since they do survive the spectral sequence.

The extension is deduced from the exact sequence

kup∗(K2)
·p−→ kup∗(K2) −→ k(1)∗(K2)

and the fact that vr
′(k−1)yikzk = 0 in k(1)∗(K2) with r′(k − 1) ≥ pk(p − 1). Thus

vr
′(k−1)yikzk must be divisible by p in kup∗(K2), and, as we will show, the v-tower

on yiky
p−1
k−1zk−1 provides the only classes that can do the dividing. Once we know the

division formula toward the end of the v-tower, we can deduce that it holds earlier

in the tower, as well. For example, r′(2) = p3 − p2 + p − 2, which is the height in
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the top v-tower in Figure 1.11 where the extensions into it do not also involve an

h0-extension. We deduce the extensions from the earlier part of the v-tower on yp−1
2 z2

by naturality.

We illustrate in Figure 4.2, using the notation of the preceding section. Thus

Ti is the class satisfying dr(Ti) = vrMi, Here the portion of the top tower to the

right of M ′
1 must be divisible by p. The tower providing the extension must have

M ′
1 ≤ |M2| < |M1| and |T2| ≤ |T1|.

Figure 4.2. Conditions for extension

•

M1 M2

M ′
1

|T1|

|T2|

As we did for the differentials in the previous section, we will perform the argument

for p = 5. It will be clear that it generalizes to an arbitrary odd prime, and with

minor modification to p = 2. Also, we use i = 4ℓ in Theorem 4.1. If instead we used

i = 4ℓ+ d for 1 ≤ d ≤ 3, it will just add the same amount to the quantities |M |, |T |,
and M ′ involved in the argument. We can use Table 1 to envision the analysis, with

the t there replaced by k. For a monomialM(ℓ, k) = y4ℓk zk, we have, after dividing by

2, |M | = 5k(4ℓ+5)+1, |T | = 5k(4ℓ+1)+1, and 5k(4ℓ+1.16)+1 < M ′ ≤ 5k(4ℓ+1.8)+1,

using (3.15). With M1 and M2 as in Figure 4.2, we will show that M2(5ℓ+ 1, k − 1)

is the unique monomial satisfying the inequalities stated just before Figure 4.2 for

M1(ℓ, k). Note that M(5ℓ + 1, k − 1) = y4ℓk y
4
k−1zk−1. We omit the +1 in all the

formulas.

The inequalities are satisfied by M2(5ℓ+ 1, k − 1) since

5k(4ℓ+ 1.8) ≤ 5k−1(4(5ℓ+ 1) + 5) < 5k(4ℓ+ 5) and 5k−1(4(5ℓ+ 1) + 1) ≤ 5k(5ℓ+ 1).

If k2 ≥ k, then the first inequality, after dividing by 5k, becomes

4ℓ+ 1.8 ≤ 5k2−k(4ℓ2 + 5) < 4ℓ+ 5,
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which cannot be satisfied since the middle term is ≡ 1 mod 4. If k2 < k − 1, then

M ′
1 − |T1| > 5k · .16 ≥ 4 · 5k2 = |M2| − |T2|,

which is inconsistent with two of the inequalities. Let k2 = k− 1. If ℓ2 < 5ℓ+1, then

|M2| = 5k−1(4ℓ2 + 5) ≤ 5k−1(4 · 5ℓ+ 5) < 5k(4ℓ+ 1.16) < M ′
1,

contradicting one of the inequalities. If k2 = k − 1 and ℓ2 > 5ℓ+ 1, then

|T2| ≥ 5k−1(4(5ℓ+ 2) + 1) > 5k(4ℓ+ 1) = |T1|,

contradicting one of the inequalities.

We deduce that M2 = y4ℓk y
4
k−1zk−1, as claimed. We should perhaps have noted that

the extensions could not have come from classes with more than one zj-factor, because

these are zj times a class on which the extensions have already been determined.

