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Abstract. We compute ko∗(K(Z/2, 2)) and ko∗(K(Z/2, 2)), the connective KO-homology
and -cohomology groups of the mod 2 Eilenberg MacLane space K(Z/2, 2), using the Adams
spectral sequence. The work relies heavily on work done several years earlier for the (com-
plex) ku groups by the author and W.S.Wilson. We illustrate an interesting duality relation
between the ko-homology and -cohomology groups. We deduce a new result about Stiefel-
Whitney classes in Spin manifolds.
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1. Introduction and overview

Let Z2 = Z/2 and let K2 denote the Eilenberg-MacLane space K(Z2, 2). In this

paper, we use the Adams spectral sequence (ASS) to compute the connective KO-

homology and -cohomology groups ko∗(K2) and ko∗(K2). The groups ko∗(K2) were

initially studied long ago in [14] and more recently in [11] because of their close

relationship with Stiefel-Whitney classes of Spin-manifolds, but only fragmentary

results were obtained. A consequence of our work here is the following new result,

which is discussed and proved in Section 16.

Theorem 1.1. There exists an n-dimensional Spin manifold with the dual Stiefel-

Whitney class wn−2 ̸= 0 if and only if n is a 2-power ≥ 8.

Our work here draws heavily from the computation in [10] of the complex analogue

ku∗(K2) and ku∗(K2), which in turn relied on the connective MoravaK-theory groups

k(1)∗(K2) and k(1)∗(K2) determined in [9]. Our primary focus in [10] was the ku-

cohomology groups because of their product structure, but here our primary focus

will be on the ko-homology groups, for historical reasons and because of the more

familiar form of its ASS. We begin this introduction with a slight reformulation of

results of [10] regarding ku∗(K2). This will enable us to describe the overall structure

of ko∗(K2), and also to see the significant increase in complication of the ko result as

compared with ku.

The ku-cohomology groups ku∗(K2) were a combination of suspensions of three

basic types of summands, Ak, Bk, and Sk,ℓ, 1 ≤ k < ℓ. It was observed in [10, Section
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7] that if Sk,ℓ is combined with two specific copies of Bk, we obtain something, which

we now call Bk,ℓ, that appears both in ku∗(K2) and, after switching to homology

grading, in ku∗(K2). We denote by Bk,ℓ the ko-homology analogue of this combination.

The ku-homology analogue of Ak, which we denote by Ak, was pictured when k = 5

in [10, Figure 4], which we repeat here as Figure 1.2. Short vertical lines indicate

multiplication by 2, short diagonal lines are multiplication by v ∈ ku2, and the long

dashed lines, sometimes slightly curved, are exotic extensions (·2).

Figure 1.2. A5, the ku-homology analogue of A5, from [10]
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The iterative structure of the ku groups Ak and Bk can be seen by noting that the

ku-homology analogue of B4 is a desuspension of the portion of Figure 1.2 in grading

≥ 102, not including the upper edge, and the A4 analogue can be obtained from that

by placing a triangle similar to the one in the lower left corner of the chart, but one

level smaller, beneath the classes in grading 102 to 106. The ko-homology analogue of

Ak, which we denote by Ak, is much more complicated. We picture Ak for 1 ≤ k ≤ 6

in Section 2, and in Section 3 state several results, 3.1, 3.8, 3.10, 3.19, and 3.22, which

give a complete determination of all Ak.

In the ku situation, each Bk,ℓ could be multiplied by any number of classes zj, which

just amounted to suspending by Σ2j+2+2 for each. In the ko analogue, multiplying Bk,ℓ
by zj suspends by 2j+2 but also changes its form. We denote by ziBk,ℓ the modified

form of Bk,ℓ after i such changes of form, but without the various Σ2j+2
’s. So zi can

be thought of as a product of i different zj’s, each desuspended by 2j+2. It turns out

that z4Bk,ℓ = Σ8Bk,ℓ. We will describe and illustrate ziBk,ℓ in Section 4.

We can now state the theorem which, along with the aforementioned descriptions

of Ak and ziBk,ℓ, completely determines ko∗(K2). This will be proved in Section 10.

Theorem 1.3. There is an isomorphism of ko∗-modules

ko∗(K2) ≈
⊕
k≥1

⊕
i≥0

Σ2k+2iAk ⊕
⊕
1≤k<ℓ

⊕
i,j≥0

Σ2k+2i+2ℓ+3jzα(j)Bk,ℓ

plus a trivial ko∗-module.

Here and elsewhere, α(j) denotes the number of 1’s in the binary expansion of j. The

trivial ko∗-module could be calculated, but is not of interest. It is discussed at the

end of Section 10.

In Section 17, we determine the ko-cohomology groups, ko∗(K2), and discuss the

following interesting duality theorem.

Theorem 1.4. There is an isomorphism of ko∗-modules

ko∗(K2) ≈ (ko∗+6(K2))
∨,

where M∨ = Hom(M,Z/2∞), the Pontryagin dual, localized at 2.

In the first six sections, we describe our results in several ways. In Section 7, we

outline the proof, which occupies the subsequent seven sections. At the end of the
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paper, we discuss the application to Stiefel-Whitney classes of Spin manifolds, and

the adaptation to ko-cohomology groups of K2.

2. Examples of Ak

In this section, we display charts of Ak for 1 ≤ k ≤ 6. We will make much use of

these charts in later sections, as models for the general statements and proofs. These

are ASS-type charts, but we frequently elevate filtrations1 of classes in order to better

display the ko∗-module structure. In the transition from E2 to E∞, there have been

many differentials, which are not displayed here. The short diagonal lines represent

multiplication by η ∈ ko1. In Figure 2.1, we depict A1, A2, and A3 on the same set

of axes. The classes in grading 8–12 are A2, and A1 and A3 are on the left and right,

respectively.

Figure 2.1. A1, A2, and A3
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In Figure 2.2 and subsequently, the dashed lines are exotic extensions. One reason

for our choice of filtrations is the structure of edges, which will be introduced in

Section 3.
1“Filtration” refers to the vertical position in the chart.
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Figure 2.2. A4
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For k ≥ 2, it will be convenient for us to work with Σ−2k+1Ak, which we denote by

Ãk. The configuration of six classes which occurs in grading 48 to 52 in Figure 2.2 is

often called a “lightning flash,” terminology which we will use frequently.
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Figure 2.3. Ã5
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Figure 2.4. Ã6

r rr r r rrr rr
rr r

r r rr r

68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132

r r r r r r r r
r r

r r
r r

r

r r rr
r r rr

r r rr
r r rr

upper edge should be 28 higher r r rr
r r rr

r r rr

r r r r r
r r
r

r r r rr r r
r r
r r r r r

r r

r r r r r
r r

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
rrr
rrr
r
r r rrr

rrr rrr
r r r

r r rrr
r r

rrr r r
r r rrr rrr r r

r

r r r r r r r
r

rr

r r

rr r rr r
r rr r rr

r rr r rr

rr r r rr r
r r

r
r r r

r

r r
r

rr r rr
r r r rr r

r

r r r r r r
r r

r



THE CONNECTIVE KO THEORY OF THE EILENBERG-MACLANE SPACE K(Z/2, 2) 9

3. One description of Ak

Each Ak is structured in terms of edges and subedges. In this section, we describe

the subedge structure, and give an explicit description of all edges. A more formulaic

description of Ak is given in Section 6. The proof will be given in Section 13, the

culmination of several preliminary sections.

An edge Ee,ℓ will always be suspended by some multiple of 8. It occurs for the first

time in Ãℓ, but, if e > 1, it will occur again as a subedge of Ãk for all k > ℓ, often

more than once for the same Ãk. If e = 4a + b > 1 with b = (0, 1, 2, 3), the bottom

class of Ee,ℓ is in grading 8a+ (2, 3, 4, 8) for any ℓ, unless e ≡ 3 mod 4 and ℓ− e = 1.

Theorem 3.1. Ãk is built up recursively, beginning with E1,k, which begins in grad-

ing 0. Then, for 1 ≤ e ≤ k − 2, each occurrence of ΣDEe,ℓ contains subedges

ΣD+2d+1Ee+1,e+d for 2 ≤ d ≤ ℓ− e.

For example, Ã5 has E1,5, then Σ8E2,3, Σ16E2,4, and Σ32E2,5. Then under Σ16E2,4 is

Σ16+8E3,4, under Σ32E2,5 are Σ32+8E3,4 and Σ32+16E3,5, and under Σ48E3,5 is Σ48+8E4,5.
Recalling that E2,ℓ begins in grading 4, E3,ℓ in grading 8, and E4,ℓ in grading 10, the

structure of the subedges of Ã5 should be clear in Figure 2.3. Theorem 3.1 will be

proved at the end of Section 12.

We are interested in the ko∗-module structure of ko∗(K2), especially the action of

η and v41. By v41, we mean Adams or Bott periodicity, of bigrading (8, 4). Most of

the time, we overlook the action of the generator of ko4. We include in Figure 3.2

the well-known chart of ko∗, periodic with period (8, 4). The elements η and v41 are

indicated with large dots.

Figure 3.2. ko∗
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We now work toward a description of Ee,k for e ≥ 2. We introduce some charts M i
k

that will appear repeatedly throughout the paper. The derivation and significance of

these charts will be discussed in Section 10, when we begin our proof. By “charts,”

we mean ASS diagrams, often involving filtration shifts of some elements.

We begin with charts M0
k for k ≥ 4, which are building blocks for our calculations.

They are similar to familiar charts of ko∗(RP 2n) (e.g., [5]). In fact, there are isomor-

phisms M0
4ℓ+4 ≈ ko∗(RP 8ℓ+2) and M0

4ℓ+5 ≈ ko∗(P
8ℓ+4). These charts were derived in

[12]; their derivation will be explained in Section 10. For all k, all classes in M0
k are

v41-periodic. All the charts M0
k have the same upper edge. The lower edge drops by

1 for each increase in k, with classes of negative filtration removed. The chart M0
4 is

a sequence of lightning flashes starting starting in position (8i + 1, 4i) for i ≥ 0. In

Figure 3.3 we show the beginning of the charts for 5 ≤ k ≤ 7.

Figure 3.3. M0
k
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.
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Explicitly, M0
k has, for i ≥ 0,

• 0 in grading 0 and 6 mod 8,

• Z2 in grading 8i+ 1 and 8i+ 2 of filtration 4i and 4i+ 1, respectively.

• Z2 in grading 8i+ 4 and 8i+ 5 of filtration 4i− k + 6 and 4i− k + 7, respectively, if

the filtration is ≥ 0, else 0,

• Z/2k−4 in grading 8i+ 7 with generator of filtration 4i− k + 8 if 4i− k + 8 ≥ 0, else

Z/24i+4 with generator of filtration 0, and

• Z/2k−2 in grading 8i+ 3 with generator of filtration 4i− k + 5 if 4i− k + 5 ≥ 0, else

Z/24i+3 with generator of filtration 0.
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Next we define M i
k for k ≥ 4 and i ≥ 0 to be M0

k with classes of filtration less than

i removed, and filtrations of other classes decreased by i. In Figure 3.4, we depictMi
6

for 1 ≤ i ≤ 3. All elements are acted on freely by v41. It follows that M
i+4
k = Σ8M i

k.

Figure 3.4. M i
6
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A variant of M s
4 that will be useful is given in the following definition.

Definition 3.5. For 0 ≤ s ≤ 3 and s ≥ 0, the chart M̂ s
4 is formed from M0

4 by

removing classes of grading ≤ s. If s ≥ 4, M̂ s
4 = Σ8M̂ s−4

4 .

As M̂ s
4 will always be combined into other charts, its filtration as an individual

entity is irrelevant and undefined. Note that M̂ s
4 = M s

4 if s ≡ 0, 1 mod 4, while if

s ≡ 2, 3 mod 4, M̂ s
4 is formed from M s

4 by adjoining one class. In Figure 3.6, we

picture M̂ s
4 for s ≡ 2, 3 mod 4.

Figure 3.6. M̂ s
4 for s ≡ 2, 3 mod 4
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The following definition will be useful.
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Definition 3.7. A chart is stably ΣiMk if it agrees with ΣiM0
k in sufficiently large

grading, without regard for filtration.

Now we define what we call pre-edges E ′e,ℓ. This formulation will be derived in

Section 12.

Definition 3.8. For 2 ≤ e < ℓ, E ′e,ℓ is formed from the following sequence of charts.

ΣM e
ℓ−e+3 ← Σ8M e−1

4 ← · · · ← Σ2iM e−1
4 ← · · · ← Σ2ℓ−e+1

M e−1
4 ← Σ2ℓ−e+2+2M̂ e−2

4

Working from left to right, each Σ2iM e−1
4 is placed so that there is a d1 differential

from its generators in grading 1, 3, 4, and 5 mod 8 to the upper edge of the chart result-

ing from the preceding steps, and there are η extensions on its top classes in grading

3 mod 8. The chart resulting after incorporating Σ2iM e−1
4 is stably ΣMℓ−e+5−i. The

Σ2ℓ−e+2+2M̂ e−2
4 is placed so that all its classes support d1 differentials. The pre-edge E ′e,ℓ

is the chart remaining after all these d1’s. It vanishes in the range of Σ2ℓ−e+2+2M̂ e−2
4 .

We illustrate in Figure 3.9 the forming of E ′4,7, which is derived from

ΣM4
6 ← Σ8M3

4 ← Σ16M3
4 ← Σ34M̂2

4 .

At each step, the chart being adjoined is indicated in red, while the black part is the

result of the preceding step. Then E ′4,7 consists of the classes remaining in the lower

part of Figure 3.9 after the indicated differentials.
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Figure 3.9. Forming E ′4,7
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Since M e+4
k = Σ8M e

k and M̂ e+4
4 = Σ8M̂ e

4 for e ≥ 0, it follows that E ′e+4,ℓ+4 = Σ8E ′e,ℓ
for e ≥ 2. So it suffices to study E ′e,ℓ for e ≤ 5.

Recall from Theorem 3.1 that beneath any edge ΣDEe,ℓ in Ãk there occur subedges

ΣD+2d+1Ee+1,e+d for e+2 ≤ e+d ≤ ℓ. The same is true for E ′e,ℓ. The following theorem

will be proved in Section 13.

Theorem 3.10. For e ≥ 1, there are differentials from Σ2d+1E ′e+1,e+d into E ′e,ℓ from

all classes in grading 4 or 5 mod 8, except filtration-0 classes x in grading 4 mod 8

with ηx = 0. For e ≥ 2, Ee,ℓ is formed from E ′e,ℓ after removing all classes either
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supporting or hit by differentials. This is true, after appropriate suspension, of all

occurrences of Ee,ℓ as edges or subedges.

In Figures 3.11, 3.12, 3.13, 3.14, and 3.15, we display E ′e,e+d for 2 ≤ e ≤ 5 and

1 ≤ d ≤ 4. We circle classes supporting differentials, and use a larger dot for classes

hit by differentials. Then Ee,e+d consists of uncircled small dots.
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Figure 3.11. E ′e,ℓ and differentials
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One added feature in Figures 3.12, 3.13, 3.14, and 3.15 is that for the classes hit

by differentials, we include below them the name of the subedge that supported the

differential. The classes supporting those differentials can be seen in Figure 3.11,

where they appear with circles. Note that these are complete figures; they are finite

charts.

Figure 3.12. E ′2,6 and differentials

r rr r r rrr r rr r r rr r r r r r r r r r r
r

r
r

r
r

4 8 12 20 28 36 44 52 60

u u
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u u
u u

Σ16E ′3,5 Σ32E ′3,6 Σ32E ′3,6 Σ32E ′3,6

r

It is instructive to compare Figure 3.12 with Figure 2.4, in which Σ64E2,6 appears

prominently.
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Figure 3.13. E ′3,7 and differentials
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Figure 3.14. E ′4,8 and differentials
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Figure 3.15. E ′5,9 and differentials
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The sources of the differentials are very regular. There are differentials from

Σ2d+2E ′e,e+d into E ′e−1,ℓ for each ℓ ≥ e + d on all classes in grading 4 and 5 mod 8

in Σ2d+2+1M e
d+3 (except for a class x in filtration 0 and grading 4 mod 8 satisfying

ηx = 0) until the E ′e,e+d is ended by the differentials from Σ2d+2+2M̂ e−2
4 .

Careful study of the above charts E ′e,e+d for d = 1, 2, 3, and 4 can give great insight

into the form of E ′e,e+d for arbitrary d. As d increases, the upper edge of the chart

stays fixed while the lower edge drops by 1 each time. Only e = 2, 3, 4, and 5 need

be considered, since Ee+4,k+4 = Σ8Ee,k.
The slightly differing forms of the upper edge of E ′e,e+d depending on the mod 4

value of e are caused by the differing ways that M e−1
4 begins. In Figure 3.16, we show

the formation of E ′3,5. Comparison with Figure 3.9 is instructive.
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Figure 3.16. Formation of E ′3,5
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It is interesting to see how the ending of each E ′e,e+d occurs. Prior to the Σ
2d+2+2M̂ e−2

4

at the end of the sequence in Definition 3.8, the sequence will have stabilized to a

sequence of lightning flashes with initial classes in grading 2 mod 8. In Figure 3.17,

we show how the lightning flash beginning in grading 2d+2 + 2 is hit by Σ2d+2+2M̂ e−2
4

for 2 ≤ e ≤ 5. Increasing e by 4 would push this behavior out by 8 gradings. In

Figure 3.17, the remaining classes are indicated with bigger dots. Compare with the

endings in Figures 3.11, 3.12, 3.13, 3.14, and 3.15.

Figure 3.17. Termination of E ′e,e+d

e = 2 e = 3 e = 4 e = 5

s s ss s s
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Definition 3.18. If C is a chart, then ΦiC is the chart obtained from C by increasing

filtration of all elements by i.

The upper edge E1,k has a different form. The following definition will be illustrated

in Figure 3.21 and justified at the end of Section 12.

Definition 3.19. For k ≥ 2, Vk is a chart with, for i ≥ 0, classes g8i in position

(8i, 4i), and g8i+4 in position (8i+4, 4i+3), of order 2k−1 except that the order of g0

is 2k+1. There are also elements ηg8i and η2g8i, x3 such that ηx3 = 2k−2g4, and, for

i > 0, elements x8i+2 and ηx8i+2 such that η2x8i+2 = g8i+4. If k = 2 and i > 0, then
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2x8i+2 = η2g8i. In grading ≥ 8, Vk agrees with Φ4ko∗(M(2k−1)), where M(n) is the

mod n Moore spectrum.

The chart E ′1,k is formed from the sequence

Vk ← Σ8M0
4 ← · · · ← Σ2iM0

4 ← · · · ← Σ2k+1

M0
4 . (3.20)

Working from left to right, each Σ2iM0
4 is placed so that there are d1 differentials from

its generators in grading 1, 3, 4, and 5 mod 8 into the upper edge of the chart resulting

from the preceding steps. For 2 ≤ i ≤ k − 1, E ′1,k agrees with Φ2i−1
ko∗(M(2k−i)) in

grading 2i+1 through 2i+2 − 1.

The edge E1,k is obtained from E ′1,k by removing the classes in grading 3 or 4 mod

8 which are hit by differentials from Σ2iE ′2,i for 3 ≤ i ≤ k.

In Figure 3.21, we show the formation of E ′1,4 and E1,4. At each step, the chart

being adjoined is shown in red. Then E ′1,4 consists of all classes in the bottom chart

of grading ≤ 28. The classes with the big dots are hit by differentials, and so do

not appear in E1,4. The chart hitting them is indicated below them. The classes

supporting those differentials can be seen in Figure 3.11. The result of Figure 3.21

can be seen in Figure 2.2.
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Figure 3.21. Formation of E ′1,4 and E1,4
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The following theorem about the exotic extensions will be proved in Section 13.

Theorem 3.22. The only exotic extensions in Ãk are as follows:

(1) Into E1,k from Σ2ℓE2,ℓ for 4 ≤ ℓ ≤ k in grading 8i+ 2 for 3 · 2ℓ−4 ≤ i ≤ 2ℓ−2− 1. The

target is the class which is not in im(η).
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(2) For e ≥ 2 and e + 1 < ℓ ≤ k, into ΣDEe,ℓ from Σ2ℓ+1−e+DEe+1,ℓ in grading 6 mod 8

throughout the entire extent of Σ2ℓ+1−e+DEe+1,ℓ.

(3) For e ≥ 2, ℓ ≤ k, and e + 1 < m ≤ ℓ, into ΣDEe,ℓ from Σ2m+1−e+DEe+1,m in grading

2 mod 8 throughout the second half of Ee+1,m (the range of the lightning flashes in

E ′e+1,m, including the final element in 2 mod 8 if e ≡ 0 or 3 mod 4, but not if e ≡ 2

mod 4).

Since Ee,ℓ has order ≤ 2 in grading 2 mod 4, we don’t have to specify which element

is involved in the extension in parts (2) and (3) of the theorem. In Figure 2.4, the

extensions into the upper edge are easily checked to agree with part (1). In (3.23),

we list the other extensions in Ã6, with those of type (2) in the left column and those

of type (3) in the right column. We list the grading followed by the edges involved,

with dashes indicating the extension.

30 : Σ16(Σ8E3,4— E2,4) 66 : Σ48(Σ8E4,5— E3,5)

62 : Σ32(Σ16E3,5— E2,5) 98 : Σ80(Σ8E4,5— E3,5)

110 : Σ64(Σ32E3,6— E2,6) 114 : Σ96(Σ8E4,5— E3,6)

118 : Σ64(Σ32E3,6— E2,6) 122 : Σ64(Σ32E3,6— E2,6)

126 : Σ96(Σ16E4,6— E3,6) 122 : Σ96(Σ16E4,6— E3,6)

126 : Σ64(Σ32E3,6— E2,6) 130 : Σ96(Σ16E4,6— E3,6) (3.23)

4. ziBk,ℓ

In this section, we describe the summands ziBk,ℓ, which appeared in Theorem 1.3.

The proof will be in Section 14.

The description of ku∗(K2) in [10] was in terms of summands Ak, Bk, and Sk,ℓ. It

was stated in [10, Section 7] that Sk,ℓ and two specific copies of Bk combine together

nicely, in the sense that differentials in the ASS that form them involve just the three2,

and that the contribution to ku∗(K2) of the three is isomorphic to the corresponding

contribution to ku∗(K2) after dualizing the gradings, implying self-duality of Bk,ℓ.

The example there yielded the chart for B3,4 ⊂ ku∗(K2) in Figure 4.1.

2This will be proved in Theorem 9.4.
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Figure 4.1. B3,4 ⊂ ku∗(K2)
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In Section 14, we explain how the ko analogues of Bk,ℓ are defined and explain

how the ASS of this part is computed. We denote by Bk,ℓ the resulting chart for this

summand of ko∗(K2). The result for B3,4 is shown in Figure 4.2.

Figure 4.2. B3,4
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The lightning flash in the middle is the analogue of the S3,4 part, which was the

short v-tower in grading 81 to 87 in Figure 4.1. We choose to raise the filtration of

this for two reasons. (a) When we look at the differentials in the ASS it is convenient

to increase some filtrations to make the extensions clearer and the pictures nicer. (b)

The classes in 84 and 85 are v41 times the classes in 76 and 77, and we like to have

our chart depict this.

In the ku version, the copies of Bk on either side of the Sk,ℓ are isomorphic, as

is clear in Figure 4.1. This is not the case in the ko version, as can be observed in

Figure 4.2. There is an exotic η extension from 88 to 89, accompanying the exotic ·2
in 90. One might prefer to lower the filtrations of the high classes in 89 and 90, but

they are v41 times the classes in 81 and 82. Also, when we show how these charts are

obtained, it will be clear that the high filtrations are warranted.
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Let E ′e,∞ = dirlim
ℓ→∞

E ′e,ℓ and M e
∞ = dirlim

ℓ→∞
M e

ℓ . Then E ′e,∞ can also be defined as the

chart obtained from the sequence of d1 differentials, situated as in Definition 3.8,

ΣM e
∞ ← Σ8M e−1

4 ← Σ16M e−1
4 ← Σ32M e−1

4 ← · · · .

Definition 4.3. For k ≥ 2, define functions hk by

hk(8a+ b) = 4a− k +


0 b = 2

1 b = 3

2 b = 4

3 5 ≤ b ≤ 9.

Let Ci,k denote the subchart of E ′2+i,∞ consisting of elements in position (x, y) satis-

fying y ≥ hk+i(x).

In Figure 4.4, we depict a portion of E ′2,∞ with all of C0,4 indicated by big dots.

The dashed line is the graph of h4.

Figure 4.4. C0,4
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Theorem 1.3 involved summands ziBk,ℓ. These charts will be derived in Section

14. Of course, z0Bk,ℓ = Bk,ℓ. Just as we did with letting Ãk = Σ−2k+1Ak, it will be

convenient to let B̃k,ℓ = Σ−2ℓ+2Bk,ℓ.

Theorem 4.5. For i ≥ 0 and 1 ≤ k < ℓ, the chart ziB̃k,ℓ consists of the following

four parts:
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(1) The portion of Σ2k+1
M i

ℓ−k+3 in filtration 0 through k, with filtrations increased by

2k − k − 1. If M i
ℓ−k+3 has a filtration-k element in grading 1 mod 8, that element is

omitted, since it appears in part (4).

(2) A modification of Eℓ−k+i+1,ℓ+i and all edges under it, as enumerated in Theorem

3.1, including extensions among these edges. The modification is that the elements

of E ′ℓ−k+i+1,ℓ+i in grading 4 and 5 mod 8, which supported differentials in forming

Eℓ−k+i+1,ℓ+i, do not support differentials in this case.

(3) A chart formed from Σ2k+1
Ci,k together with all the edges strictly under Σ

2k+1E2+i,k+1+i,

incorporating all the differentials and extensions among these lower edges, and from

them into Σ2k+1E ′2+i,k+i+1. The target elements in Σ2k+1E ′2+i,k+i+1 are part of Σ
2k+1

Ci,k.

(4) For
[
k+3+i

4

]
≤ j ≤ 2k−2+

[
i+3
4

]
− 1, elements xj in (2k+1+1+8j, 2k− k− 1+4j− i)

and ηxj. If i = 4t + 1 for some t, and j = 2k−2 + t, then ηxj is not present. If j ≥
2k−3+

[
i+3
4

]
, there is an exotic extension from the element in (2k+1+8j+2, 4j−k−i)

to ηxj.

Remark 4.6. If ℓ− k+ i ≡ 0 mod 4, there is an η-extension from the last element of

Eℓ−k+i+1,ℓ+i in ziB̃k,ℓ to a Z2 in the lowest filtration of Σ2k+1
M i

ℓ−k+3. The first element

is like the circled element at the end of the e = 5 part of Figure 3.11 (which does not

support a differential in ziB̃k,ℓ) and the second element is like the element in grading

5 in the M1
6 chart in Figure 3.4.

Remark 4.7. There are exotic η extensions in ziB̃k,ℓ wherever the exotic ·2 extensions
occur in part (4) of the theorem. If 2α = ηβ and v1γ = α, then ηγ = β. In Figure

4.11, the classes α are the two classes supporting the exotic extensions, and if α is in

position (x, y), then γ is in position (x− 2, y − 1).

The middle lightning flash in Figure 4.2 furnishes one example of part (1) of the

theorem, which corresponds to the Sk,ℓ portion in ku∗(K2). In Figure 4.8, we provide

three more examples, without indicating the filtration.
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Figure 4.8. Examples of Theorem 4.5(1)
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In Figure 4.9, we provide another example, B̃4,7. The portion from part (2) of

Theorem 4.5 is in black, and parts (1), (3), and (4) are in red. The black part

corresponds to the modified version of E4,7 and the edges under it. Compare with E ′4,7
in Figure 3.11.

The low red part is Σ32C0,4 together with the edges under Σ32E2,5, which are Σ40E3,4,
Σ48E3,5, and Σ56E4,5. Compare with Figure 4.4 and Figure 3.11. Note that elements

in Σ48E ′3,5 support differentials killing elements in Σ32C0,4 in grading 59 and 60.

The top red part has part (1), which is the middle chart in Figure 4.8, and the

three η pairs, which are part (4).

Figure 4.9. B̃4,7
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Although ziB̃k,ℓ is built from various ziMa
b (= Ma+i

b ), and multiplying Ma
b by zi

just lowers all filtrations by i, the effect of zi on B̃k,ℓ is more complicated, due to
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differentials. In Figure 4.10, we display ziB̃k,ℓ for 1 ≤ i ≤ 3, for comparison with the

case i = 0 in Figure 4.2 (which is Σ64B̃3,4).

Figure 4.10. ziB̃3,4
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We close this descriptive section by describing a way of visualizing how parts (1),

(3), and (4) of Theorem 4.5 come about. For simplicity, we restrict to i = 0. In

Section 14, we will explain why this description is valid.

For this part of B̃k,ℓ, we combine two charts. One chart has the resultant of

Σ2k+1

(ΣM2
ℓ+2 ← Σ8M1

4 ← · · ·Σ2iM1
4 ← · · · ← Σ2k+1

M1
4 )

with the usual placement for d1 differentials. The other chart has Σ2k+1
M0

ℓ−k+3, with

filtrations increased by 2k − k − 1. See Figure 4.11 for B̃4,9.
Beginning in grading slightly greater than 2k+2, the two charts will have isomorphic

forms, stably Mℓ−k+3, displaced by 1 horizontal unit. There must be a differential

annihilating these; it will be d2k . We apply (v−4
1 ) periodicity to these differentials

whenever it applies. In Figure 4.11, we indicate by small red dots the elements that

are related by these differentials. For example, applying v−4
1 to the Z/16 in 72 and

71 shows that the bottom four elements in 64 support differentials, but the top one

survives. The elements which survive are indicated by large black dots. Three η-pairs

at the top are part (4) of Theorem 4.5. The other black elements in the top half in

filtration 0 to 4 (before the filtration shift) are type (1). The black elements in the

bottom half are of type (3). They lie on or above the dashed line in Figure 4.4. This

description does not incorporate the type-(3) elements on subedges under Σ2k+1E2,k+1.
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Figure 4.11. Some differentials (in red) in B̃4,9
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5. Complete description through grading 42

We can easily depict ko∗(K2) for ∗ < 42, and much farther. In Figure 5.1 we

present it in three labeled rows, to avoid congestion. It is the sum of the three. We

omit the trivial ko∗-submodule, which is enumerated through grading 24 at the end

of Section 10.
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Figure 5.1. ko∗(K2), ∗ < 42
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6. A formulaic description of edges

In this section, we give a more formulaic description of edges.

Let R = Z(2)[η]/(2η, η
3).

The upper edge E1,k has a different form than the other edges.

Definition 6.1. For t ≥ 1 and 0 ≤ ε ≤ 2, we define R-modules Lt,ε(x, y) to have

generators g, g′, and g′′ in positions (x, y), (x+2, y+t), and (x+4, y+3), respectively,

with relations 2tg, η2g′ = 2t−1g′′, η3−εg′, ηg′′, and

2g′ =

{
η2g t = 1

0 t > 1.

Let Ik denote the R-module with generators G, G′, and G′′ in positions (0, 0), (3, k),

and (4, 3), respectively, with relations 2k+1G, ηG′ = 2k−2G′′, 2G′, and ηG′′.

For example, I4 is the portion of Figure 3.21 in grading ≤ 7. The second subscript

in Lt,ε indicates the number of elements killed in forming Lt,ε from Lt,0. In Figure 6.2

we show Lt,ε for t ≤ 4, omitting (x, y), which is the position of the lower-left element.
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Figure 6.2. Lt,ε
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Theorem 6.3. Let lg(i) = [log2(i)]. The upper edge, E1,k, of Σ−2k+1Ak, as an R-

module is

Ik ⊕
2k−2−1⊕
i=1

Lk−lg(i)−2,f1(i)(8i, 4i),

where

f1(i) =


0 2j ≤ i ≤ 2j + [(j − 1)/4]

1 i = 2j + j
4
, j ≡ 0 (4)

2 2j + 1 + [j/4] ≤ i ≤ 2j+1 − 1

for some j.

Many values of f1 are presented in Table 1. For example, the upper edge in Figure

2.3 satisfies

E1,5 = I5 ⊕ L3,1 ⊕ L2,0 ⊕ L2,2 ⊕ L1,0 ⊕ L1,2 ⊕ L1,2 ⊕ L1,2,

where the ith L is in position (8i, 4i), 1 ≤ i ≤ 7.
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The other edges are formed from R-modules Kt,ε, which we now define.

Definition 6.4. For t ≥ 1 and 0 ≤ ε ≤ 2, the R-module Kt,ε(x, y) has generators g,

g′, g′′, and g′′′ in positions (x, y), (x− 2, y + t− 3), (x+ 2, y + 1), and (x+ 4, y + 2),

respectively, with relations

2t−1g = η2g′, 2g′, ηg, 2g′′, ηg′′, 2t−1g′′′, ηg′′′, η3−εg′.

In Figure 6.5, we depict Kt,ε for t ≤ 4. Position (x, y) is circled. Note that K1,2

has its only nonzero elements in (x− 2, y − 2) and (x+ 2, y + 1). Again, the second

subscript is the number of elements killed in forming Kt,ε from Kt,0.

Figure 6.5. Kt,ε
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Now we describe the remaining edges.

Theorem 6.6. For 0 ≤ b ≤ 3 define fb by

fb(0) =

{
1 b = 0

0 b = 1, 2, 3,
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and for i ≥ 1 and any j,

fb(i) =


0 2j ≤ i ≤ 2j + [(b+ j − 2)/4]

1 i = 2j + (b+ j − 1)/4, b+ j ≡ 1 (4)

2 2j + [(b+ j − 1)/4] + 1 ≤ i ≤ 2j+1 − 1.

For 2 ≤ e ≤ k − 1, let e = 4a+ b with 0 ≤ b ≤ 3. Then

Ee,k =
2k−1−e−1⊕

i=0

Kk−lg(i)−1−e,fb(i)(8(i+ a) + 4, 3− k + 4(i+ a)),

with lg(0) = −1 and the following modifications:

(1) If b = 3 and Kt,ε(x, y) is the summand for i a 2-power, then the element g′ in

(x− 2, y + t− 3) is replaced by an element in (x− 2, y + t− 2);

(2) If b = 0 or 1 and Kt,ε(x, y) is the summand for i+ 1 a 2-power, and t > 1, then the

top element in grading x+ 4 is killed; i.e., 2t−2g′′′ = 0;

(3) If b = 0 or 1 and i = 2k−1−e − 1, the element in grading x + 2 in this K1,ε(x, y) is

killed.

(4) If b = 3, there is an additional element in (2k+2−e+8a+2, 2k+1−e−k+4a+1), which

would be the first element if the string of K1,2’s at the end was extended one farther.

In Table 1, we list a sample of values of fb(i). If i < 256 is not included in the

table, then fb(i) = 2 for all b.

i 0 1 2 4 5 8 9 16 17 32 33 64 65 66 128 129 130
f0(i) 1 2 1 0 2 0 2 0 2 0 1 0 0 2 0 0 2
f1(i) 0 1 0 0 2 0 2 0 1 0 0 0 0 2 0 0 2
f2(i) 0 0 0 0 2 0 1 0 0 0 0 0 0 2 0 0 1
f3(i) 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

Table 1: Values of fb(i)

For example, in Figure 2.4, you can see Σ32E2,5 with

E2,5 = K3,0(4,−2)⊕K2,0(12, 2)⊕K1,0(20, 6)⊕K1,2(28, 10), (6.7)

and Σ48E3,5 and Σ80E3,5 with

E3,5 = K2,0(4,−2)⊕K ′
1,0(12, 2)⊕ Z2(18, 3),

where K ′ incorporates modification (1), and Z2(18, 3) is modification (3).
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7. Outline of proof

In this section, we outline the proof, which occupies the seven sections which follow.

In [10], we obtained the E2 page of the ASS converging to ku∗(K2) and used

a comparison with results about k(1)∗(K2) obtained in [9] to obtain formulas for

differentials in this ASS. In Section 9 here, we show that the result of [10] could have

been grouped into summands Ak and Bk,ℓ, multiplied by various coefficients, rather

than the Ak, Bk, and Sk,ℓ used there. By this, we mean that the cohomology classes

underlying these summands fill out H∗(K2) (Theorem 9.3) and (Theorem 9.4) they

are closed under the differentials in the ASS obtained in [10, Theorem 3.1].

These summands Ak and Bk,ℓ have analogues for the ASS converging to ku∗(K2),

and in Section 8, we show how the duality between ku∗(K2) and ku∗(K2) obtained in

[7] can be used to obtain differentials in the ASS converging to ku∗(K2). These will

be used in Section 13.