5. Proposed formulas for the exact sequence (1.25)

In this section we propose what we conjecture must be the correct complete formu-

las for the exact sequence (1.25). Some homomorphisms are forced by naturality, but

many others involve significant filtration jumps. However, they all occur in several

families with nice properties. The 10-term exact sequence (5.2) shows how the Sk,ℓ

portions and the exotic extensions yield compatibility of the differing v-tower heights

in kup∗(K2) and k(1)
∗(K2). In Section 6, we show that all elements of k(1)∗(K2) are

accounted for exactly once in these homomorphisms, which implies that there can be

no more exotic extensions. This does not require us to prove that our homomorphism

formulas are actually correct, as discussed at the end of Section 1. We will focus on

the case when p is odd. We could incorporate all primes together at the expense of

involving the parameter k0, but things are complicated enough without that. In an

earlier version of this paper ([7]), a thorough analysis when p = 2 was performed.

We propose that (1.25) can be split into exact sequences of length 4 and 10 (not

including 0’s at the end). There are subgroups of k(1)∗(K2) called G1
k and G2

k for

k ≥ 1 and Gi
k,ℓ for 3 ≤ i ≤ 6 and 1 ≤ k < ℓ such that there are exact sequences

0 → G1
k → Ak

p−→ Ak → G2
k → 0 (5.1)
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for k ≥ 1, and, for 1 ≤ k < ℓ,

0 → G3
k,ℓ → ykBkZ

ℓ
k

p−→ ykBkZ
ℓ
k → G4

k,ℓ → yp
k−1−1

1 qSk,ℓ
p−→ yp

k−1−1
1 qSk,ℓ → G5

k,ℓ → Bkzℓ
p−→ Bkzℓ → G6

k,ℓ → 0, (5.2)

with Zℓ
k as defined in (3.29). The sequence (5.1) can be tensored with TPp−1[yk] ⊗

P [yk+1], while (5.2) can be tensored with TPp−1[yk]⊗ P [yk+1]⊗ TPp−1[zℓ]⊗ Λℓ+1. If

p is odd, there are also exact sequences

0 → G7
k,e → Bkz

e
k

p−→ Bkz
e
k → G8

k,e → 0 (5.3)

for k ≥ 1 and 1 ≤ e ≤ p− 2. This can be tensored with P [yk]⊗ Λk+1.

One can verify that the totality of Ak and Bk groups in these exact sequences agrees

with that in Theorem 1.8. We will study these exact sequences by breaking them up

into short exact sequences and isomorphisms involving kernels and cokernels of ·p.
LetKA

k = ker(·p|Ak),KB
k = ker(·p|Bk), C

A
k = coker(·p|Ak), and CB

k = coker(·p|Bk).

There are important elements gk ∈ KA
k and KB

k defined (up to unit coefficients) by

g1 = z1, g2 = vp−2z2, and, for k ≥ 1,

gk+2 = vr
′(k)−1zk+2 + gky

p−1
k zp−1

k+1. (5.4)

To see that this is in ker(·p), we use (1.6) to see that p · vr′(k)−1zk+2 = vr
′(k)zpk+1, and

that the vr
′(k−2)−1zk term in gk yields v

r′(k−2)−1vp
k(p−1)zk+1z

p−1
k+1 in p·gky

p−1
k zp−1

k+1. Using

(3.10), these terms cancel. Other terms in p · gkyp−1
k zp−1

k+1 yield 0 since gk ∈ ker(·p).
The v-towers in KA

k are generated by

gk and gjz
p−1
j

k−1∏
i=j+1

{zp−1
i , yp−1

i }, 1 ≤ j ≤ k − 1. (5.5)

For example, using Figure 1.11 when k = 3, these are g3 = vp
2−p−1z3 + yp−1

1 z1z
p−1
2 ,

g2z
p−1
2 = vp−2zp2 , g1z

p−1
1 zp−1

2 , and g1z
p−1
1 yp−1

2 . The v-heights are pk− (r′(k−2)−1) for

gk, and p
j − j − (r′(j − 2)− 1) for the others, since they are determined by v-heights

of zj in Bk. The map G1
k → KA

k sends wk to gk and

wjP 7→ gjP for P = zp−1
j

k−1∏
i=j+1

{zp−1
i , yp−1

i }, (5.6)
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with wj as in 3.8 and 3.16. The v-height of wj is r(j) if it is not accompanied by zj,

and r′(j − 1) if it is. By (3.13) and ((3.12) and (3.11)) the v-heights agree, so (5.6)

is an isomorphism on v-towers.