In [12], we obtained the ko analogues,Mk, of the basic summands Mk used in the

ku work in [10]. A complication for the ko work is that whereas coefficients zj for

the Mk’s in ku just resulted in suspensions, the ko analogue causes a change in form,

resulting in charts M i
k if there are i zj’s. In Section 10, we describe the way in which

the ko∗ analogues Ak of Ak, and ziBk,ℓ of Bk,ℓ (if there are i zj’s) are built from a

sequence of charts Ma
b with differentials between them. The results of Section 9 imply

that these are closed under differentials and fill out ko∗(K2).

In Section 11, we use a small example, A4, to illustrate how the differentials combine

to yield a nice picture for this summand of ko∗(K2). We also explain how the initial

part of Ak, which differs from everything else, is handled.

Our favored description of Ak in Section 3 is in terms of pre-edges and subedges.

There is a nice pattern of differentials from the subedges to the pre-edges, turning

pre-edges into edges. In Section 12 we show how the 2k−1 charts Ma
b which form Ak

work together to form the pre-edges and subedges. The upper edge, which involves

the initial part considered in Section 11, is slightly different than the others, and is

discussed at the end of Section 12.

In Subsection 13.1, we describe how the summands that build Ãk work together

in the spectral sequence. The proof that the differentials are as claimed is given in

Subsection 13.2, by comparison with the ku∗ differentials obtained in Sections 8 and
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9. In Subsection 13.3, we explain how the nice pattern of exotic extensions in the ko∗

ASS is established, using comparison with ku∗ extensions, Toda brackets, and Adams

periodicity.

In Section 14, we discuss modifications required in the formation of ziBk,ℓ.

8. Using the ku∗ differentials

In this section, we make our first, very preliminary, step toward a proof. Our input

is formulas ([10, Theorem 3.1]) for differentials in the ASS converging to ku∗(K2),

which were derived in [10] by complicated ad hoc methods. In the final section of [10],

almost as an afterthought, we sketched an approach to ku∗(K2) and ku∗(K2) which

involved summands in a splitting of H∗(K2)
3 as a module over a subalgebra of the

mod-2 Steenrod algebra. This summand approach will be the way that we compute

ko∗(K2).

In this section, we focus on the summand A4 of ku
∗(K2) and show specifically how

the formulas for the differentials in the ASS of ku∗(K2) can be applied to the summand

approach to ku∗(K2) and then to ku∗(K2). There is an exterior subalgebra E1 of the

mod 2 Steenrod algebra with generators Q0 and Q1 of grading 1 and 3, respectively,

such that the E2 page of the ASS converging to ku∗(K2) is ExtE1(Z2, H
∗(K2)). We

depict the spectral sequence using ku∗ gradings increasing from right to left, as was

done in [10]. We draw E1-modules using straight lines for the action of Q0 and curved

lines for the action of Q1.

In [10], we introduced classes zi ∈ H2i+2+2(K2), y1 ∈ H4(K2), and q ∈ H9(K2),

and E1-submodules Mk for k ≥ 4, which we picture in Figure 8.1 for 4 ≤ k ≤ 6,

indicating the grading of the classes.

Figure 8.1. E1-modules Mk.s s
17 18 33 3534 36

s s s s
65 6766

6968

70
s s s s s s

M4 M5 M6

The classes in Figure 8.1 with grading 18, 34, 36, 66, 68, and 70 are

z2, z3, z22 , z4, z23 , and z22z3, (8.2)

3Coefficients of cohomology groups are Z2 unless noted to the contrary.
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respectively. Pictures of ExtE1(Z2,Mk) are given in Figure 8.3, where vertical lines

indicate multiplication by h0, and diagonal lines multiplication by v ∈ ku−2.

Figure 8.3. ExtE1(Z2,Mk).

s s s s s s s
s s s s s s s

s s ss s
18 16 36 34 32 70 68 66
k = 4 k = 5 k = 6

We call these v-towers. Their generators are the classes listed in (8.2).

Analogous to [10, Figure 17] is the list in Figure 8.4 of E1-submodules which com-

bine to form A4 ⊂ ku∗(K2). We list them in order of decreasing grading to correspond

to the order in the ku∗(K2) chart.

Figure 8.4. E1-modules building A4.

M6 y1qz3M4 y21z3M4 y31qM5 y41M5 y51qM4 y61M4 y71N y81
70 66

64
60s s s s s ss s s s s s s s s s s s s s s s s s s s s s57 52 47 42 323538

Here N is an E1-module pictured in Figure 8.5; ExtE1(Z2, N) is also in Figure 8.5.

The cohomology class in grading 9 is q, and, as shown in [10, Figures 8 and 9], the

generator of the first infinite tower in Ext corresponds to v2q.

Figure 8.5. N and ExtE1(Z2, N).

s s s s s
5

9

s ss
ss
s ss

10 8 5

. .
.

We extract from [10, Theorem 3.1] the formulas for differentials in the ASS con-

verging to ku∗(K2) relevant to this approach to A4. Here Λj+1 is an exterior algebra
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on classes zi with i ≥ j + 1, and ⊗Λj+1 means that the formula can be multiplied by

any monomial in Λj+1.

d5(y81) = h3
0v

2qy71

d2(qy2a+1
1 zj) = v2y2a1 z2zj ⊗ Λj+1, j ≥ 2

d5(qy4a+3
1 z2j−1) = v5y4a1 z3zj ⊗ Λj+1, j ≥ 3

d12(qy8a+7
1 z2j−2zj−1) = v12y8a1 z4zj ⊗ Λj+1, j ≥ 4

d2(v2qy2a+1
1 ) = v4y2a1 z2

d5(h0v
2qy4a+3

1 ) = v8y4a1 z3

d12(h2
0v

2qy8a+7
1 ) = v16y8a1 z4.

After the first formula is applied to y71N ⊕ ⟨y81⟩, the surviving v-towers are ht
0v

2qy71

for 0 ≤ t ≤ 2. The other formulas apply to these v-towers and all those in the other

summands in Figure 8.4. We show these in Figure 8.6.

Figure 8.6. Differentials leading to A4.

M6 y1qz3M4 y21z3M4 y31qM5 y41M5 y51qM4 y61M4 y71N

h2
0y

7
1v

2q

h0y
7
1v

2q

y71v
2qv4y61z2

d2
v8y41z3

d5

v2z22z3 y1qz3z2d2 v2y41z
2
2 y51qz2

d2

v5z23 y31qz
2
2

d5

v2y21z3z2 y31qz3
d2

v16z4 h2
0y

7
1v

2qd12

After these differentials, what remains in A4 are truncated v-towers of the targets

of the differentials in Figure 8.6. We depict this in Figure 8.7. The classes in the

lower right corner come from Figure 8.5 after multiplying by y71. This chart agrees

with the A4 part of [10, Figure 1] except that we do not address the exotic extensions

here.
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Figure 8.7. v-towers in A4.

70 66 60 52 42 36
s ss ss ss ss

s
ss s s s s s s s s s s s s

s s ss s s s s s s s

s s s s
s ss

For ku∗(K2), the E2-page is Ext∗,∗E1
(H∗K2,Z2). For its A4, called A4, we use the

summands of Figure 8.4 but arrange them in the opposite order. The Ext groups

corresponding to Figures 8.3 and 8.5 are presented in Figure 8.8. See [11, Figure 4.2]

for N .

Figure 8.8. ExtE1(Mk,Z2) and ExtE1(N,Z2).

s s s s s s s
s s s s s s s

s s ss s
17 19 33 35 37 65 67 69
k = 4 k = 5 k = 6

sss
s

sss
s

sss
s sss ss . .

.

5 9 13
N

We dualize the ku∗ differentials, similarly to [9]. In Figure 8.9, we show the dual-

ization of a d2 and d5 differential from 8.6.



THE CONNECTIVE KO THEORY OF THE EILENBERG-MACLANE SPACE K(Z/2, 2) 39

Figure 8.9. Dualizing d2 and d5 differentials.

70 6568 64 67 69

ku∗, d2 ku∗, d2

s s s s

s s s s s

70 66 57

ku∗, d5 ku∗, d5

s s s s s

56 65 67

The justification for this duality of differentials is the duality of groups,

ku∗(K2) ≈ (ku∗+4(K2))
∨, (8.10)

which was proved in [7, Example 3.4] and restated in [10, Theorem 1.20]. Here M∨

is the Pontryagin dual of M . The Pontryagin dual of the two ku∗ charts in Figure

8.9 have v-towers of height 2 and 5 on classes of grading 68 and 60, respectively,

corresponding to v-towers on classes of grading 64 and 56, respectively, in the ku∗

charts. Note that in the Pontryagin dual, the action of ·2 and v appears backwards

from its usual appearance.

There is a d5-differential from ExtE1(y
7
1N,Z2) to ExtE1(⟨y81⟩,Z2) pictured in Figure

8.11. This and the first differential in the above list of seven differential formulas in

ku∗(K2) are derived from [4] as discussed in [11, Section 4] and [10, Section 3]. This

truncates all the infinite vertical towers, leaving the classes indicated by dots.
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Figure 8.11. Differential killing infinite towers in A4.

ss
ss
s

ss
ss ss

s ss
s ss

s ss
s

. .
.

32 36 40

This leaves three infinite v-towers from the ⟨y81⟩ ⊕ y71N summand in the summand

approach to determining A4. In Figure 8.13 we dualize Figure 8.6. We write the

summands in the opposite order. The direction of the differentials is reversed. For

example, the duals of the d2 and d5 differentials in the upper left part of Figure 8.6

are shown in Figure 8.9 and appear in the upper right corner of Figure 8.13. The

classes now have different names. What will be useful for us in passing to ko∗ is the

type of differential between the summands. One difference is that the d2, d5, and d12

differentials in the lower right part of Figure 8.6 become d6, d9, and d16. We show

this for the d2 in Figure 8.12. This is caused by the triangle of classes of height 4 in

the ku∗ diagram.

Figure 8.12. Duality of a d2 and d6 differential.

s s s s ss ss

42 36 33
ku∗, d2 ku∗, d6

32 36 41
ss
ss
s

ss
ss ss

s ss
s ss ss

The v-tower of height 4 in ku∗(K2)
∨ on a class of grading 36 corresponds to a v-tower

of height 4 on a class of grading 32 in ku∗(K2).
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In Figure 8.13, we list the differentials for the summand approach to A4. We

write the gradings of the generators of the v towers involved in the differentials. For

example, the ku∗ differentials in Figure 8.9 are in the upper right corner of Figure

8.13, while the ku∗ differential in Figure 8.12 is in the lower left.

Figure 8.13. Summand approach to A4.

y81 y61M4 y51qM4 y41M5 y31qM5 y21z3M4 y1qz3M4 M6

46 51 64 69d2 d2

56 67d5

54 59d2

65ι32 d16

49h0ι32
d9

41h2
0ι32

d6

We close this section by displaying in Figure 8.14 the result of these differentials,

the A4 analogue of Figure 1.2 without the exotic extensions. For example, the d6

differential to h2
0ι32 hits v4h2

0ι32.

Figure 8.14. A4 without exotic extensions.

ss
ss
s

ss
ss ss

s ss
s ss ss ss ss s s s s s s s s

s s s ss s s s s
s s

32 36 40 44 48 52 56 60 64
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9. Summand approach to ku∗(K2)

In this section, we provide more details to the summand approach to ku∗(K2)

initiated briefly in [10, Section 7] and introduced here in Section 8. In subsequent

sections, we will use it to determine ko∗(K2). We use the notation of [10] as recalled

early in Section 8.

First we define some E1-submodules of H∗(K2) which generalize Figure 8.4. Here

and elsewhere ν(m) is the 2-exponent of an integer m.

Definition 9.1. For k ≥ 1, let

Ck = (y1q ⊕ y21) ·
2k−2−1⊕
i=1

y2i−2
1 z(J(k, i))Mν(i)+4,

where J(k, i) = 2k − 4(2ν(i) + i) and z(
∑

2jt) =
∏

zjt if jt are distinct integers.

For example, C4 is the sum of the modules in Figure 8.4, omitting M6 and the

last two. Note that C1 = C2 = 0. Also M3 = 0. We recall notation from [10],

Zℓ
k = zk · · · zℓ−1.

Definition 9.2. For k ≥ 1,

Âk = Mk+2 ⊕ Ck ⊕ y2
k−1−1

1 N ⊕ ⟨y2k−1

1 ⟩.

For 1 ≤ k < ℓ,

B̂k,ℓ = zℓMk+2 ⊕ zℓCk ⊕ y2
k−1−1

1 qMℓ+2 ⊕ y2
k−1

1 Mℓ+2 ⊕ y2
k−1

1 Zℓ
kCk ⊕ y2

k−1
1 qZℓ

k+1Mk+2.

For example, Â4 is in Figure 8.4. Since we are thinking here of the spectral sequence

converging to ku∗(K2), and we depict that spectral sequence with gradings decreasing

from left to right, we prefer to list our modules in that order, too.

In this section, we prove the following two key theorems. As in [10], Λj denotes

the exterior algebra generated by all zi with i ≥ j, thought of as a set of monomials

used as coefficients. We often use juxtaposition for tensor products.

Theorem 9.3. There is an isomorphism of E1-modules,

H∗(K2) =
⊕

i≥0, k≥1

y2
k i

1 Âk ⊕
⊕
1≤k<ℓ
i≥0

y2
k i

1 Λℓ+1B̂k,ℓ ⊕ F,

where F is a free E1-module.
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As in [10], F is computable but not of interest. It gives rise to a trivial ku∗-submodule

of ku∗(K2).

Theorem 9.4. Each y2
k i

1 Âk and y2
k i

1 Λℓ+1B̂k,ℓ is closed under the differentials in the

ASS converging to ku∗(K2), as listed in [10, Theorem 3.1].

The ideas in the following proofs will not be needed elsewhere,

Proof of Theorem 9.3. By [10, Proposition 2.11, (2.16)], ignoring the free part, the

E1-summands of H∗(K2) are

{⟨yi1⟩ : i ≥ 1} ∪ {yi1N : i ≥ 0} ∪ {yi1MjΛj−1, qy
i
1MjΛj−1 : i ≥ 0, j ≥ 4}. (9.5)

From the last two summands of the Âk’s, with their coefficients, we get

{y2k−1−1
1 N · y2k i

1 : k ≥ 1, i ≥ 0} = {yi1N : i ≥ 0}

and

{⟨y2k−1

1 ⟩y2k i
1 : k ≥ 1, i ≥ 0} = {⟨yi1⟩ : i ≥ 1}.

Since C1 = 0 and M3 = 0, all B̂1,ℓ with their coefficients give all y2i+1
1 MjΛj−1 and all

y2i1 qMjΛj−1.

For the rest, we consider the part without the q factor. We will show that we obtain

exactly all y2i1 MjΛj−1 with j ≥ 4. The part with q follows similarly.

As in [10], let yk = y2
k−1

1 . We let Γk = {y2
k−1i

1 : i ≥ 0}, which we think of additively

as an exterior algebra on {yi : i ≥ k}, analogous to Λk for the z’s.

We consider the coefficient of Mk. When we talk about Â’s and B̂’s, we always

include their coefficients as given in Theorem 9.3. We consider first just the non-C

part in Definition 9.2. Then Âk−2 gives Γk−1 as coefficient of Mk. Next,
⋃

ℓ≥k−1 B̂k−2,ℓ

gives Γk−1 ·
⋃

ℓ≥k−1 zℓΛℓ+1 = Γk−1Λk−1, where the bar denotes the augmentation ideal.

Combining with the part obtained from Âk−2 yields Γk−1Λk−1.

The y2
i−1

1 Mk part of B̂i,k−2 for 2 ≤ i ≤ k − 3 gives Λk−1 · {yt1 : 1 ≤ ν(t) ≤ k − 4}
as coefficient of Mk. The Γk−1Λk−1 obtained in the preceding paragraph gave the

portion with ν(t) ≥ k − 2. So the combination of the non-C parts gave everything

that we want except yk−2Γk−1Λk−1.

One can show that, for p ≥ k − 1, the coefficient of Mk in Cp is

yk−2

p−1∏
i=k−1

{zi, yi}, (9.6)
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where, as in [10, (1.7)], the product-of-sets notation means the set of all products

containing one choice of the two elements in each factor. For example, if p = k + 1,

this product is {zk−1yk−1, zkyk−1, zk−1yk, zkyk}. An empty product equals 1. We verify

the claim when p = k + 1. The relevant values of i in Definition 9.1 are 2k−4u for

u = 1, 3, 5, 7. For these, the z(J(k + 1, i)) equal, respectively, zk−1zk, zk, zk−1, and

1, while y2i1 are yk−2, yk−2yk−1, yk−2yk, and yk−2yk−1yk. The case of arbitrary p is

similar.

Now we complete the proof by showing that the coefficient of Mk coming from the

occurrences of various Cp’s in Âp’s and B̂p,ℓ’s is yk−2Γk−1Λk−1. Since yk−2 is always a

factor in (9.6), we shall omit writing it in what follows. When we write “From Âp”

or “from B̂p,ℓ,” we always mean to include their coefficients as stated in the theorem.

From Âk−1, we get Γk (as coefficient of Mk), since the product in (9.6) is empty.

From
⋃

ℓ≥k B̂k−1,ℓ, we get

Γk ·
⋃
ℓ≥k

zℓΛℓ+1 ∪ yk−1Γk

⋃
ℓ≥k

Zℓ
k−1Λℓ+1

= ΓkΛk ∪ yk−1Γkzk−1Λk.

We combine with the part from Âk−1 to remove the bar, yielding

ΓkΛk{1, yk−1zk−1}. (9.7)

From Âk, using (9.6), we get Γk+1 · {zk−1, yk−1}. From
⋃

ℓ≥k+1 B̂k,ℓ, we get

{zk−1, yk−1}Γk+1

⋃
ℓ≥k+1

{zℓΛℓ+1, ykZ
ℓ
kΛℓ+1}

= {zk−1, yk−1}Γk+1

(
Λk+1 ∪ ykzkΛk+1

)
.

The part from Âk removes the bar, yielding

Γk+1Λk+1{zk−1, yk−1} · {1, ykzk}. (9.8)

The part in (9.7) is everything in Γk−1Λk−1 with an even number of factors with

subscript k − 1. The part in (9.8) is everything with an odd (resp. even) number of

factors with subscript k − 1 (resp. k). Using Âk+1 and B̂k+1,ℓ, we will get those with

odd (resp. odd, even) number with subscript k−1 (resp. k, k+1). This will continue,

yielding all of Γk−1Λk−1, as desired.
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Proof of Theorem 9.4. We begin by considering the differentials within Ck. In Table

2, we list C5 as a guide.

y1qz3z4M4 y21z3z4M4 y31qz4M5 y41z4M5 y51qz4M4 y61z4M4 y71qM6

y81M6 y91qz3M4 y101 z3M4 y111 qM5 y121 M5 y131 qM4 y141 M4

Table 2: C5

Let Yj,k denote the term in Ck containing yj1 as a factor. For example, Y3,5 =

y31qz4M5. We conflate Mj with its chart, ExtE1(Z2,Mj), as pictured in Figure 8.3.

Note that Mj has j − 3 v-towers. For example, the v-towers of M7 are generated by

z22z3z4, z
2
3z4, z

2
4 , and z5, in order of decreasing grading. We let bi(Mr) denote the ith

generator from the bottom of Mr, and τi(Mr) the ith generator from the top. For

example, b1(M7) = z5 and τ2(M7) = z23z4.

We recall the notation of [10, 1.12)]:

zi,j =

{
zi(zi · · · zj−1) i < j

zi i = j

Then bi(Mr) = zr−1−i,r−2 and τi(Mr) = zi+1,r−2. If Yr,k = cMj, we let bi(Yr,k) =

c bi(Mj) and τi(Yr,k) = c τi(Mj). Our claim is that the differentials of [10, Theorem

3.1] are exactly

d2
t+1−(t+1)(bt(Y2t(a+1)−1,k)) = v2

t+1−(t+1)τt(Y2ta,k) (9.9)

for 1 ≤ a ≤ 2k−t−1 − 2 with 1 ≤ t ≤ k − 3. This will remove or truncate all v-towers

except τ1(Y2r−1,k) and b1(Y2k−1−2r,k) for 1 ≤ r ≤ k − 2. To justify this, we use C5

as our example and consider Yr,k with r even. The image of d2 is all τ1(Y2a,5) for

1 ≤ a ≤ 6, while im(d5) is {τ2(Y4,5), τ2(Y8,5}. Since Yr,k has ν(r) classes when r is

even, the elements not in im(d) are τ3(Y8,5), τ2(Y12,5), and τ1(Y14,5), each of which is

b1.

Now we work toward proving (9.9). The formula in [10, Theorem 3.1] is

d2
t+1−(t+1)(y

2t(a+1)−1
1 qzj−t+1,j) = v2

t+1−(t+1)y2
t a

1 zt+1zj (9.10)

for j ≥ t+ 1. This can be multiplied by Λj+1. Our formula (9.9) says

d2
t+1−(t+1)(y

2t(a+1)−1
1 qz(J(k, 2t−1(a+ 1)))bt(Mt+3+ν(a+1)))

= v2
t+1−(t+1)y2

ta
1 z(J(k, 2t−1a))τt(Mt+3+ν(a)). (9.11)
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We have

z(J(k, 2t−1(a+ 1))) = 2k − 2t+1(2ν(a+1) + a+ 1)

and

z(J(k, 2t−1a)) = 2k − 2t+1(2ν(a) + a).

If a is odd, then

z(J(k, 2t−1a)) = z(J(k, 2t−1(a+ 1))) + 2t+1+ν(a+1)

with ν(z(J(k, 2t−1(a+ 1)))) > t+ 1 + ν(a+ 1). If a is even, then

z(J(k, 2t−1(a+ 1))) = z(J(k, 2t−1a)) + 2t+1(2ν(a) − 2)

with ν(z(J(k, 2t−1a))) > t+ 1 + ν(a).

If a is odd, then, with ν = ν(a+ 1),

bt(Mt+3+ν) = z2+ν,t+1+ν

and τt(Mt+3) = zt+1. In this case, our formula (9.11) becomes

d2
t+1−(t+1)(y

2t(a+1)−1
1 qPz2+ν,t+1+ν) = v2

t+1−(t+1)y2
ta

1 zt+1+νPzt+1

with P ∈ Λt+2+ν . This agrees with (9.10) with j = t+ 1 + ν.

If a is even, then, with ν = ν(j), bt(Mt+3) = z2,t+1 and τt(Mt+3+ν) = zt+1,t+1+ν . In

this case, our formula (9.11) becomes

d2
t+1−(t+1)(y

2t(a+1)−1
1 qzt+2 · · · zt+νPz2,t+1) = y2

t+1−(t+1)y2
ta

1 Pzt+1,t+1+ν

with P ∈ Λt+2+ν . Since zt+1,t+1+ν = z2t+1 · zt+2 · · · zt+ν , this agrees with (9.10) with

j = t+ 1. This completes the proof regarding differentials within Ck.

Next we handle the differentials in Âk from Ck to Mk+2. We claim that

d2
t+1−(t+1)(τ1(Y2t−1,k)) = v2

t+1−(t+1)τt(Mk+2)

for 1 ≤ t ≤ k − 2 follows from (9.10). These can be seen in Figure 8.6 when k = 4.

We have

τ1(Y2t−1,k) = y2
t−1

1 qz(J(k, 2t−1)) · τ1(Mt+3)

= y2
t−1

1 qzt+2 · · · zk−1 · z2,t+1.

By (9.10), d2
t+1−(t+1) applied to this equals

v2
t+1−(t+1)z2t+1 · zt+2 · · · zk−1 = v2

t+1−(t+1)zt+1,k = v2
t+1−(t+1)τt(Mk+2),

as claimed. The same argument applies to differentials in B̂k,ℓ from zℓCk to zℓMk+2.
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Next we explain the differentials in Âk from the y2
k−1−1

1 N part. See Figure 8.6 for

a depiction of the case k = 4. Using the Ext calculation pictured in Figure 8.5 and

the differential

dν(i)+2(yi1) = h
ν(i)
0 v2qyi−1

1

from [10, Theorem 3.1], the v-towers remaining in y2
k−1−1

1 N are

hs
0v

2qy2
k−1−1

1 for 0 ≤ s ≤ k − 2.

These satisfy

d2
t+1−(t+1)(ht−1

0 v2qy
(a+1)2t−1
1 ) = v2

t+1

y2
ta

1 zt+1

by [10, Theorem 3.1]. Here 1 ≤ t ≤ k − 1. With (a+ 1)2t = 2k−1, so 2ta = 2k−1 − 2t,

the target classes are the remaining classes b1(Y2k−1−2t,k) (see after (9.9)), including

also b1(Mk+2).

Next we discuss the differentials in B̂k,ℓ from the y2
k−1

1 qZℓ
k+1Mk+2 part. We factor

out the Zℓ
k+1, so are hitting into y2

k−1

1 zkCk. We have, using [10, Theorem 3.1], if

1 ≤ t ≤ k − 2,

d2
t+1−(t+1)(y2

k−1
1 qbt(Mk+2)) = d2

t+1−(t+1)(y2
k−1

1 qzk+1−t,k)

= v2
t+1−(t+1)y2

k−2t

1 zt+1zk

= v2
t+1−(t+1)y2

k−1

1 y2
k−1−2t

1 zt+1zk

= v2
t+1−(t+1)y2

k−1

1 b1(Y2k−1−2t,k)zk,

which were the remaining v-towers in y2
k−1

1 zkCk. If t = k − 1, then

d2
t+1−(t+1)(y2

k−1
1 q Zℓ

k+1bt(Mk+2))

= v2
t+1−(t+1)y2

k−1

1 Zℓ
k+1z

2
k

= v2
t+1−(t+1)y2

k−1

1 zk,ℓ

= v2
t+1−(t+1)y2

k−1

1 τk−1(Mℓ+2)

in y2
k−1

1 Mℓ+2.

The argument for differentials in B̂k,ℓ from y2
k−1−1

1 qMℓ+2 to zℓCk is almost identical.

d2
t+1−(t+1)(y2

k−1−1
1 qbt(Mℓ+2)) = d2

t+1−(t+1)(y2
k−1−1

1 qzℓ+1−t,ℓ)

= v2
t+1−(t+1)y2

k−1−2t

1 zt+1zℓ

= v2
t+1−(t+1)b1(Y2k−1−2t,k)zℓ,
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for 1 ≤ t ≤ k − 2. If t = k − 1, this is hitting v2
t+1−(t+1)zℓτ1(Mk+2) in the zℓMk+2

part of B̂k,ℓ. Note that v-towers on y2
k−1−1

1 qbt(Mℓ+2) for k ≤ t ≤ ℓ − 1 are not yet

accounted for by these differentials.

Next we show that (9.10) implies that the differentials from y2
k−1

1 Zℓ
kCk into y

2k−1

1 Mℓ+2

hit v2
t+1−(t+1)y2

k−1

1 τt(Mℓ+2) for 1 ≤ t ≤ k − 2. (The case t = k − 1 was also hit, two

paragraphs earlier.) We may ignore the y2
k−1

1 factor. The v-towers in Ck remaining

to support differentials are

τ1(Y2t−1,k) = y2
t−1

1 q z(J(k, 2t−1))τ1(Mt+3) = y2
t−1

1 q Zk
t+2 z2,t+1

for 1 ≤ t ≤ k − 2. By (9.10)

d2
t+1−(t+1)(Zℓ

k τ1(Y2t−1,k)) = Zℓ
k Z

k
t+2v

2t+1−(t+1)z2t+1 = v2
t+1−(t+1)zt+1,ℓ = v2

t+1−(t+1)τt(Mℓ+2).

What remains to consider in B̂k,ℓ are the v-towers on y2
k−1

1 bi(Mℓ+2) and y2
k−1−1

1 q bk−1+i(Mℓ+2)

for 1 ≤ i ≤ ℓ − k. (Here we have used bi(Mℓ+2) = τℓ−i(Mℓ+2).) A different formula

from [10, Theorem 3.1] says

dk+1(y2
k−1

1 zℓ) = vk+1y2
k−1−1

1 q zℓ−(k−1),ℓ

for ℓ ≥ k + 1. This says

dk+1(y2
k−1

1 b1(Mℓ+2)) = vk+1y2
k−1−1

1 q bk(Mℓ+2).

This differential is taking place in the sum of two charts of the form illustrated in

Figure 8.3. The charts are displaced by 1 unit. For i ≤ ℓ− k, we have

vi−1dk+1(y2
k−1

1 bi(Mℓ+2)) = dk+1(y2
k−1

1 vi−1bi(Mℓ+2))

= dk+1(y2
k−1

1 hi−1
0 b1(Mℓ+2))

= vk+1y2
k−1−1

1 q hi−1
0 bk(Mℓ+2)

= vk+1y2
k−1−1

1 q vi−1bk+i−1(Mℓ+2).

Hence for i ≤ ℓ− k, we have

dk+1(y2
k−1

1 bi(Mℓ+2)) = vk+1y2
k−1−1

1 q bk+i−1(Mℓ+2).
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10. The summands for Ak and Bk,ℓ

As we illustrated for A4 in Section 8, if we apply ExtE1(−,Z2) to the summands of

Âk or B̂k,ℓ, we obtain the E2 page of the ASS converging to summands of ku∗(K2),

and the differentials are dual to those in the ASS converging to ku∗(K2).

The ASS converging to ko∗(K2) has E2 = ExtA(1)(H
∗K2,Z2), where A(1) is the

subalgebra of the mod-2 Steenrod algebra generated by Sq1 and Sq2. In [12], we found

A(1)-submodules of H∗K2 corresponding to the E1-submodules in the splitting (9.5).

We also found ExtA(1)(−,Z2) for each of these summands. We review this now.

Multiplying by y21 just suspends by Σ8. Corresponding to y1 is an A(1)-module U .

There is an A(1)-module N which restricts to the E1-module N . Corresponding to

y1N is an A(1)-module NU , which satisfies N ⊗U = NU ⊕F , with F free. We defer

discussion of the charts for these modules themselves until the next section.

We denote by Mk the A(1)-submodule of H∗K2 found in [12] whose E1-module

structure equals that of the E1-module Mk in (9.5) plus possibly a free E1-module

of rank 1, and let M̃k = Σ−2kMk. The chart for M̃k is M0
k , where M0

k is described

in Figure 3.3 and subsequent discussion. If zJ = zj1 · · · zjr with ji distinct integers

satisfying ji ≥ k − 1, then zJM̃k is an A(1)-submodule of H∗K2 with chart Σ4DM r
k ,

where D =
∑

2ji and M r
k is as defined just before Figure 3.4. It is formed from M0

k

by decreasing filtrations by r. This follows from [12, Proposition 3.5].

Corresponding to multiplication by q in (9.5) is just 9-fold suspension. Correspond-

ing to y1zJMk in (9.5), with J as above, is an A(1)-module UzJMk described in [12],

where its chart is shown to be Σ2kΣ4DM r+2
k , with D as above. That is, multiplying

zJMk by U reduces filtrations by 2 without changing the number of suspensions.

We have now described theA(1)-submodules corresponding to all the E1-submodules

in (9.5), and [12, Theorem 3.9] says that a sum of them gives an A(1)-module splitting

of H∗K2. We define Âo
k and zJB̂

o
k,ℓ to be A(1)-modules formed from the A(1)-module

analogues of the E1-modules that formed Âk and zJB̂k,ℓ in Definition 9.2. The proof

of Theorem 9.3 applies to A(1)-modules just as well as to E1-modules, and so we have

the A(1) analogue of Theorem 9.3.
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Theorem 10.1. There is an isomorphism of A(1)-modules,

H∗(K2) =
⊕

i≥0, k≥1

y2
k i

1 Âo
k ⊕

⊕
1≤k<ℓ
i≥0

y2
k i

1 Λℓ+1B̂
o
k,ℓ ⊕ F,

where F is a free A(1)-module.

We will see in subsequent sections how the differentials among the summands of

Âk or zJB̂k,ℓ imply differentials among the corresponding summands of Âo
k or B̂o

k,ℓ,

and these are closed under differentials by comparison with the ku result, Theorem

9.4.

Incorporating this observation, we can prove Theorem 1.3.

Proof of Theorem 1.3. Since y21 = Σ8 and Ak is the resultant of differentials and

extensions in the ASS of Âo
k, the first half follows immediately from the first half of

Theorem 10.1. There is a 1-1 correspondence between integers 2ℓ+1i and monomials

in Λℓ+1, given by 2ℓ+1i =
∑

2ji ↔
∏

zji = zJ with ji ≥ ℓ + 1 distinct. Since α(i)

equals the number of 2j’s, we have zJBk,ℓ = Σ4·2ℓ+1izα(i)Bk,ℓ, and the second half of

the theorem follows from this and the second half of Theorem 10.1.

We will be working with charts rather than modules, and so we wish to take

advantage of the M r
k notation. Recall from Sections 2 and 4 that Ãk = Σ−2k+1Ak

and B̃k,ℓ = Σ−2ℓ+2Bk,ℓ. We define a tableau for Ãk or B̃k,ℓ to be a list or direct sum

of the charts which combine to give their E2 page, but also usually include arrows

for the d2-differentials. These are listed in order of increasing grading. The first two

summands of Ãk are different and will be discussed in the next section; they involve

higher differentials. The first summand, called Vk, was defined already in Definition

3.19.

In either the ku∗ or ku∗ or ko∗ context, we associate to Mk or Mk the grading

2k (even though it starts in grading 2k + 1.) Then M r
k will have associated grading

0, even though it starts in some positive grading. A summand y2i1 z(J(k, i))Mν(i)+4

appearing in Ck in Definition 9.1 has associated grading

8i+ 4(2k − 4(2ν(i) + i)) + 2ν(i)+4 = 2k+2 − 8i.

For Ãk, we subtract 2k+1 from the grading, and so, listing them in order of increas-

ing grading, opposite to the order in Section 8, associated to grading 8t in Ãk is
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y2
k−1−2t

1 z(J(k, 2k−2 − t))Mν(t)+4. For 1 ≤ t < 2k−2, J(k, 2k−2 − t) = 4(t − ν(t)), so

there are α(t) − 1 z’s in z(J(k, 2k−2 − t)). Hence the chart will be Σ8tM
α(t)−1
ν(t)+4 . The

next term in the list will be the one with the same i value in Definition 9.1 but with

y21 replaced by y1q, so Σ8 replaced by Σ9U , and U adds 2 to the superscript of M .

Thus the tableau for Ãk is

(Vk ← Σ8M0
4 )⊕

2k−2−1⊕
i=1

(Σ8i+1M
α(i)+1
4+ν(i) ← Σ8i+8M

α(i+1)−1
4+ν(i+1) ). (10.2)

For example, the tableaux for Ã4 and Ã5 are in (10.3) and (10.4).

V4 ← Σ8M0
4 Σ9M2

4 ← Σ16M0
5 Σ17M2

5 ← Σ24M1
4 Σ25M3

4 ← Σ32M0
6 (10.3)

V5 ← Σ8M0
4 Σ9M2

4 ← Σ16M0
5 Σ17M2

5 ← Σ24M1
4 Σ25M3

4 ← Σ32M0
6

Σ33M2
6 ← Σ40M1

4 Σ41M3
4 ← Σ48M1

5 Σ49M3
5 ← Σ56M2

4 Σ57M4
4 ← Σ64M0

7 . (10.4)

If the reader wishes to compare with Table 2, note that the order of terms is reversed.

For example the entry Σ33M2
6 at the beginning of the second row of (10.4) corresponds

to the y71qM6 at the end of the first row of Table 2. The grading associated to the

latter term in Ã5 is 24 + 9 + 64− 64. Recall that multiplying by a single y1 doesn’t

change the number of suspensions; it lowers filtrations by 2 since its A(1) analogue is

U .

The tableau for B̃k,ℓ when k ≥ 3 is in (10.5). For k ≤ 2, they are in (10.6). These

are seen by comparison with Definition 9.2.

(ΣM ℓ−k+1
k+2 ← Σ8M ℓ−k

4 )⊕
2k−2−2⊕
i=1

(Σ8i+1M
ℓ−k+α(i)+1
4+ν(i) ← Σ8i+8M

ℓ−k+α(i+1)−1
4+ν(i+1) )

⊕(Σ2k+1−7M ℓ−1
4 ← Σ2k+1

M0
ℓ+2)⊕ (Σ2k+1+1M2

ℓ+2 ← Σ2k+1+8M1
4 )

⊕
2k−1−2⊕

i=2k−2+1

(Σ8i+1M
α(i)+1
4+ν(i) ← Σ8i+8M

α(i+1)−1
4+ν(i+1) )⊕ (Σ2k+2−7Mk

4 ← Σ2k+2

M1
k+2). (10.5)

B̃1,ℓ : M2
ℓ+2 ← Σ9M0

ℓ+2 (10.6)

B̃2,ℓ : ΣM ℓ−1
4 ← Σ8M0

ℓ+2 Σ9M2
ℓ+2 ← Σ16M1

4 .