For L = KA
k or KB

k or CA
k or CB

k , we say that a Zp in L is a class of v-height

1 in L which is not part of a larger v-tower in L. There is one Zp in KA
3 , as can

be seen in Figure 1.11. This is the element vp−2yp−1
1 z1z

p−1
2 . Note that for i < p −

1, viyp−1
1 z1z

p−1
2 + vi+p

2−p−1z3 is part of a v-tower in KA
3 , which continues with the

elements viz3 for i > p2 − 3, but viyp−1
1 z1z

p−1
2 itself is in KA

3 only for i = p− 2. Using

1.5, we find that the Zp’s in KA
k are

vp
t−t−1(yt · · · yj−1)

p−1ztz
p−1
j

k−1∏
i=j+1

{zp−1
i , yp−1

i } for 1 ≤ t < j < k. (5.7)

For example, the elements vp−2(y1y2)
p−1z1 and vp

2−3yp−1
2 z2 in Figure 1.11 yield ele-

ments inKA
4 after being multiplied by zp−1

3 . The basic formula for the homomorphism

from part of k(1)∗(K2) to Zp’s in various KA
k and KB

k , possibly tensored with other

classes as in Theorem 1.8, is(
q(y1 · · · yt)p−1zj−t,j 7→ vp

t−t−1yp−1
t ztzj

)
⊗ P [yj]⊗ TPp−1[zj]⊗ Λj+1 for j > t ≥ 1. (5.8)

The domain elements are in the second half of the third line of Theorem 3.16. The

ones that are in G1
k in the isomorphism G1

k → KA
k can be extracted using (5.7).

The isomorphism G3
k,ℓ → ykK

B
k Z

ℓ
k in (5.2) is given using formulas analogous to

(5.6) and (5.8). There are several minor differences. One is that the v-tower on

ykgkZ
ℓ
k is truncated due to vp

k−kzk = 0 in Bk (as opposed to vp
k
zk = 0 in Ak). This

is compatible with the fact that the v-height of wkzk in k(1)∗(K2) is k less than that

of wk, using Theorem 3.16 and (3.11). The other is that KB
k has additional Zp’s

vp
t−t−1(yt · · · yk−1)

p−1zt for 1 ≤ t ≤ k − 1, (5.9)

as seen in Figure 1.11 when k = 3, but these are always multiplied by higher z’s, and

so (5.8) applies.

The isomorphisms CA
k → G2

k and CB
k zℓ → G6

k,ℓ are defined simply by sending an

element to one with the same name. Moreover CA
k = CB

k except for (y0 · · · yk−1)
p−1z0 ∈

CA
k −CB

k . When k = 3, we see that the Zp’s in CB
k are {zp1z

p−1
2 , zp2 , y

p−1
2 zp1} in Figure
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1.11.4 For future reference,

Zp’s in CB
k are

{
zpt

k−1∏
i=t+1

{zp−1
i , yp−1

i

}
: 1 ≤ t < k}. (5.10)

The corresponding elements in k(1)∗(K2) are from the third line of 3.16.

The v-towers in CA
k = CB

k are generated by

zk and yp−1
t zt

k−1∏
i=t+1

{zp−1
i , yp−1

i }, 1 ≤ t < k. (5.11)

We will show that the v-height of zk in CB
k is r′(k − 1), which equals its v-height in

k(1)∗(K2). It follows from 1.5 that the v-height of yp−1
t zt

∏k−1
i=t+1{z

p−1
i , yp−1

i } equals

r′(t − 1), establishing the isomorphisms out of CA
k and CB

k zℓ. In Figure 1.11, the

v-height of z3 equalling p3 − p2 + p− 2 = r′(2) is apparent.

The proof of the claim about v-heights is by induction. By (3.10), r′(k−1)−r′(k−
3) = pk−1(p − 1) − 1. Let D = (|zk| − |yp−1

k−1zk−1|)/(2(p − 1)) = pk−1(p − 1). This is

the filtration on the zk-tower above the element yp−1
k−1zk−1. We show that vi−1+Dzk is

divisible by p if and only if vizk−2 is divisible by p. Thus the difference of the v-heights

in cokernels equals the difference of the corresponding r′ values. From Theorem 4.1,

we have

pvi−1yp−1
k−1zk−1 = vi−1+Dzk + viyp−1

k−1z
p
k−2.

The claim follows, since viyp−1
k−1z

p
k−2 is divisible by p if and only if vizk−2 is, by 1.5.

The analysis of (5.3) is extremely similar.

Now Sk,ℓ becomes involved. Let SKk,ℓ = ker(·p|Sk,ℓ) and SCk,ℓ = coker(·p|Sk,ℓ). Then
SKk,ℓ consists of TPk+1[v]⟨z1,ℓ⟩ plus Zp’s on vkzi,ℓ for 2 ≤ i ≤ ℓ − k, while SCk,ℓ has

TPk+1[v]⟨zℓ−k,ℓ⟩ plus Zp’s on zi,ℓ for 1 ≤ i < ℓ− k. Next we consider the short exact

sequence

0 → ykC
B
k Z

ℓ
k

ϕ−→ G4
k,ℓ

ψ−→ yp
k−1−1

1 qSKk,ℓ → 0. (5.12)

The map ϕ sends everything except the v-tower on ykzkZ
ℓ
k to classes with the same

name, and the heights of these v-towers agree, as seen above. The class ykzkZ
ℓ
k =

ykzk,ℓ maps to a Zp with the same name in k(1)∗(K2). We have ψ(wkwk+1Z
ℓ
k+1) =

4The class yp−1
2 zp−1

1 should really be called yp−1
2 zp−1

1 + vp
2(p−1)−1z3 so that v times it is divisible by p,

hence 0 in CB
k , but we will ignore this fine-tuning.
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qyp
k−1−1

1 z1,ℓ. Then v
k+1wkwk+1Z

ℓ
k+1 ∈ ker(ψ), and we have

ϕ(vykzk,ℓ) = vk+1wkwk+1Z
ℓ
k+1.

We illustrate this in the schematic Figure 5.13, in which X, ◦, and • map to ele-

ments with the same symbol. The expressions at the end of the v-towers are their

v-heights. In particular, vr
′(k−1)ykzk,ℓ = 0 in ykC

B
k Z

ℓ
k. The v-heights agree by (3.11),

and the gradings match by an induction proof. The Zp’s in yp
k−1−1

1 qSKk,ℓ are hit by

ψ(ykzi+k−1,ℓ) = yp
k−1−1

1 qvkzi,ℓ, 2 ≤ i ≤ ℓ− k, another interesting filtration jump.

Figure 5.13. Towers in exact sequence.

◦

r′(k − 1)

◦

t
wkwk+1Z

ℓ
k+1

t
yp

k−1−1
1 qz1,ℓ

k + 1k + 1

r(k)

X X

ykC
B
k Z

ℓ
k

G4
k,ℓ

yp
k−1−1

1 qSKk,ℓ

ϕ−→ ψ−→

ykzk,ℓ

Finally we consider the short exact sequence

0 → yp
k−1−1

1 qSCk,ℓ
ϕ′−→ G5

k,ℓ

ψ′
−→ KB

k zℓ → 0. (5.14)

Similarly to (5.5), the generators of v-towers inKB
k are gk and, for 1 ≤ j < k, elements

of the form gjz
p−1
j

∏k−1
j+1{z

p−1
i , yp−1

i }. The morphism ψ′ is determined by wj 7→ gj.

The v-heights of the corresponding elements in k(1)∗(K2) and K
B
k both equal r′(j−1)

for j < k. However, the v-height of wkzℓ is r(k), which is k greater than r′(k − 1).

We have ϕ′(vyp
k−1−1

1 qzℓ−k,ℓ) = vr
′(k−1)wkzℓ. The class y

pk−1−1
1 qzℓ−k,ℓ at the base of the

v-tower maps to a Zp with the same name. The picture is quite similar to Figure 5.13

with k + 1 and r′(k − 1) interchanged.

The Zp classes yp
k−1−1

1 qzi,ℓ for 1 ≤ i < ℓ − k are mapped by ϕ′ to classes with the

same name in G5
k,ℓ ⊂ k(1)∗(K2). The Zp’s in KB

k zℓ are of the same form as in (5.7),

and are hit by analogues of (5.8).
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6. All accounted for

In this section, we show that all elements of k(1)∗(K2) are involved in exactly one

of the homomorphisms involving some G-group described in the preceding section.

As discussed earlier, this implies that there can be no exotic extensions in kup∗(K2)

other than those in (1.6), because an additional extension would decrease the number

of elements in ker(·p|kup∗(K2)) and coker(·p|kup∗(K2)), and these must correspond

to elements of k(1)∗(K2). It also provides an excellent check on our analysis.