The surprising change in position of superscripts when k = 1 is due to the 2k−1 in

Definition 9.2.
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We will compare these tableaux with their ku-homology analogues. In the ku

context, the role of the superscript is Σ2. This is because the role of zj in ku-homology

or ku-cohomology charts is Σ2j+2+2. Recalling that reducing filtration in M charts by

4 is equivalent to an 8-fold suspension lends credence to the correspondence between

reducing filtration by 1 (for ko) and suspending twice (for ku).

The tableau for ziB̃k,ℓ is obtained from (10.5) by increasing all superscripts by i.

As mentioned in the introduction, zi refers to any product of i distinct Σ−2j+2
zj’s.

We close this section by discussing briefly the trivial ko∗-submodule of ko∗(K2). The

A(1)-module H̃∗(K2) can be decomposed as I⊕F , where I has no free summands, and

F is free. The trivial ko∗-submodule corresponds to a basis of F . By [12, Theorem

3.9], I can be written as

P [y21]⊗ (U ⊕ ⟨y21⟩ ⊕N ⊕NU ⊕ (Z2 ⊕ Σ9)
⊕
k≥4

(MkΛk−1 ⊕MkΛk−1U)).

Using results of [12], one can write a Poincaré series for I. For summands such as

zJMk, we know the Ext chart, and can determine from that the A(1)-module struc-

ture. Since things become quite complicated, here we just present through grading

24. In this range, I is just P [y21]⊗(U⊕⟨y21⟩⊕N⊕NU⊕M4⊕M4U), and the Poincaré

series PI is

x2 + x3 + x4 + 2x5 + x6 + x7 + 2x8 + 2x9 + 2x10 + 3x11 + 3x12 + 3x13 + 3x14 (10.7)

+2x15 + 2x16 + 3x17 + 3x18 + 4x19 + 5x20 + 5x21 + 5x22 + 4x23 + 3x24. (10.8)

Unreduced H∗(K2) is a polynomial algebra on classes of grading 2j + 1, j ≥ 0,

from which its Poincaré series PH is easily written. The Poincaré series for A(1) is

PA(1) = 1 + x+ x2 + 2x3 + x4 + x5 + x6. The Poincaré series PF for F must satisfy

PH − 1 = PI + (PA(1) · PF ).

We compute PF to begin

PF = x6 + x10 + x12 + 3x14 + x15 + x16 + 3x18 + x19 + 3x20 + x21 + 5x22 + 3x23 + 5x24,

the start of the Poincaré series for the trivial ko∗-submodule of ko∗(K2) through

grading 24.
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11. Computation of A4 and A1

In this section, we present a detailed argument for the ko-homology chart A4 given

in Figure 2.2, setting the stage for more general arguments to follow. At the end of

the section, we also do A1, which does not follow some formulas for larger k.

The first part of Âo
4 is the A(1)-module ⟨y81⟩⊕y61NU , where NU is an A(1)-module

discussed in [12]. Its A(1)-module structure and the chart ExtA(1)(NU,Z2) appear in

Figure 11.1.

Figure 11.1. NU and its chart.

s s s ss s s s s9

11
s

9 13 17

. .
.

The chart for ⟨y81⟩ ⊕ y61NU appears in Figure 11.3. There is a d5-differential from

grading 33 to 32 implied by comparison with Browder’s result ([4]) that H32(K2) ≈
Z/32. See [14, p.124], [11, near Figure 4.2], or [10, Figure 11] for similar discussions.

The d5-differential is promulgated by the action of ko∗ on the spectral sequence.

There is an exotic η extension from (35, 0) to (36, 5), and this is promulgated by

v41-periodicity. This follows from a result in [8, p.228], which says that

if dr(⟨α, η, 2⟩) = 2β, then αη = β. (11.2)

Here ⟨α, η, 2⟩ is a Toda bracket which gives v1α. The bracket relation can be de-

duced from Figure 11.1, where the class in (13, 1) comes from the relation Sq3 g11 =

Sq2 Sq3 g9. That v1 times the class in (43, 4) in Figure 11.3 equals the class in (45, 5)

can be deduced from the morphism ku∗
r−→ ko∗. We prefer to elevate filtrations of

classes to make η extensions easier to see. In effect, whenever we have a dr-differential,

we elevate the classes supporting the differential, and most of those already related to

them via h0 or h1 or v41, so that the differential looks like a d1. When this is done to

the chart on the left side of Figure 11.3, the chart on the right hand side is obtained.
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Figure 11.3. ⟨y81⟩ ⊕ y61NU with differentials, and redrawing.

32 36 40 44
ss
ss
s ss

s ss
s s s

ss
s

ss s
s s

s s
ss
ss
s

s s ss
ss ss

s s ss
s sss

32 36 40 44

. .
.

The right side of Figure 11.3 is what we called Σ32V4 in (10.2). It was useful to

incorporate the Σ32 at the outset because it affected the differential in V4. But now we

wish to switch to Ã4, by applying Σ−32. Now we consider (V4 ← Σ8M0
4 ) in (10.2). The

chart is on the left hand side of Figure 11.4. The differential follows by comparison

with the ku case, which is pictured in the right side of Figure 8.12. The differential

agrees with the first morphism in the exact sequence

ko∗(M(2))→ ko∗(M(8))→ ko∗(M(4))→ ko∗(ΣM(2)),

where M(n) is the mod-n Moore spectrum. So the resultant must be ko∗(M(4)). In

the middle part of Figure 11.4, we show the differential interpreted as a d1, and in the

right hand side we show the result, with the η extension incorporated. The middle

and right parts omit the portion in grading less than 8. It should be included, and

several of its classes are promulgated by v41-periodicity. The η extension from 11 to

12 in the right hand chart can also be deduced from (11.2).

Figure 11.4. V4 ← Σ8M0
4

. .
.

ss
ss
s

s s ss
ss ss

s s ss
s sss

0 4 8 12
s s ss s s

. .
.

sss s ss
s ssss s ss ss

8 12 8 12

ss s s sss s . .
.
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In Figure 11.5, we show how the next d2 differential in the tableau (10.3), Σ9M2
4 ←

Σ16M0
5 , is deduced by naturality from the d2 in the ku spectral sequence. The ku

differential can be seen as the 46 ← 51 arrow in Figure 8.13. In Figure 11.5, we

are using gradings for Ã4, which are 32 greater than the A4 gradings in Figure 8.13.

The first ko differential is implied by naturality, and the next two are implied by the

action of η. The fourth one can be thought of as being implied by the action of v1,

or can be deduced from the map ku∗+2(−)→ ko∗(−). In the figure, we use big dots

for the ones that map across under c.

Figure 11.5. Deducing a ko differential from ku

12 16 20 16 20
r r r

r r r r

r r
r

u u u u
u uu

u u
u uu

u u
r r r r rc−→

ko∗ ku∗

In the next three figures, we show the three d2-differentials involved in forming Ã4.

(See (10.3).) In each case, the domain chart has its filtrations increased by 1, so that

the d2 looks like a d1. In the right side of each chart, we show the resultant. Of the

early classes in the target chart, some are v41-periodic in the resultant charts, while

others are not. The ones that are not are indicated with open circles in the resultant

chart. They will “stay behind” when subsequent differentials are considered, and will

form the subedges.

Figure 11.6. Σ9M2
4 ← Σ16M0

5

s s s s s ss s s

s s s ss s s
s s sss s s s

12 16 20 23 12 16 20

=

. .
.
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Figure 11.7. Σ17M2
5 ← Σ24M1

4

s s s s s sss s s

s s s ss s s . .
.

s ss s
s

=

20 24 28 20 24 28

Figure 11.8. Σ25M3
4 ← Σ32M0

6

s s s ss s s
s s sss s s s . .

.

30 35 39 30 35 39

=

s s ss
s s s ss

In Figure 11.9, we combine Figures 11.4, 11.6, 11.7, and 11.8. There is a d8 from the

periodic part of Figure 11.6 to 11.4, and a d4 from the periodic part of Figure 11.8 to

11.7. These are deduced by naturality from the d5 and d9 in Figure 8.13. The indices

of the differentials are decreased by 1 because of the filtration shift incorporated in

the d2’s above. In Figure 11.9, we increase filtrations of periodic classes so that the

differentials look like d1’s. This allows for nicer pictures showing ·2’s and η’s more

clearly, which is useful in consideration of subsequent differentials.

We use double circles for the previously-circled classes, and use single circles for

classes in Figure 11.7 which survive but do not lead to periodic classes, since v4i1

times them are hit by differentials. These circled classes form another edge. Note the

significance of the periodic class in grading 13 in Figure 11.6; it supports a differential

in Figure 11.9 because v41 times it does.
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Figure 11.9. Forming Ã4

0 4 8 12 16 20 24 28 32 36
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The result of each of the three sets of differentials pictured along the upper edge

of Figure 11.9 is a lightning flash, starting in grading 16, 24, and 32, continuing

indefinitely. The result of the group of differentials in the lower edge is a lightning

flash, beginning in 33, promulgated by v41-periodicity. There is a d12-differential from

this lightning flash in 33 to the one in 32, deduced from the morphism of ASS’s for

ko∗(K2)→ ku∗(K2). The differential in the ku∗ spectral sequence is the d16 in Figure

8.13. (This would have been a d12 if we had employed similar filtration shifts in the

ku∗ spectral sequence. Note also that gradings in Figure 11.9 differ by 32 from those

in Figures 8.13, 2.2, and 8.14 because those are for A4, while here we have been

considering Ã4.) The d12 totally annihilates both lightning flashes and all subsequent

ones, turning what had been an infinite picture into a finite one.

Note that v41 times the classes in (28, 2) and (29, 3) in Figure 11.9 are in the lightning

flash supporting differentials, and so they support d12 differentials into the end of the

lightning flash that started in 24. The result of this is Figure 2.2.

The relationship of the above analysis with the approach to edges given in Section

3 will be explained in the next section. As a preview, the circled classes in Figure 11.9



58 DONALD M. DAVIS

are Σ8E2,3 (grading 12 and 14), Σ16E2,4 (gradings 20 to 30(top class)), and Σ24E3,4 (30
and 34). (See Figure 3.11.)

The exact sequence

ko∗−1(K2)
η−→ ko∗(K2)

c−→ ku∗(K2)→ ko∗−2(K2)
η−→ ko∗−1(K2) (11.10)

can be used to deduce extensions. In [10], we established that there are nontrivial

extensions in Figure 8.14 in grading 58, 60, 62, and 64. The classes in ko58(K2) which

are not in im(η) must map to ku58(K2); the extension in the latter implies one in

the former. The two classes in ko62(K2) in Figure 2.2 must be in the image from

ku64(K2), where the extension is present, implying the extension in ko62(K2).

We conclude this section by deriving the chart for A1, since it is slightly special.

Its chart is formed from the A(1)-module U ⊕N . These modules are defined in [12,

Section 3] and their charts are in [12, Figure 3.10]. We reproduce them here in Figure

11.11 with N in red.

Figure 11.11. Forming A1

. .
.

2 4 8 12
s s

The d2-differential was first noted in [14, p.124] and was shown in [11, Figure 3.1].

It follows from [4]. The only classes in A1 are the Z2’s in grading 2 and 4.

12. Derivation of edge description

The derivation of Definition 3.8 requires a careful study of the tableau (10.2) for Ãk

and the ways that edges (or pre-edges) are associated to arrows in the tableau. For

every arrow with target Σ8i+1M s
ℓ , there is a corresponding pre-edge Σ8iE ′s,s+ℓ−3, which

involves 2ℓ−4 arrows beginning with the specified one. We have found it very useful
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to list, as an example, the tableau for Ã7 with arrows labeled by their corresponding

pre-edge. This is done in (12.1). The labeled tableau for Ãk for k = 4, 5, and 6 can

be read off from this by taking the first 1, 2, or 4 rows, respectively, with V7 replaced

by Vk.

V7
1,7←Σ8M0

4 Σ9M2
4

2,3←Σ16M0
5 Σ17M2

5

2,4←Σ24M1
4 Σ25M3

4

3,4←Σ32M0
6

Σ33M2
6

2,5←Σ40M1
4 Σ41M3

4

3,4←Σ48M1
5 Σ49M3

5

3,5←Σ56M2
4 Σ57M4

4

4,5←Σ64M0
7

Σ65M2
7

2,6←Σ72M1
4 Σ73M3

4

3,4←Σ80M1
5 Σ81M3

5

3,5←Σ88M2
4 Σ89M4

4

4,5←Σ96M1
6

Σ97M3
6

3,6←Σ104M2
4 Σ105M4

4

4,5←Σ112M2
5 Σ113M4

5

4,6←Σ120M3
4 Σ121M5

4

5,6←Σ128M0
8

Σ129M2
8

2,7←Σ136M1
4 Σ137M3

4

3,4←Σ144M1
5 Σ145M3

5

3,5←Σ152M2
4 Σ153M4

4

4,5←Σ160M1
6

Σ161M3
6

3,6←Σ168M2
4 Σ169M4

4

4,5←Σ176M2
5 Σ177M4

5

4,6←Σ184M3
4 Σ185M5

4

5,6←Σ192M1
7

Σ193M3
7

3,7←Σ200M2
4 Σ201M4

4

4,5←Σ208M2
5 Σ209M4

5

4,6←Σ216M3
4 Σ217M5

4

5,6←Σ224M2
6

Σ225M4
6

4,7←Σ232M3
4 Σ233M5

4

5,6←Σ240M3
5 Σ241M5

5

5,7←Σ248M4
4 Σ249M6

4

6,7←Σ256M0
9 (12.1)

We begin our derivation of Definition 3.8 by considering E ′5,6. As can be seen in

(12.1), it can come from any of ΣM5
4 ← Σ8M8−t

t for 5 ≤ t ≤ 8. In Figure 12.2 we

consider the cases t = 6 and t = 8. The other two are similar. The left side depicts

the arrow as a d1 differential, with ΣM5
4 in red, while the right side shows the result,

with E ′5,6 in red, and Σ8M7−t
t in black.
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Figure 12.2. Two ways of forming E ′5,6
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ΣM5
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6 E ′5,6 ⊕ Σ8M2
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The job of this d2 pair is to change Σ8M8−t
t to Σ8M8−t

t−1 . The E ′5,6 is the extra part,

and is not involved in subsequent arrows until we consider the differentials which

change E ′e,ℓ to Ee,ℓ. Its class in (12, 0) will support such a differential. In Figure 12.3,

we show that the result of ΣM5
4 ← Σ10M̂3

4 is exactly the E ′5,6 just obtained, as claimed

in Definition 3.8. Here Σ10M̂3
4 is in red.

Figure 12.3. ΣM5
4 ← Σ10M̂3

4

11 14 19 23

u uu s s s s ss s s

s s s s ss s s

We now give a chart-theoretic explanation of why this occurs, which is useful in

seeing how it generalizes. We illustrate with M0
8 . The cofiber of M

0
7 →M0

8 is Σ2M̂3
4 .

In Figure 12.4 we show that M0
8 can be formed from M0

7 + Σ2M̂3
4 .
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Figure 12.4. M0
7 + Σ2M̂3

4 = M0
8

M0
7 + Σ2M̂3

4
M0

8

1 3 7 11 15 1 3 7 11 15
s s sss s ss

s s s sssss s s ss
s

s s sss ss
ss

s s ssssss s s ss
ss

s s s s ss s s

In Figure 12.5 we modify the lower left part of Figure 12.2 by replacing Σ8M0
8 by

Σ8M0
7 +Σ10M̂3

4 . The result is the desired E ′5,6⊕Σ8M0
7 . Indeed, the ΣM

5
4 and Σ10M̂3

4

combine to yield E ′5,6 as in Figure 12.3, and the Σ8M0
7 remains unchanged. In chart

arithmetic, we have

(ΣM5
4 ←M0

7 ⊕ Σ2M̂3
4 ) = (E ′5,6 ⊕M0

7 ),

then cancel the M0
7 to obtain the E ′5,6 case of Definition 3.8. This may seem round-

about, but will be useful.

Figure 12.5. Figure 12.2 after replacement

s s sss s
s ss

ss
s s sss

ss s
s

s s ss s ss
ss

s ss s s s
s ss

s s

9 11 15 19 23

The following proposition is the generalization of the phenomenon observed in

Figure 12.4.
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Proposition 12.6. For k ≥ 4 and i ≥ 0, we have

M i
k + Σ2M̂k+i−4

4 = M i
k+1

in the sense that if Σ2M̂k+i−4
4 is placed beneath M i

k so that there are d1 differentials

as in Figure 12.8, then the result is M i
k+1.

Proof. First note that all M i
k with the same mod 4 value of k+i have the same general

form as indicated in Figure 12.7. This refers to the way in which they leave filtration

0.

Figure 12.7. M i
k
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Then note that k and k + i can each be increased by 1 by the additions in Figure

12.8, each of which illustrates M i
k + Σ2M̂k+i−4

4 . Here we use that M̂4t+i
4 = Σ8tM̂ i

4.

Figure 12.8. M i
k + Σ2M̂k+i−4
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We saw in Figure 12.2 that E ′5,6 is what was left over after ΣM5
4 ← Σ8M8−t

t is

used to change Σ8M8−t
t to Σ8M8−t

t−1 , and then since Σ8M8−t
t can be obtained from

Σ8M8−t
t−1 +Σ10M̂3

4 , we can obtain E ′5,6 itself from ΣM5
4 ← Σ10M̂3

4 . The same argument,

together with Proposition 12.6, yields that, for any e > 1, E ′e,e+1, the part left over
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when ΣM e
4 ← Σ8M e+3−t

t is used to change Σ8M e+3−t
t to Σ8M e+3−t

t−1 , can be obtained

from ΣM e
4 ← Σ2M̂ e−2

4 , as claimed in Definition 3.8.

Next we consider E ′4,6, which (12.1) shows to be related to

ΣM4
5

4,6←Σ8M3
4 Σ9M5

4

5,6←Σ16M8−t
t

for t ∈ {6, 7, 8}. We have already seen that the resultant of the second arrow is

Σ8E ′5,6 + Σ16M8−t
t−1 . The E ′5,6 is not involved in finding E ′4,6. (It may be involved in

differentials which change E ′ to E ; this will be considered in Section 13.) We will show

in the next paragraph that the resultant of ΣM4
5 ← Σ8M3

4 ← Σ16M8−t
t−1 is Σ16M8−t

t−2

plus a remainder term, which is defined to be E ′4,6. Then we can use Proposition

12.6 to replace Σ16M8−t
t−1 by Σ16M8−t

t−2 +Σ18M̂2
4 , and deduce, similarly to what we did

before, that E ′4,6 itself can be obtained from

ΣM4
5 ← Σ8M3

4 ← Σ18M̂2
4 .