Let p be odd, Gi
k and Gi

k,ℓ as in (5.1) and (5.2), and

Gi =



⊕
k≥1

Gi
k ⊗ TPp−1[yk]⊗ P [yk+1] 1 ≤ i ≤ 2⊕

1≤k<ℓ

Gi
k,ℓ ⊗ TPp−1[yk]⊗ P [yk+1]⊗ TPp−1[zℓ]⊗ Λℓ+1 3 ≤ i ≤ 6

⊕
k≥1

p−2⊕
e=1

Gi
k,e ⊗ P [yk]⊗ Λk+1 7 ≤ i ≤ 8.

Theorem 6.1. G1 ⊕ · · · ⊕G8 equals k(1)∗(K2), as described in Theorem 3.16.

As throughout the paper, Zp’s coming from E1-free submodules of H∗(K2) are

ignored here. The remainder of this section is devoted to the proof of Theorem 6.1.

There are four parts of Theorem 3.16. We deal with them one-at-a-time.

Case 1. P [y1]y
p−1
0 z0. In (3.28), it is shown that these classes form a subset of⊕

MA
kAk, and they map to classes with the same name in G2.

Case 2.
⊕

j>0 TPr(j)[v]⊗ P [yj+1]⊗ TPp−1[yj]⊗E[wj]⊗E[wj+1]⊗Λj+1. The gen-

erators of v-towers of height r(j) occur in G1, G4, and G5. From (5.6), only wj is

in G1
j . So G1 has TPp−1[yj] ⊗ P [yj+1]wj. From Figure 5.13, G4

j,ℓ has wjwj+1Z
ℓ
j+1.

Note that
⊕

ℓ Z
ℓ
j+1TPp−1[zℓ] ⊗ Λℓ+1 = Λj+1, since the ℓ-component gives the mono-

mials whose smallest non-(p − 1)-power is a power of zℓ, so G
4 contains P [yj+1] ⊗

TPp−1[yj]wjwj+1 ⊗ Λj+1. From the analysis following (5.14), G5
j,ℓ has only wjzℓ of

v-height r(j), so G5 will have P [yj+1]⊗ TPp−1[yj]wj ⊗ Λj+1. Thus G
1 ⊕G5 contains

the part without wj+1, while G
4 contains the part with wj+1.

Case 3.
⊕

j≥1 TPr′(j−1)[v] ⊗ P [yj] ⊗ E[wj] ⊗ TP p[zj] ⊗ Λj+1. The generators of

v-towers of height r′(j − 1) occur in each Gi as follows.
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G1: wjz
p−1
j

⊕
k≥j+1

TPp−1[yk]⊗ P [yk+1]⊗
k−1⊕
i=j+1

{zp−1
i , yp−1

i }. This can be deduced from (5.6).

G2: From (5.11),

zjTPp−1[yj]⊗ P [yj+1]⊕ yp−1
j zj

⊕
k≥j+1

TPp−1[yk]⊗ P [yk+1]⊗
k−1∏
i=j+1

{zp−1
i , yp−1

i }.

G3: We use (5.5) and (5.6) and adapt some arguments used in Case 2 to obtain

wjz
p−1
j

(
TP p[yj]⊗ P [yj+1]⊗ Λj+1 ⊕

⊕
k≥j+1

TP p[yk]P [yk+1]z
p−1
k Λk+1

k−1∏
i=j+1

{zp−1
i , yp−1

i }
)
.

G4: We use (5.11) and (5.12) to obtain

yp−1
j zj

⊕
k≥j+1

TP p[yk]⊗ P [yk+1]z
p−1
k Λk+1

k−1∏
i=j+1

{zp−1
i , yp−1

i }.

G5: We use (5.14) and
⊕

ℓ>k zℓTPp−1[zℓ]⊗ Λℓ+1 ≈ Λk+1 to obtain

wjz
p−1
j

⊕
k≥j+1

TPp−1[yk]⊗ P [yk+1]⊗ Λk+1 ⊗
k−1∏
i=j+1

{zp−1
i , yp−1

i }.