In this paragraph, we use t = 8 in the above discussion, but t = 6 or 7 work

similarly. In the left side of Figure 12.9, we show ΣM4
5 ← Σ8M3

4 , with Σ8M3
4 in red.

On the right side, we place the resultant of the left side in black and Σ16M0
7 in red,

placed so that the differential appears as a d1. (The justification for the differentials

will be given in Section 13.) The differential reduces the Σ16M0
7 to Σ16M0

6 , as claimed

in the preceding paragraph. The classes in 20 and 21 are part of Σ16M0
6 . The black

classes in grading ≤ 19 form E ′4,6. A similar thing happens in consideration of any

E ′e,e+2. It will come from

ΣM e
5 ← Σ8M e−1

4 Σ9M e+1
4 ← Σ16M e+4−t

t .

The second arrow produces Σ8E ′e+1,e+2⊕Σ16M e+4−t
t−1 . After some initial deviation, the

first arrow will produce pure lightning flashes in time to work with Σ16M e+4−t
t−1 to form

Σ16M e+4−t
t−2 .
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Figure 12.9. Forming E ′4,6 + Σ16M0
6

ΣM4
5 ← Σ8M3

4

ΣM4
5 ← Σ8M3

4 ← Σ16M0
7
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A similar argument works for any E ′e,e+d. We are deriving a definition, Definition

3.8. The tableau (12.1) is very helpful in getting started. For e ≥ 2 and d ≥ 1, there

are
(
k−2−d
e−2

)
arrows labeled (e, e + d) in the tableau for Ãk. Each gives rise to an

occurrence of E ′e,e+d. The structure of E ′e,e+d is determined by 2d−1 arrows beginning

with one labeled (e, e+ d). The sequence of these arrow labels is the same for every

occurrence of (e, e+ d), and the sequence of the 2d M charts is also the same except

for the very last one, which can be Σ2d+2
M e+d+2−t

t for t = e + d + 2 ≤ k + 2 or

d+ 4 ≤ t ≤ e+ d+ 1 ≤ k.

We take a major step toward justifying Definition 3.8 by considering E ′e,e+3. This

is determined by the four arrows in (12.10),

e,e+3

ΣM e
6 ← Σ8M e−1

4

e+1,e+2

Σ9M e+1
4 ← Σ16M e−1

5

e+1,e+3

Σ17M e+1
5 ← Σ24M e

4

e+2,e+3

Σ25M e+2
4 ← Σ32M e+5−t

t

(12.10)

where either t = e + 5 ≤ k + 2 or 7 ≤ t ≤ e + 4 ≤ k. This can be seen in

(10.2), where it will be suspended by Σ64b+32 for some b. Then (12.10) corresponds

to i = 8b+ (4, 5, 6, 7) in (10.2). Also e = α(b) + 2 and M e+5−t
t = M

α(b+1)−1
7+ν(b+1) .

Similarly to our analysis of E ′5,6 and E ′4,6, the resultant of the second arrow in (12.10)

is Σ8E ′e+1,e+2 ⊕ Σ16M e−1
4 , and the resultant of the last two arrows is Σ16E ′e+1,e+3 +

Σ24E ′e+2,e+3⊕Σ32M e+5−t
t−2 . We leave the Σ8E ′e+1,e+2, Σ

16E ′e+1,e+3, and Σ24E ′e+2,e+3 behind,

and are left with

ΣM e
6 ← Σ8M e−1

4 ← Σ16M e−1
4 ← Σ32M e+5−t

t−2 . (12.11)

In Figure 12.12, which is the case e = 4, we show the result of the first two arrows.
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Figure 12.12. First two arrows of (12.11)
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ΣM4
6 ← Σ8M3

4

ΣM4
6 ← Σ8M3

4 ← Σ16M3
4

Then in Figure 12.13, which is the case t = 9, we place Σ32M e+5−t
t−2 so that it has

a d1 differential into the stable lightning flash beyond the end of Figure 12.12. This

reduces it to Σ32M e+5−t
t−3 , and the leftover part is defined to be E ′e,e+3. Note that the

classes in the lightning flash in grading 36 and 37 become part of Σ32M0
6 , while the

classes in 34 and 35 are the last two elements in E ′4,7. So the result of (12.11) is

Σ32M e+5−t
t−3 ⊕ E ′e,e+3.

Figure 12.13. Forming Σ32M e+5−t
t−3 ⊕ E ′e,e+3
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We use Proposition 12.6 to replace Σ32M e+5−t
t−2 in (12.11) by Σ32M e+5−t

t−3 +Σ34M̂ e−2
4 ,

similarly to Figure 12.5. Since the result of

ΣM e
6 ← Σ8M e−1

4 ← Σ16M e−1
4 ← (Σ32M e+5−t

t−3 + Σ34M̂ e−2
4 )

equals Σ32M e+5−t
t−3 ⊕ E ′e,e+3, and, as in Figure 12.5, the two copies of Σ32M e+5−t

t−3 split

off, we derive the ℓ = e+ 3 case of Definition 3.8.

The general case E ′e,e+d does not differ significantly from the case d = 3 just con-

sidered. The arrows involve i = 2db + (2d−1, . . . , 2d − 1) in (10.2) with e = α(b) + 2.

Rather than constructing a full-blown induction argument, we will explain how the

result for d = 4 follows from the argument for d < 4. The general case E ′e,e+4 is

embodied in the last two rows of (12.1), which are Σ192 times the case with e = 3.

For arbitrary e, increase all superscripts of M by e − 3. We subtract 192 from all

the suspension parameters and discuss the eight arrows. By the work we have al-

ready performed, the result of the second arrow is E ′4,5 ⊕ Σ16M2
4 , the result of the

third and fourth arrows is E ′4,6 + E ′5,6 ⊕ Σ32M2
4 , and that of the final four arrows is

E ′4,7 + E ′5,6 + E ′5,7 + E ′6,7 ⊕ Σ32M0
6 . (We distinguish between + and ⊕ because the E ′’s

can have differentials into one another, but not into the M .) We split off all the E ′’s
and are left with

ΣM3
7 ← Σ8M2

4 ← Σ16M2
4 ← Σ32M2

4 ← Σ64M0
6 . (12.14)

The resultant of the first three arrows will, after initial deviations, stabilize into a

sequence of lightning flashes well before the Σ64M0
6 has started. We claim that the

lightning flashes will change it to Σ64M0
5 , and E ′3,7 is defined to be everything left

over.

Considering the slightly subtle phenomenon observed in Figure 12.13 regarding the

classes in 34, 35, 36, and 37, scrutiny is warranted here. We claim that if M i
k is

placed into a sequence of lightning flashes so that its generators of (full) order 2k−2

hit generators of lightning flashes with a d1, then the result is M i
k−1 plus the first

(k + i− 1) mod 4 gradings of the last lightning flash before total incorporation. We

illustrate this in Figure 12.15, in which bigger red dots are incorporated into the M .

Recall from Figure 12.7 that the way M i
k leaves filtration 0 depends only on (k+ i)

mod 4. In Figure 12.15, we see that these differentials decrease the (k + i) mod 4

type by 1 and decrease k by 1, so they leave i unchanged.
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Now we explain why the “(k + i − 1) mod 4 gradings” noted above is consistent

with everything else. As discussed just before (12.10), the sequence of 2d charts which

define E ′e,e+d ends with Σ2d+2
M e+d+2−t

t . When this sequence is reduced to a sequence

of the type illustrated by (12.11), the subscript of M will be reduced d− 1 times, so

that the sequence of type (12.11) will end with M i
k satisfying k+ i = e+3. Thus the

first (e+ 2) mod 4 gradings of the last lightning flash before total incorporation will

be left behind for the end of E ′e,e+d. This is consistent with the endings of Figures

3.11, 3.12, 3.13, 3.14, and 3.15.

Figure 12.15. Cutting off M i
k with lightning flashes
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Returning to E ′3,7, (12.14) results in Σ64M0
5 ⊕ E ′3,7. Replace Σ64M0

6 by Σ64M0
5 ⊕

Σ66M̂2
4 in (12.14), using Proposition 12.6. The Σ64M0

5 splits off, similarly to Figure
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12.5, and we deduce that the result of

ΣM3
7 ← Σ8M2

4 ← Σ16M2
4 ← Σ32M2

4 ← Σ66M̂2
4

is E ′3,7. The same argument applies if theM0
9 at the end of (12.1) is replaced byM1

8 , the

other way that the sequence of arrows defining E ′3,7 can end. Then the M0
6 in (12.14)

becomes M1
5 , with the same value of k + i. If e is changed, then all superscripts

in (12.14) are changed by the same amount, and the replacement argument using

Proposition 12.6 still applies.

This completes the induction step for the case d = 4. The same argument works

for arbitrary d. The conclusion of this section is the following theorem.

Theorem 12.16. A sequence

ΣM e
ℓ−e+3 ← Σ8M e−1

4 ← Σ16M e−1
4 ← · · · ← Σ2ℓ−e+1

M e−1
4 ← Σ2ℓ−e+2

M i
k+1

with all arrows being d1 on generators in grading 1, 3, 4, and 5 mod 8, and η inserted,

and satisfying k + i = e+ 2 equals E ′e,ℓ ⊕ Σ2ℓ−e+2
M i

k.

The theorem also holds if the sequence and the conclusion are suspended by any

amount.

Now we justify Definition 3.19. The description of Vk in Definition 3.19 is a straight-

forward generalization of Figure 11.3. For the sequence (3.20) in Definition 3.19, we

refer to (12.1) for the case k = 7. We have seen in the analysis above that the
2,3←

yields E ′2,3 ⊕ Σ16M0
4 , and that the last two arrows in the first row of (12.1) yield

E ′2,4 + E ′3,4⊕Σ32M0
4 . The second row of (12.1) yields E ′2,5 + E ′3,4 + E ′3,5 + E ′4,5⊕Σ64M0

4 ,

as the M0
7 at the end will have its subscript decreased three times. A similar analysis

applies to the third and fourth rows of (12.1) together, yielding eight E ′’s ⊕Σ128M0
4 ,

and to the last four rows of (12.1) combined, yielding sixteen E ′’s ⊕Σ256M0
4 . We split

off all the E ′’s, and the various Σ2iM0
4 ’s combine to give the sequence in Definition

3.19. The placement of the Σ2iM0
4 ’s in the sequence will be justified in the paragraph

preceding Figure 13.16.

We can use (12.1) similarly to justify the subedge structure of Ãk described in

Theorem 3.1. Under E ′1,7, we have E ′2,3 and E ′2,4 in the first row of (12.1), E ′2,5 in the

second, E ′2,6 in the third, and E ′2,7 in the fifth. Then, under the E ′2,4 is the E ′3,4 just
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after it, and under the E ′2,5 are the E ′3,4 and E ′3,5 in the second row. Also under that

E ′3,5 is the E ′4,5 at the end of the second row. That exhausts the second row of (12.1).

Next we consider the third and fourth rows together. The E ′3,4, E ′3,5, and E ′3,6 under
E ′2,6 are apparent. Then under the E ′3,5 is the E ′4,5 which follows it, and under the E ′3,6
are the E ′4,5 and E ′4,6 in the fourth row. We also have E ′5,6 under the E ′4,6.
A similar analysis applies to the last four rows of (12.1) to give the subedge structure

under E ′2,7. This procedure generalizes to any Ãk. The discussion following (12.10)

suggests how the formulas in (10.2) enable one to see how the pattern of edges in

(12.1) generalizes.

13. The spectral sequence for Ak, with proofs

In this section, we show how the spectral sequence converging to Ãk works, and

then justify that the differentials and extensions work as claimed, by comparing with

the ku analysis. Referring to the tableau for Ã7 in (12.1) is strongly recommended.

We will eventually specialize to Ã7.

13.1. Description of spectral sequence. The following definition contains several

useful notations.

Definition 13.1. We will use the following notations.

• For n > 0 and n ≡ 0 or 7 mod 8, let W n denote the Σn term in the tableau for

Ãk, which is independent of k except that n must be ≤ 2k+1. If W n = ΣnM s
t , let

W n
i = ΣnM s

t−i.

• If C is a chart and M is an M s
t chart, positioned so that there are d1 differentials

from the stable lower edge of M s
t into C, we denote by C ∪d1 M the resulting chart,

including η extensions from 2α to v1β inserted whenever d1(α) = β, following (11.2).

• Let L(8a) denote the label on the arrow W 8a−7 ← W 8a.

Now we describe the way the ASS for Ãk works. We make frequent use of Theorem

12.16 to see the increasing subscripts of W (corresponding to decreased subscripts of

the associated M). After the first two steps, we specialize to Ã7. All claims will be

justified later in this section.

Step 1 says that for a ≥ 1,

W 16a−7 ∪d1 Φ1W 16a = Φ1W 16a
1 ⊕ Σ16a−8E ′L(16a). (13.2)
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Then Step 2 says that for a ≥ 1,

(W 32a−15 ∪d1 Φ1W 32a−8) ∪d1 Φ
4W 32a

1 = Φ4W 32a
2 ⊕ Σ32a−16E ′L(32a−8). (13.3)

At each step, we leave all E ′’s behind, until consideration of differentials among them

at the very end.

The second row of (12.1) now, which applies to any Ãk with k ≥ 5, is

((Σ33M2
6 ∪d1 Φ1Σ40M1

4 )← Φ1Σ48M1
4 )← Φ4Σ64M0

5 , (13.4)

where filtrations of Φ1Σ48M1
4 and then Φ4Σ64M0

5 will have to be increased (to Φ4 and

Φ11, respectively) in order to get the d1 differentials. We prefer to write it as

Σ33M2
6

2,5←Σ40M1
4 ← Σ48M1

4 ← Σ64M0
5 ,

ignoring the filtration increases, which we think of as being implicit. In fact, the

corresponding Φ’s are Φ2t+1−t−2, t ≥ 1 starting with the domain of the first arrow.

By Theorem 12.16, this sequence equals Σ64M0
4 ⊕ Σ32E ′2,5.

We now restrict to Ã7, as in (12.1). Rows 4, 6, and 8 in (12.1) simplify similarly

to row 2 just described. With previous E ′’s omitted, they become Σ128M0
5 ⊕ Σ96E ′3,6,

Σ192M1
4 ⊕ Σ160E ′3,6, and Σ256M0

6 ⊕ Σ224E ′4,7. In each case, the M term is W 64a
3 . This

doesn’t work quite so well in rows 3, 5, and 7. The requirement in Theorem 12.16

that k + 1 + i = e+ 3 is crucial.

Now (12.1) has simplified to the following, with all E ′’s omitted.

V7
1,7←Σ8M0

4 ← Σ16M0
4 ← Σ32M0

4

← Σ64M0
4

Σ65M2
7

2,6←Σ72M1
4 ← Σ80M1

4 ← Σ96M1
4

← Σ128M0
5

Σ129M2
5

2,7←Σ136M1
4 ← Σ144M1

4 ← Σ160M1
4

← Σ192M1
4

Σ193M3
7

3,7←Σ200M2
4 ← Σ208M2

4 ← Σ224M2
4

← Σ256M0
6

Theorem 12.16 applies to the combination of rows 3 and 4, yielding Σ128M0
4 ⊕Σ64E ′2,6,

and to the combination of rows 7 and 8, yielding Σ256M0
5 ⊕ Σ192E ′3,7. Now, ignoring
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E ′’s and combining some rows, we obtain

V7
1,7←Σ8M0

4 ← Σ16M0
4 ← Σ32M0

4 ← Σ64M0
4 ← Σ128M0

4 (13.5)

Σ129M2
8

2,7←Σ136M1
4 ← Σ144M1

4 ← Σ160M1
4 ← Σ192M1

4 ← Σ256M0
5 . (13.6)

Theorem 12.16 applies to the second row, yielding Σ256M0
4 ⊕ Σ128E ′2,7. Appending

Σ256M0
4 to the first row, we obtain E ′1,7 of Definition 3.19. As noted there, we obtain

that E ′1,7 equals

I7⊕Φ4Σ8M(32)
∣∣
16
⊕Φ8Σ16M(16)

∣∣
32
⊕Φ16Σ32M(8)

∣∣
64
⊕Φ32Σ64M(4)

∣∣
128
⊕Φ64Σ128M(2)

∣∣
256

,

where M(2i) = ko∗(M(2i)) and M
∣∣
x
is the portion of M in grading less than x. Here

Ik is as in Definition 6.1. Figure 3.21 illustrates the case k = 4.

The spectral sequence behaves for any k in a manner which generalizes what we

displayed here for k = 7. The general tableau is in (10.2), and an arrow with target

ΣpM i
ℓ is labeled with (i, i + ℓ − 3). The sequences which form all E ′e,ℓ with e ≥ 2 in

Ãk are described in the following result.

Theorem 13.7. For every odd positive integer p and t ≥ 0 satisfying 2t+3(p + 1) ≤
2k+1, there is a sequence satisfying Theorem 12.16

W 2t+3p+1 ← W 2t+3p+8
0 ← W 2t+3p+16

1 ← · · · ← W 2t+3p+2t+2

t−1 ← W
2t+3(p+1)
t , (13.8)

which forms W
2t+3(p+1)
t+1 ⊕ Σ2t+3pE ′α(p)+1,α(p)+t+2. Every W 8n

i with

0 ≤ i ≤

{
ν(n) α(n) > 1

ν(n)− 1 α(n) = 1

fits into exactly one of these sequences. If i = ν(n), then t = ν(n − 2i) and p =

(n− 2i)/2t, while if i < ν(n), then t = i and p = n
2i
− 1.

Example 13.9. If n = 20, then

• i = 0 has t = 0, p = 19, and the sequence is W 153 ← W 160
0 , forming W 160

1 ⊕Σ152E ′4,5,
• i = 1 has t = 1, p = 9, and the sequence is W 145 ← W 152

0 ← W 160
1 , forming

W 160
2 ⊕ Σ144E ′3,5, and

• i = 2 has t = 4, p = 1, and the sequence is

W 129 ← W 136
0 ← W 144

1 ← W 160
2 ← W 192

3 ← W 256
4 ,

forming W 256
5 ⊕ Σ128E ′2,7.
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(10.2) can be used to see that these sequences are as follows. They are obtained from

(12.1) using Theorem 12.16.

Σ153M4
4

4,5←Σ160M1
6

Σ145M3
5

3,5←Σ152M2
4 ← Σ160M1

5

Σ129M2
7

2,7←Σ136M1
4 ← Σ144M1

4 ← Σ160M1
4 ← Σ192M1

4 ← Σ256M0
5 .

This example illustrates how the subscripts of W 8n are successively increased until

it becomes an M i
4, at which point it is melded into another sequence, unless n is a

2-power, in which case it melds into the sequence (3.20) which forms E ′1,k. We are

left with just E ′1,k and all the E ′’s which were left behind. Finally, there are the

differentials among the E ′’s described in Theorem 3.10, which will be justified in the

second paragraph after Figure 13.15.

Proof of Theorem 13.7. Using (10.2), the sequence becomes, omitting Σ2t+3p,

ΣM
α(p)+1
4+t ← Σ8M

α(p)
4 ← · · · ← Σ2t+2

M
α(p)
4 ← Σ2t+3

M
α(p+1)−1
ν(p+1)+4 .

This satisfies the requirement in Theorem 12.16 because α(p+1)+ν(p+1) = α(p)+1.

13.2. Justification of differentials. The main ingredient in justifying the differ-

entials is the generalization of what was done in Section 8 and Theorem 9.4 to pass

from differentials in ku∗(K2) obtained in [10, Theorem 3.1] to differentials among ku∗

summands as illustrated in Figure 8.13. We will postpone temporarily consideration

of differentials involving the summand Vk of lowest grading. In (9.9), we showed how

the theorem of [10] could be interpreted in ku∗ summands as

d2
t+1−(t+1)(bt(Y2t(a+1)−1,k)) = v2

t+1−(t+1)τt(Y2ta,k).

If Sq1(α) = β in H∗(K2), a v-tower in the formation of ku∗(K2) arises from β, while

a v-tower in the formation of ku∗(K2) arises from α. The ku∗ differentials in Figure

8.9 are d2(b1(Y1,4)) = v2τ1(Y0,4) and d5(b2(Y3,4)) = v5τ2(Y0,4). The dual differentials

in ku∗ go in the opposite direction on the α classes associated to the corresponding β

classes. For example, dual to the d5 from 57 to 68 is a d5 from 67 to 56. See Figure

8.4. This is consistent with (8.10) since it gives a v-tower of height 5 in (ku∗(K2))
∨

on a class of grading 60, and on a class in ku56(K2).
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This always works, leading to a generalization of Figure 8.13. Suppose Sq1(α2) = β2

and Sq1(α1) = β1 with |α2| = 2x2 − 1 and |α1| = 2x1, and there is a ku∗ differential

from the β1 v-tower to the β2 v-tower. The differential hits in grading 2x1+2, giving

a v-tower of height x2 − x1 − 1 on a class in (ku∗(K2))
∨ of grading 2x1 + 4. The

differential in ku∗(K2) gives a v-tower of height x2− x1− 1 on a class of grading 2x1,

consistent with (8.10)..

We can translate from the ku notation used to label the columns of Figure 8.13 to

the ko notation explained prior to (10.2). The contributions to Σ of y21, y1q, zj, and

Mj are 8, 9, 2j+2, and 2j, respectively. Also, v1q and zj add 2 and 1, respectively, to

the superscript of M . In the notation of (9.9) and Definition 13.1, Y2a,k ↔ W 2k+1−8a

and Y2a+1,k ↔ W 2k+1−8a+1. Then (9.9) implies the following proposition, adapting to

ku the notation in (12.1) and Definition 13.1. For example, the columns of Figure

8.13 are now labeled with the W version of (10.3).

Proposition 13.10. A d2t+1−(t+1) ku∗-differential will go from a W 2t+2a summand to

the W 2t+2(a−1)+1 summand.

We begin illustrating how the description of the spectral sequence, especially the

differentials, in Subsection 13.1 follows from Proposition 13.10 using E ′3,6 in the sixth

row of (12.1). After desuspending, this is

ΣM3
6

3,6←Σ8M2
4 Σ9M4

4

4,5←Σ16M2
5 Σ17M4

5

4,6←Σ24M3
4 Σ25M5

4

5,6←Σ32M1
7 . (13.11)

In Figure 13.12, we show, for each of the four arrows in (13.11), the two charts

combined, without increasing filtration, in both the ko and ku context. For the ku

context, M i
k refers to ExtE1(Σ

2i−2kMk,Z2), analogous to those in Figure 8.8. We use

black for the W 16a−7 chart and red for W 16a. We use big dots to indicate the classes

that map across under ko∗(K2)
c−→ ku∗(K2). We insert differentials in the ku spectral

sequence implied by Proposition 13.10, and then the differentials in the ko spectral

sequence implied by those. After presenting the figure, we will comment on some of

the implications.
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Figure 13.12. d2 differentials (ko∗
c−→ ku∗)
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c−→

ΣM3
6 ← Σ8M2

4

First we note that the classes which map across are exactly those not in im(η). This

follows from (11.10). In each of the four situations, there is at least one differential in

the ku spectral sequence in which both classes involved in the differential are in im(c).

That implies the corresponding differential in the ko spectral sequence. We indicate
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these differentials with thicker lines. Other differentials in the ko spectral sequence

are implied by naturality with respect to the action of η, v41, or the generator of ko4.

Now, in each of the four cases, we elevate by 1 the filtration of all classes in the

W 8a chart (the red classes) so that the d2 differentials look like d1’s. We did not do

this in our ku work in [10], but it will be useful for subsequent comparisons with ko

charts. Insert η extensions from α to β if d1(v1α) = 2β. This follows from (11.2).

This comparison with ku is the justification for the filtration shift in (13.2), which

applies to the second and fourth situations in Figure 13.12.

In Figure 13.13, the top left chart contains the result of the first ko chart of Figure

13.12 in black and the result of the second ko chart of Figure 13.12 in red. The

top right chart in Figure 13.13 is the analogue of this for the first two ku charts in

Figure 13.12. We use big dots for classes that map across under
c−→ . We insert

differentials in the ku chart implied by Proposition 13.10. They will appear as a d4

rather than a d5 because we increased the filtration of the source classes. Then we

insert differentials in the ko chart forced by the morphism c and the ku differentials,

again indicating with darker lines the ku differentials that pull back to ko differentials.

Then we insert differentials implied by the inserted differentials and naturality with

respect to η, v41, and the generator of ko4. The bottom half of Figure 13.13 does the

analogous thing for the third and fourth charts of Figure 13.12.
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Figure 13.13. d5 differentials (look like d4)
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We increase filtrations of v41-periodic red classes in the ko charts of Figure 13.13,

remove classes involved in differentials, and insert η extensions implied by (11.2),

obtaining Figure 13.14, in which the top (resp. bottom) half of Figure 13.13 is in

black (resp. red). Step 2 (13.3) says that the lower chart in Figure 13.13, after

simplification, is Φ4Σ32M1
5 ⊕ Σ16E ′4,6. The Φ4Σ32M1

5 appears in Figure 13.14 as all

red elements in filtration ≥ 4. Our charts also include Σ24E ′5,6, which was dropped in

the transition from (13.2) to (13.3).

If we did the same for the ku charts, we would have, among other things, a v-tower

arising from (12, 0) and v-towers connected by h0 (·2) arising from (35, 1) and (37, 1)

(or (35, 4) and (37, 4), if we increased filtrations analogously to ko). See Figure 13.13.

The classes in the ko chart which map across to these v-towers are indicated by big

dots in Figure 13.14. There are d11 differentials
4 in the ku spectral sequence from the

(37, 1) v-tower to the (12, 0) v-tower implied by Proposition 13.10. The classes in the

ko chart in (43, 7) and (42, 15), being not in im(η), map across to classes involved

in a differential in the ku spectral sequence. Thus there is a differential in the ko

4They are d12 in Proposition 13.10, but d11 here due to the filtration shift.
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spectral sequence from (43, 7) to (42, 15), and the other differentials in Figure 13.14

are implied by naturality, as before.

Figure 13.14. Forming the result of (13.11)
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After increasing filtrations of all remaining red classes of filtration ≥ 4 by 7, and

removing classes involved in differentials, we obtain Figure 13.15. This is just E3,6,
Σ8E4,5, Σ16E4,6, Σ24E5,6, and Φ11Σ32M1

4 , with E ’s as in Figure 3.11, except that the

classes in E ′3,6 which support differentials (into E ′2,6) have not been removed. Figure

13.14 is the following analogue of (13.4) except that we have included all the ε′’s.

((ΣM3
6 ∪d1 Φ1Σ8M2

4 )← Φ4Σ16M2
4 )← Φ4Σ32M1

5

It corresponds to the case e = 3, ℓ = 6, k = 4, i = 1 of Theorem 12.16, and, if the

Σ160 is included, the case t = 2, p = 5 case of (13.8). The main point of the work

we have been doing here is how the differentials are implied by the ku differentials in

Proposition 13.10.
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Figure 13.15. Final result of (13.11)
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The behavior described in the detailed example just completed will continue re-

garding how differentials in the ko∗ spectral sequence are implied by the d2t+1−(t+1)

ku∗ differentials of Theorem 13.10, as t increases. It will always be the case, as in

nicely illustrated in Figure 13.13, that the potential differentials go stably from Mk

into ΣMk′ with one of k and k′ equal to 4 and the other greater than 4. The genera-

tor of ko3(Mk) is not in im(η) and hence maps across to ku3(Mk), and similarly for

the generator of ko2(ΣMk′). Proposition 13.10 says that there will be a differential

between the ku classes, and hence there will be a differential between the ko classes.

Other differentials in the ko spectral sequence are implied by the action of η, v41, and

the generator of ko4.

This completes the proof that the description of the spectral sequence given in

Subsection 13.1, which implies Definition 3.8, is implied by Proposition 13.10. Also,

the differentials in Theorem 3.10 follow since, as is nicely illustrated in Figure 13.14,

the classes in grading 5 mod 8, after applying v4i1 , yield stable elements in ko5(Mk),

in the notation of the preceding paragraph, which supported differentials thanks to

the action of η2.

Additional differentials can be ruled out using the action of η and v41. Edges Ee,ℓ
tend to have less v41 periodicity than edges above them. For example, in Ã6 as shown

in Figure 2.4, a conceivable differential on the class in (74, 1) is ruled out by the action
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of v41. The only possible short edges are shown in Figure 3.11, and the structure of

longer edges is already suggested in Figures 3.12, 3.13, 3.14, and 3.15. Note that the

lower edge of the chart of an edge, such as the circled elements in Figure 3.12, is v41

periodic throughout the range of the chart, but the upper edge of the chart, such as

the big dots in Figure 3.12, ceases to be v41 periodic at each 2-power.

The upper edge E1,k was discussed near the end of Section 12. It was stated there

that we would “justify the placement of the Σ2iM0
4 ’s in the sequence of Definition

3.19.” In Sections 8 and 11, we gave a fairly complete treatment of the obtaining of

theA4 chart, including the upper edge. Everything generalizes, but two things lacking

there were the implication from ku∗ differentials to ko∗ differentials, as we have been

doing for the lower edges in this section, and a thorough approach to the arrangement

of summands, as in (12.1). The summands for Ã4 are the first row of (12.1) with

V7 changed to V4. The ku analogue of V4 was derived in Figure 8.11 and appears in

the right half of Figure 13.16, which shows the morphism c from V4 ← Σ8M0
4 to its

ku analogue. We use big dots for classes that map across under c, the ones not in

im(η). The differential in the ku chart was derived in Figure 8.12, and is reproduced

in Figure 13.16, which incorporates the implied differentials in the ko chart.

Figure 13.16. c for early part of Ã4
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c−→

There is an η extension from grading 11 in the resulting chart, which is shown in

the right side of Figure 11.4, in which filtrations have been increased to improve the

picture. The second arrow of (12.1) results in Σ8E ′2,3⊕Σ16M0
4 pictured in Figure 11.6

and in Figure 11.9 with a filtration shift. The differential from 17 to 16 in forming

E1,4 in the ko spectral sequence, pictured in Figure 11.9, is implied by the d9 in Figure
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8.13. This all generalizes, showing how the upper edge is formed to yield Definition

3.19.

13.3. Justifying extensions. Finally, we prove Theorem 3.22, the exotic extensions.

Let Ak denote the ku∗ version ofAk, and Ãk = Σ−2k+1
Ak. The extensions from Σ2ℓE2,ℓ

into E1,k stated in Theorem 3.22(1) follow from the exact sequence (11.10) and the

extensions in Ãk. The first extension for a fixed ℓ occurs in grading 3 · 2ℓ−1 + 2, so

grading 2ℓ−1 + 2 for E2.ℓ. This is where the first lightning flash occurs for E ′2,ℓ. This

can be seen in grading 26 and 50 in Figure 2.3 and in Figures 3.11 and 3.12. One

can compare with the ku chart in Figure 1.2. We illustrate in Figure 13.17, in which

the groups along the top are in E1,5, and those along the bottom are in Σ2ℓE2,ℓ. The
extension in ko is implied by the exact sequence.

Figure 13.17. Extensions from Σ2ℓE2,ℓ into E1,5

s s

ss s s

s s

ss ss ss

ℓ = 5
ℓ = 4

→ ko50 → ku50 → ko48 → → ko26 → ku26 → ko24 →

It always happens this way: the only two possibilities for the groups in the exact

sequence are illustrated in Figure 13.17, and the ku extension is implied by [10,

Definition 1.5 and Theorem 1.23]. On the other hand, classes x in E2,ℓ in grading

2ℓ−1 − 8∆ + 2 with ∆ > 0 have v4∆1 x of filtration greater than that of the class in

2ℓ−1 + 2 which supported the extension, so they cannot support an extension. That

there are no other extensions into the upper edge is true because extensions cannot

hit into elements x satisfying ηx ̸= 0, nor into elements already divisible by 2 (since

this could be accounted for by renaming), nor into periodic elements along the lower

portion of the upper edge. Because of the very nice form of the upper edge, one can
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verify that this rules out everything except for a possible extension from Σ2kι4, where

ι4 is the bottom class of E2,k, into the last element of the only complete lightning flash

in Ãk, an element x such that v41x is hit by a differential. But both of these elements

in ko2k+4(K2) are in the image from ku2k+6(K2), where there is no extension.

To prove the extensions in part (2) of Theorem 3.22, we first note that for e ≥ 2

all nonzero groups in Ee,ℓ in grading j ≡ 6 mod 8 are Z2 groups, annihilated by η,

and related to one another under v41 periodicity. They pull back to kuj+2(K2), where

there are extensions between the pull-back elements, as can be seen from the inductive

structure of the Ã ’s, implying the extension from Σ2ℓ+1−eEe+1,ℓ to Ee,ℓ.
There are two differences between the Z2’s in 2 mod 8 and those in 6 mod 8. In 6

mod 8, all classes are related by v41 and are in ker(η), so they pull back to ku∗+2(K2) in

(11.10). In grading 2 mod 8, they are related by v41 until the next 2-power in Definition

3.8 or Theorem 6.6. The break points can also be thought of as the position a fraction

1/2t along the edge for some t ≥ 1. Also, in 2 mod 8 the classes are not in im(η), so

they map across to ku∗(K2).

In grading 2 mod 8, the only things that can possibly extend into the last half of

Ee,k are (the last half of) Ee+d,k for some d > 0. The only things that can extend

into the second quarter of it are (the last half of) Ee+d,k−1 for some d > 0. Similarly,

for second eighth, Ee+d,k−2, etc. However, if d > 1, this portion of Ee+d,ℓ will have

already extended into Ee+d−1,ℓ. We illustrate this in a schematic Figure 13.18. It

shows the edges beneath E2,7 and the key places where they drop their filtration in

grading 2 mod 8 (halfway, one quarter, etc.). Extensions in grading 2 mod 8 occur

from the second half of edges (where the lightning flashes start in E ′) into the edge

immediately above them. Other portions of edges have their periodicity in 2 mod 8

end prior to that of the portion of the edge above them. The extensions are implied

by the extensions in ku∗(K2) between the corresponding classes.
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Figure 13.18. Schematic of edges under E2,7 in grading 2 mod 8
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There is no extension from the last class in Ee,e+d when e ≡ 3 mod 4 because either

there is nothing into which to extend, or else it would extending into an element x

satisfying ηx ̸= 0.

Many extensions also follow from the following fact ([8, near (2.2)]) about Toda

brackets and differentials in the Adams spectral sequence:

if dr(⟨α, 2, η⟩) = βη, then 2α = β. (13.19)

This bracket represents v1α; the generator of the Z/4 in a lightning flash is obtained

from the bottom class via this bracket. The situation in Figure 13.20 appears fre-

quently, implying 2α = β. Often the classes αη and αη2 will be hit by differentials,

but that doesn’t matter.
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Figure 13.20. Charts implying 2α = β
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All other possible extensions can be ruled out by v41 periodicity, as we have been

using, the fact that 2η = 0, and comparing with ku. Probably the most subtle

of these is illustrated by the situation involving E3,8 and Σ64E4,8 in grading 64 +

12. Using Figure 3.14, we illustrate the problem in Figure 13.21, in which E ′3,8 has

the lightning flashes, which should have much higher filtration, and the worrisome

extension question involves classes A and B, indicated by big dots. The problem is

that v41B = 0 (due to the differential) and A is not in im(η), so we cannot use v41 or

η to detect the non-extension..

Figure 13.21. E ′3,8 and Σ64E ′4,8
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However, A pulls back to ku∗+2(K2), since ηA = 0, and there is no extension on

the pullback element, as the ku analogue of E4,8 begins as in Figure 13.22, with the

first extension occurring on the element in grading 16. So 2A = 0.

Figure 13.22. Beginning of ku analogue of E4,k
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14. Proof for ziBk,ℓ

In this section, we prove Theorem 4.5. We have defined a ku version, Bk,ℓ, of

Bk,ℓ via summands in Definition 9.2 and shown in Theorem 9.3 that these summands

are what are required along with the Ak’s to fill out the E1-module H∗(K2), and we

showed in Theorem 9.4 that each Bk,ℓ is closed under the differentials of [10, Theorem

3.1]. It is worth noting, but perhaps not necessary, to point out that Bk,ℓ corresponds

to Bkzℓ ⊕ y2
k−1−1

1 qSk,ℓ ⊕ ykBkZ
ℓ
k in [10].

Most of our discussion will deal with the case i = 0 in ziBk,ℓ. We will comment

briefly on the effect of i at the end of this section. In (10.5), we gave a general

description of the corresponding ko summands, but we feel that the following explicit

example, the summands for B̃5,9 is useful in understanding the proof.