G6: We combine the analysis for G2 and the observation used for G5 to obtain

zjTPp−1[yj]⊗ P [yj+1]⊗ Λj+1

⊕ yp−1
j zj

⊕
k≥j+1

TPp−1[yk]⊗ P [yk+1]⊗ Λk+1 ⊗
k−1∏
i=j+1

{zp−1
i , yp−1

i }

G7: Similarly to G3, we have
p−2⊕
e=1

(
wjz

e
j ⊗ P [yj]⊗ Λj+1 ⊕ wjz

p−1
j

⊕
k≥j+1

zek ⊗ P [yk]⊗ Λk+1 ⊗
k−1∏
i=j+1

{zp−1
i , yp−1

i }
)
.

G8: Using (5.11), we get

p−2⊕
e=1

(
zej ⊗ P [yj]⊗ Λj+1 ⊕ yp−1

j zj
⊕
k≥j+1

zek ⊗ P [yk]⊗ Λk+1 ⊗
k−1∏
i=j+1

{zp−1
i , yp−1

i }
)
.

We begin by analyzing the portion including the factor wj. We will show that

G1 ⊕G3 ⊕G5 ⊕G7 = P [yj]wj ⊗ TP p[zj]⊗ Λj+1.

Here, and in the remainder of our analysis of Case 3, Gi refers just to the relevant

portion of Gi, here the part with TPr′(j−1)[v]wj. The first part of G7 gives all terms



THE CONNECTIVE K-THEORY OF THE EILENBERG-MACLANE SPACE K(Zp, 2) 47

with zej for 1 ≤ e ≤ p− 2. The remaining part has factors wjz
p−1
j , which we will omit

writing. Combining G1 and G5 removes the bar in G5. The first part of G3 gives the

part with positive exponent of yj, which we now omit.

Let Eℓ = P [yℓ]⊗Λℓ, thought of as monomials in yi and zi for i ≥ ℓ with exponents

≤ p− 1. The remaining parts of the Gi’s under consideration combine to⊕
k≥j+1

(
TPp−1[yk]⊕ ykz

p−1
k TPp−1[yk]⊕

p−2⊕
e=1

zekTPp[yk]

)
⊗ Ek+1 ⊗

k−1∏
i=j+1

{zp−1
i , yp−1

i }. (6.2)

We wish to show this equals Ej+1. The portion in parentheses is all monomials in

TPp[yk, zk] except y
p−1
k and zp−1

k . For a monomial M in Ej+1, let Mi denote its ysi z
t
i

factor. The k-summand in (6.2) is all monomialsM in Ej+1 for which k is the smallest

i such that Mi is neither y
p−1
i nor zp−1

i . Thus the sum over all k yields all of Ej+1, as

claimed.

A very similar argument shows that the G2 ⊕G4 ⊕G6 ⊕G8 part for Case 3 equals

the portion which includes just the 1 in E[wj]; i.e., P [yj]⊗ TP p[zj]⊗ Λj+1.

Case 4.
⊕

j≥1 P [y1]⊗E[q]⊗E[zpj ]⊗ Λj+1. We first consider the part without the

q, and fix j and omit writing the zpj . The desired answer is P [y1]⊗Λj+1. These come

from the Zp’s in G2 ⊕G4 ⊕G6 ⊕G8. Similarly to Case 3, G2 and G6 combine to give⊕
k≥j+1

TPp−1[yk]⊗ P [yk+1]⊗ Λk+1 ⊗
j−1∏
i=k+1

{zp−1
i , yp−1

i }.

This, together with the portion of G4 from im(ϕ) in (5.12) obtained using (5.10),

and the Zp’s in G8 obtained using (5.10) give exactly (6.2), which we showed equals

P [yj+1]⊗Λj+1.
5 The element X in Figure 5.13 with k replaced by j yields, from G4,

yjTPp−1[yj]⊗ P [yj+1]⊗
⊕
ℓ>j

Zℓ
j+1TPp−1[zℓ]⊗ Λℓ+1

= yjTPp−1[yj]⊗ P [yj+1]⊗ Λj+1,

which combines with the portion just obtained to yield P [yj]⊗ Λj+1.

5Here the classes in (6.2) are Zp’s and are multiplied by zpj , whereas in Case 3 they were multiplied by

wjz
p−1
j and were generators of v-towers of height r′(j − 1).
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The last line of the G4
k,ℓ discussion in Section 5 describes Zp’s in G4 mapped by ψ

in (5.12). Those with a zpj factor yield

j−1⊕
k=1

ykTPp−1[yk]P [yk+1]
⊕
ℓ>j

Zℓ
j+1TPp−1[zℓ]Λℓ+1

=

j−1⊕
k=1

(P [yk]− P [yk+1])⊗ Λj+1

= (P [y1]− P [yj])⊗ Λj+1.

Combining this with the result of the preceding paragraph yields the desired P [y1]⊗
Λj+1.

We finish this section by showing that the Zp’s including a factor q are obtained ex-

actly once. We omit writing the q. The classes which we must obtain are P [y1]
⊕

j≥1 z
p
jΛj+1.

There are eight ways these appear in Gi-sets.

(1) In G1, using (5.7) and (5.8), for 1 ≤ i < j < k,

yp
j−1−1

1 zi,jz
p−2
j

k−1∏
s=j+1

{zp−1
s , yp−1

s } ⊗ TPp−1[yk]⊗ P [yk+1].

(2) In G3, using (5.9) and (5.8), for 1 ≤ i < k < ℓ,

yp
k−1−1

1 ykzi,kz
p−2
k Zℓ

k+1 ⊗ TPp−1[yk]⊗ P [yk+1]⊗ TPp−1[zℓ]⊗ Λℓ+1.

(3) In G3, using (5.7) and (5.8), for 1 ≤ i < j < k < ℓ,

yp
j−1−1

1 ykzi,jz
p−2
j

k−1∏
s=j+1

{zp−1
s , yp−1

s }Zℓ
k ⊗ TPp−1[yk]⊗ P [yk+1]⊗ TPp−1[zℓ]⊗ Λℓ+1.

(4) From im(ϕ′) in (5.14), for 1 ≤ k < ℓ and 1 ≤ i ≤ ℓ− k,

yp
k−1−1

1 zi,ℓ ⊗ TPp−1[yk]⊗ P [yk+1]⊗ TPp−1[zℓ]⊗ Λℓ+1.

(5) From ψ′ in (5.14), using (5.9) and (5.8), for k < ℓ and ℓ− k < i < ℓ,

yp
k−1−1

1 zi,ℓ ⊗ TPp−1[yk]⊗ P [yk+1]⊗ TPp−1[zℓ]⊗ Λℓ+1.

(6) From ψ′ in (5.14), using (5.7) and (5.8), for i < j < k < ℓ,

yp
j−1−1

1 zi,jz
p−2
j

k−1∏
s=j+1

{zp−1
s , yp−1

s } · zℓ ⊗ TPp−1[yk]⊗ P [yk+1]⊗ TPp−1[zℓ]⊗ Λℓ+1.
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(7) From (5.3), using (5.9) and (5.8), for i < k and 1 ≤ e ≤ p− 2,

yp
k−1−1

1 zi,kz
e−1
k P [yk]⊗ Λk+1.

(8) From (5.3), using (5.7) and (5.8), for i < j < k and 1 ≤ e ≤ p− 2,

yp
j−1−1

1 zi,jz
p−2
j

k−1∏
s=j+1

{zp−1
s , yp−1

s } · zekP [yk]⊗ Λk+1.

First combine (1)+(6) to put a ⊗Λk+1 at the end of (1), and then, similarly to the

simplification of (6.2), combine with (3)+(8) to get⊕
i<j

yp
j−1−1

1 P [yj+1]zi,jz
p−2
j Λj+1. (6.3)

We combine and relabel (4)+(5) to give⊕
i<j

yp
j−1−1

1 TPp−1[yj]P [yj+1]zi,j+1Λj+1 (6.4)

together with ⊕
i≥j≥1

yp
j−1−1

1 TPp−1[yj]P [yj+1]z
p
iΛi+1. (6.5)

Let Y (s) = yp
s−1

1 TPp−1[ys+1]P [ys+2] = ⟨yi1 : ν(i+ 1) = s⟩. Then (6.5) is⊕
i>s≥0

Y (s)zpiΛi+1. (6.6)

We simplify and relabel (2) to⊕
i<j

yp
j−1−1

1 yjTPp−1[yj]P [yj+1]zi,jz
p−2
j Λj+1. (6.7)

(6.3), (6.7), and (7) combine to give⊕
i<j

yp
j−1−1

1 P [yj]zi,jTPp−1[zj]Λj+1 =
⊕

i≤j−1≤t

Y (t)zi,jTPp−1[zj]Λj+1.

For any t ≥ i, the coefficient of Y (t)zpi in (6.4) plus this is

Zt+2
i+1Λt+2 ⊕

t+1⊕
j=i+1

Zj
i+1TPp−1[zj]Λj+1 = Λi+1,

as the second part has all monomials not divisible by Zt+2
i+1 . Combining this with (6.6)

yields the desired result, ⊕
s≥0

Y (s)
⊕
i≥1

zpiΛi+1.
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7. An explanation of self-duality of Bk

In this optional section, we discuss some observations about the ASS of kup∗(K2)

and kup∗(K2) which, among other things, provide an explanation of the self-dual

nature of the Bk summands which occur in both kup∗(K2) and kup∗(K2). We restrict

to p = 2.

We first observe that, for k ≥ 1, there is an E1-submodule, Mk, of H
∗(K2) such

that ExtE1(Z2,Mk) (resp. ExtE1(Mk,Z2)) is closed under the differentials in the

ASS converging to kup∗(K2) (resp. kup∗(K2)), yielding the chart Ak (resp. the kup-

homology analogue of Ak discussed in Theorem 1.23). For example, with Mj as in

(2.13) and N as in Figure 2.9, M3 is as depicted in Figure 7.1.

Figure 7.1. The E1-module M3.

17

26

33

30

36

22tt t t t t t t t t t t t t
y41 y31N y21M4 y1x9M4 M5

The two ASSs for M3 will yield the charts for A3 and its homology analogue pictured

in [5].

The situation for Bk is slightly more complicated. There is no E1-submodule of

H∗(K2) which, by itself, can give a chart Bkzℓ. Some of the differentials that trun-

cate v-towers in Bkzℓ come from classes that are part of a summand that includes

y2
k−1−1

1 qSk,ℓ. We find that, for 2 ≤ k < ℓ, there is an E1-submodule Mk,ℓ of H
∗K2

such that ExtE1(Z2,Mk,ℓ) is closed under the differentials in the ASS converging to

kup∗(K2) and yields the chart

Bkzℓ ⊕ y2
k−1−1

1 qSk,ℓ ⊕ ykBkZ
ℓ
k.

Note that these three subsets of kup∗(K2) appeared together in the 10-term exact

sequence (5.2).

This Mk,ℓ is symmetric; i.e., there is an integer D such that ΣDM∗
k,ℓ and Mk,ℓ

are isomorphic E1-modules, where M∗
k,ℓ is obtained from Mk,ℓ by negating gradings

and dualizing Q0 and Q1. This implies that the v-towers in ExtE1(Z2,Mk,ℓ) and

ExtE1(Mk,ℓ,Z2) correspond nicely. Moreover, the differentials in the two ASSs corre-

spond, too, obtaining isomorphic charts, although the gradings in one decrease from

left to right, while in the other they increase.
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We illustrate with an example, M3,4, and then discuss the implication for self-

duality of Bk. In Figure 7.2, we depict M3,4.

Figure 7.2. The E1-module M3,4.

70 75 80 96 102

91t t t t tt t t t tt t t t86 t t t t t t
t t t t t t t t

y71x9M5 y61z3M4 y51x9z3M4 y41M6 y31x9M6 y21z4M4 y1x9z4M4 z4M5

In Figure 7.3, we depict the ASS chart for both ExtE1(Z2,M3,4) and ExtE1(M3,4,Z2).

They are isomorphic except that, from left to right, the gradings start with 102 for

the first and 70 for the second. We label the portions of the chart corresponding to

the eight summands of M3,4 just by the M -factor, since accompanying factors differ

for the two versions. For example, the M5 on the left-hand side is z4M5 for the first

spectral sequence, and is y71x9M5 for the second.
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Figure 7.3. Two ASSs for M2,3.
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For the kup∗(K2) version, B3z4 is on the left hand side of Figure 7.3, and y3B3z3

on the right hand side, with y31qS3,4 separating them. The duality isomorphism in

Theorem 1.20 says that the Pontryagin dual of B3z4 is isomorphic as a kup∗-module

to Σ4 of the right hand side of the kup∗(K2) version of Figure 7.3, and we see that this

is isomorphic to a shifted version of B3 with indices negated. This is the self-duality

statement, that the Pontryagin dual of Bk is isomorphic as a kup∗-module to a shifted

version of Bk with indices negated.
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