ΣM5
7 ← Σ8M4

4 Σ9M6
4 ← Σ16M4

5 Σ17M6
5 ← Σ24M5

4 Σ25M7
4 ← Σ32M4

6

Σ33M6
6 ← Σ40M5

4 Σ41M7
4 ← Σ48M5

5 Σ49M7
5 ← Σ56M6

4 Σ57M8
4 ← Σ64M0

11

Σ65M2
11 ← Σ72M1

4 Σ73M3
4 ← Σ80M1

5 Σ81M3
5 ← Σ88M2

4 Σ89M4
4 ← Σ96M1

6

Σ97M3
6 ← Σ104M2

4 Σ105M4
4 ← Σ112M2

5 Σ113M4
5 ← Σ120M3

4 Σ121M5
4 ← Σ128M1

7 (14.1)

If ℓ is increased by 1, the superscripts in the first two rows are increased by 1, except

for the last term, whose subscript is increased by 1, while the last two rows remain

unchanged except that the subscript of the first term (of the second half) is increased

by 1.
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What can be observed here, and is true in general using (10.5), is that B̃k,ℓ has

2k summands of which (a) the first half agree with those that form Eℓ−k+1,ℓ and

everything under it in Ãℓ, and (b) the second half agree with the second half of Ãk+1

except that the first summand is Σ2k+1+1M2
ℓ+2 instead of Σ2k+1+1M2

k+2.
5 (Comparison

of (14.1) and (12.1): first half of (14.1) with superscripts of all but last summand

decreased by 2 equals Σ−192 of last two rows of (12.1), while (b) last two rows of

(14.1) equals rows 3 and 4 of (12.1) except for the first (and last) summand.)

Part (2) of Theorem 4.5 follows readily from observation (a) above. The differentials

among the summands which form Eℓ−k+1,ℓ are the same regardless of whether the

summands are appearing in Ãℓ or in B̃k,ℓ. There are two differences. One is that in

B̃k,ℓ there is not an edge Eℓ−k,ℓ to be hit by the differentials in grading 4 and 5 mod 8

that occurred in Ãℓ. The other has to do with what happens to the Σ2k+1
M0

ℓ+2 at the

end of the sequence of summands being considered. In neither case does it contribute

to Eℓ−k+1,ℓ. In both cases, it has its subscript decreased k−1 times by differentials into

lightning flashes in this batch of summands. In Ãℓ, it continues to have its subscript

decreased by differentials into lightning flashes formed by earlier edges. In B̃k,ℓ, it
combines with part of the Σ2k+1+1M2

ℓ+2 which occurs at the beginning of the second

half of the list of summands forming B̃k,ℓ to form part (3) of Theorem 4.5 in a way

that we shall discuss shortly.

We explain now why the filtration of Σ2k+1
Mℓ−k+3, which is formed after the last

summand of the first half of B̃k,ℓ has its subscript reduced k−1 times, is increased by

2k − k− 1, as claimed in part (1) of the theorem. The first quarter of the summands

of B̃k,ℓ will have truncated the top part of the initial ΣM ℓ−k+1
k+2 chart k − 2 times

resulting stably in lightning flashes with initial classes in position (8i+ 2, 4i− ℓ+ 1).

[[The initial class of ΣM0
k+2 is in (2, 0), so stably the initial classes of ΣM ℓ−k+1

k+2 are

in (8i + 2, 4i − (ℓ − k + 1)), and the k − 2 truncations of the top reduce the second

component by k−2.]] Stably the last step in forming Σ2k+1
Mℓ−k+3 will be as depicted

in Figure 14.2, where the lightning flash is the one just described, and the generator

of the Z/2ℓ−k+1’s in Σ2k+1
Mℓ−k+3 will be the big dot. Since the generator of the

Z/2ℓ−k+1’s in Σ2k+1
Mℓ−k+3 are in position (2k+1+3+8j, 2−ℓ+k+4j), which must equal

5There is a difference in the last summand, too, Σ2k+2

M1
k+2 versus Σ2k+2

M0
k+3, which does not affect this

part of the analysis.
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(8i+3, 4i−ℓ+1), we obtain that the difference in filtrations is 4i−ℓ+1−(2−ℓ+k+4j) =

2k − k − 1, since 2k+1 + 8j = 8i.

Figure 14.2. Last step in forming Σ2k+1
Mℓ−k+3

u
As noted earlier, the second half of the summands of B̃k,ℓ agree with those of

the second half of Ãk+1 except that the first summand is Σ2k+1+1M2
ℓ+2 instead of

Σ2k+1+1M2
k+2.

6 The edge Σ2k+1E2,k+1 is formed from Σ2k+1+1M2
k+2 by interactions

with Σ2iM1
4 ’s formed from the summands which follow it in Ãk+1. The leftover parts

of those summands form the edges under Σ2k+1E2,k+1. The same interactions will

occur with Σ2k+1+1M2
ℓ+2, forming something that will contribute to Σ2k+1

C0,k in part

(3) of Theorem 4.5. The leftover parts from the subsequent summands will be the

same here as they were in Σ2k+1E2,k+1, as stated in part (3) of the theorem.

The Σ2k+1+1M2
ℓ+2 is interacted with by k−1 Σ2iM1

4 ’s, so that stably it is Σ
2k+1+1Mℓ−k+3.

Stably there must be differentials from this isomorphically to the Σ2k+1
Mℓ−k+3 formed

in the paragraph preceding Figure 14.2. As described in the paragraph preceding Fig-

ure 4.11 and illustrated there, we apply (v41)
−1 to obtain additional differentials. To

see that these differentials are d2k , we observe that the bottoms of the towers in the

lower half of Figure 4.11 are like those of M2
ℓ+2, while those of the top half are those

of M0
ℓ−k+3 with filtrations increased by 2k − k− 1. Noting that larger subscript of M

causes smaller filtration of generators, we obtain that the difference in filtrations of

generators is

2k − k − 1− (ℓ− k + 3)− (−(ℓ+ 4)) = 2k.

Since the differentials are d2k and Mℓ−k+3 has its filtrations increased by 2k−k−1,

all classes in Mℓ−k+3 of filtration ≤ k will not be hit. Nor will the η-pairs along the

upper edge until grading 2k+2 +2, when the final truncation in the second half of the

summands of B̃k,ℓ will have occurred.

6The difference in the last summand noted in the previous footnote affects E1,k+1 but not E2,k+1.
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This covers parts (1), (3), and (4) of Theorem 4.5 when i = 0, completing the proof

in this case, except for some fine tuning.

• We explain the last sentence of part (3) by means of an example. In B̃4,9, we have

Σ32C0,4, which is the big dots in the bottom half of Figure 4.11, and the edges under

Σ32E2,5 together with differentials involving those subedges. You should compare the

chart for E2,5 in Figure 3.11 with C0,4. Upper edge elements of E2,5 inject. However,

the classes in grading 27 and 28 indicated by big dots in Figure 3.11 are hit by

differentials from Σ16E ′3,5. The meaning of the last sentence of part (3) of Theorem

4.5 is that the corresponding elements of Σ32C0,4 are also hit by differentials from

Σ48E ′3,5.
• We explain Remark 4.6 via an example, B̃3,7. The first half of the summands are

ΣM5
5 ← Σ8M4

4 Σ9M6
4 ← Σ16M0

9 .

After the indicated d2 differentials and a filtration shift of the second half, the picture

will be as in Figure 14.3, where the portion from the first d2 is in black and the second

in red. The class in (21, 4) is in the Σ16M0
6 part of Σ16C0,3, while the class in (20, 3)

is in the E ′5,7 part of B̃3,7.
• The exotic extensions in part (4) of the theorem follow from (13.19) and the differ-

ential from the next-to-top element of one tower to the top of another, like the ones

from grading 52 and 60 in Figure 4.11. The extension and the exotic η extension

of Remark 4.7 are nicely visualized in Figure 14.4. With P3 the usual stunted real

projective space, Figure 14.4 illustrates the easily-proved result that the cofiber of

P3∧ bo
2−→ P3∧ bo equals Σ4M ∧ bo∨H, where M is the mod-2 Moore spectrum and

H a mod-2 Eilenberg MacLane spectrum. The diagram shows just the first few grad-

ings of the cofiber sequence, and indicates the gradings both in the cofiber sequence

and the corresponding elements in Figure 4.11 if filtrations of the bottom part were

increased to make the d16 differential look like a d1.
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Figure 14.3. Result from first half of summands of B̃3,7
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Figure 14.4. Cofiber of 2 on P3 ∧ bo equals Σ4M ∧ bo ∨H
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So far in this section, we have been dealing with z0B̃k,ℓ. For ziB̃k,ℓ, all summands

are obtained from the corresponding summands of B̃k,ℓ by increasing superscripts by

i. The effect on edges Ee,ℓ with e > 1 (which is all that is relevant for B̃k,ℓ) is to

increase both subscripts by i. To see this, we first observe that all summands, except

the last, in the tableau for Ee+1,ℓ+1 are obtained from those of Ee,ℓ by increasing all

superscripts by 1. This is nicely illustrated in (12.1), in which rows 3 and 4 are the

summands for E2,6, while rows 7 and 8 are the summands for E3,7. That the different

possibilities for the last summand do not affect the edge is discussed in and around

Figure 12.2 and (12.10).

The Σ2k+1
M0

ℓ+2 and Σ2k+1+1M2
ℓ+2 in the middle of the tableau for B̃k,ℓ are responsible

for parts (1), (3), and (4) of Theorem 4.5. If both superscripts are increased by i, the

filtration shift (2k − k − 1) required in forming Figure 14.2 is unchanged since both

charts have their filtrations changed by the same amount.



THE CONNECTIVE KO THEORY OF THE EILENBERG-MACLANE SPACE K(Z/2, 2) 89

The paragraph following Figure 14.2 explains that C0,k is formed from E ′2,∞ because

the second half of the summands of B̃k,ℓ (except the first) are the same as the first

2k−1 summands of Σ2k+1E2,∞. Increasing the superscripts to form ziB̃k,ℓ causes the

summands to be the same as those of Σ2k+1E2+i,∞, which is relevant in Definition 4.3.

The other thing relevant there is the function hk, which is determined by the upper

edge of the stable chart, which will be i units lower.

15. The exact ko∗-ku∗ sequence

In this section, we discuss how the exact sequence (11.10) relating ko∗(K2) and

ku∗(K2) can be used to justify the consistency of our results, and also to obtain

additional information about ko∗(K2). There are three things that make these com-

parisons somewhat cumbersome.

(1) ku∗(K2) contains filtration-0 elements due to free E1-module summands that are not

part of free A(1)-module summands. These played a significant role in [10], and also

play a significant role in analyzing the exact sequence (11.10). In Proposition 15.1,

we explain exactly where these classes occur in terms of the A(1)-module summands

with chart M i
k, which we also denote here as M i

k.

(2) We perform much shifting of filtrations in our determination of ko∗(K2). This is done

to improve the appearance of the charts and to make η extensions easier to see. This

causes the ko- and ku-charts to not match up as nicely as one might like.

(3) When elements of ko∗(K2) are involved in the homomorphism η and also in a differ-

ential in the ASS of ko∗(K2), that can cause ambiguity regarding filtration of classes.

Proposition 15.1. The free E1-module summands of the A(1)-module M i
k have gen-

erators in grading

8j + 2 if i = 4j + 1

8j + 3 if i = 4j + 2

8j + 4 if k + i = 4j + 6

8j + 5 if k + i = 4j + 7.

The A(1)-module NU in Figure 11.1, which is used in forming the charts Vk, has a

single free E1-module summand, with generator in grading 11.
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Proof. The result for M0
k is immediate from [12, Figure 2.3]. For each M i

k, it is just

a matter of drawing the A(1)-module that matches the Ext chart. We illustrate

with M1
9 . The Ext charts for M0

9 and M1
9 are shown in Figure 15.2, and then the

A(1)-module yielding the Ext chart for M1
9 is in Figure 15.3.

Figure 15.2. Ext charts for M0
9 and M1

9 .
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Our main example of the exact sequence (11.10) will be for Ã3. In Figure 15.4, we

present the ko and ku versions from Figure 2.1 and [7, Figure 2]. The tableau for Ã3,

from (10.2), is

V3 ← Σ8M0
4 Σ9M2

4 ← Σ16M0
5 .

By Proposition 15.1, the ku version Ã3 will have additional filtration-0 classes in

gradings 3, 12, and 13, which have been incorporated into Figure 15.4.
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Figure 15.4. Ã3 and Ã3.
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One convenient way of seeing how the exact sequence (11.10) can be used to relate

ko∗(X) and ku∗(X) is to draw ko∗(X)⊕ko∗(Σ
2X), with differentials for the action of

η. What is left after the differentials should be ku∗(X). We have done this for Ã3 in

Figure 15.5. In order to illustrate difficulty (3) listed at the beginning of this section,

we have also included the classes involved in the d7-differential from Σ8E ′2,3 to E ′1,3.

Figure 15.5. Forming Ã3 from Ã3 ⊕ Σ2Ã3.
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The classes which remain in the left half of Figure 15.5 agree with the left half of

the ku chart in Figure 15.4 except for the filtration of the class in grading 3. The

class in (3, 3) in Ã3 was initially in filtration 0, but had its filtration increased to 3



92 DONALD M. DAVIS

for reasons discussed prior to Figure 11.3, so this is an example of difficulty (2) in the

ko-ku comparison.

In the right side of Figure 15.5, note that two classes in grading 13 are hitting

the top class in 12, one due to an Adams differential and the other due to the η

homomorphism. If we had removed the classes involved in the Adams differential, it

would have looked like the ku class in grading 13 should have filtration 6. But if we

had removed the Ext classes involved in the η homomorphism first, then a filtration-0

class in 13 would be left, which is where it should be in the ku chart. Similarly, one

class in grading 14 can be considered to have either filtration 1 or 7, depending on

whether the η is considered before or after the Adams differential.

So you can see that the exact sequence works, but care is required. For our final

example, we consider B3,4, but in much less detail. We compare Figures 4.1 and 4.2.

Proposition 15.1 will add filtration-0 Z2’s to Figure 4.1 in grading 68, 70, 74, 78, 84,

90, 94, 98, and 100.

We make the following observations:

• The lightning flash in the middle of Figure 4.2 plus its double suspension with η

differential exactly gives the v-tower from (81, 0) in Figure 4.1, but with filtration 4

larger.

• One justification for the filtration increases of the middle lightning flash and the high

η pair in Figure 4.2 is that the last two classes in the middle lightning flash and the

high η pair are both in im(v41). This is not the case in the ku situation for parity

reasons.

• One way to see that η is nonzero on the class in (88, 0) in Figure 4.2 is that the

element in grading 89 must be in im(η) because it must map trivially in (11.10) since

the ku group is 0 in grading 89.

• If the high η pair in 89 and 90 are lowered to filtration 1 and 2 and the η inserted on the

class in (88, 0), the analogue of the analysis like that in Figure 15.5 is straightforward.

16. Consequences for Spin manifolds

In this section, we review the relationship of ko∗(K2) to Stiefel-Whitney classes

and immersions of Spin manifolds, and prove Theorem 1.1, building on work done by

the author and W.S.Wilson in [11].
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The generalized homology theory associated to the Thom spectrum MSpin has the

property that MSpinn(K(Z2, k)) is the set of cobordism classes of pairs (M,x), where

M is an n-dimensional Spin manifold and x ∈ Hk(M,Z2). ([3]) By [1], localized at

2, bo is a split summand of MSpin, and so kon(K(Z2, k)) is a direct summand of

MSpinn(K(Z2, k)). In particular, all of the elements in our calculation of kon(K2)

give cobordism classes of pairs, an n-dimensional Spin manifold M together with an

element of H2(M ;Z2).

The following result was proved in [10, Theorem 1.2].

Theorem 16.1. Let h : ko∗(X) → H∗(X;Z2) denote the Hurewicz homomorphism.

There exists an n-dimensional Spin-manifold M with nonzero dual Stiefel-Whitney

class wn−k(M) if and only if there exists an element α ∈ kon(K(Z2, k)) such that

⟨χ Sqn−k ιk, h∗(α)⟩ ≠ 0.

Here χ is the antiautomorphism of the Steenrod algebra, and ιk is the fundamental

class in Hk(K(Z2, k);Z2).

Dual Stiefel-Whitney classes are important because if wc(M) ̸= 0 for an n-manifold

M , then M cannot be immersed in Rn+c−1. Thus we have the following corollary of

our new result, Theorem 1.1.

Corollary 16.2. The values of n for which there exists an n-dimensional Spin man-

ifold that does not immerse in R2n−3, detected by Stiefel-Whitney classes, are exactly

all 2-powers ≥ 8.

Proof of Theorem 1.1. It was shown in [11, Theorem 1.2] that a necessary condition

for existence of an n-dimensional Spin-manifold M with wn−k(M) ̸= 0 is χ Sqn−k ιk ̸∈
im(Sq1, Sq2), and in [11, Theorem 1.3] it was shown that χ Sqn−2 ι2 ̸∈ im(Sq1, Sq2)

if and only if n or n − 1 is a 2-power ≥ 8. It was shown in [6] that χ Sq2
e−1 =

Sq2
e−1

Sq2
e−2 · · · Sq1 and χ Sq2

e−2 = Sq2
e−1

Sq2
e−2 · · · Sq2 .

Thus χ Sq2
e−2 ι2 = ι2

e−1

2 . The bottom class of Ak is dual to ι2
k
. This follows from

Definition 9.2 and the definition of Âo
k in Section 10. Since the bottom class of Ak

supports a nonzero subgroup of ko2k+1(K2) for k ≥ 2, its generator gives the desired

element α in Theorem 16.1.
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On the other hand, the class of lowest grading in our A(1)-module Mk+2 equals

χ Sq2
k+2−1 ι2 mod decomposables. This follows from [12, Theorem 2.2] since

Sq2
k+1 · · · Sq1 ι2 = uk+2,

a multiplicative generator of H∗(K2). By Definition 9.2 and its adaptation to Âo
k,

Mk+2 occurs at the end of Âo
k. Its class of lowest grading supports a differential. To

see this, note that in Definition 3.19,Mk+2 becomes the Σ2k+1
M0

4 at the end of the

sequence defining E ′1,k. (Mk+2 has an additional Σ2k+1
since E ′1,k is for Ãk, while Â

o
k is

for Ak.) In forming (3.20), Σ−2k+1Mk+2 started as Σ2k+1
M0

k+2 but had its bottom cut

down by differentials k− 2 times, turning it into Σ2k+1
M0

4 . Because of the differential

on the class arising from χ Sq2
k+2−1 ι2, we deduce that when n is of the form 2e + 1

and k = 2, there is no class that works as α in Theorem 16.1.

Using Ã4 as an example, in Figure 3.21 the class in grading 33 is the class supporting

the differential discussed here. It started as the Σ32M0
6 at the end of the first row

of (12.1) but became M0
4 after differentials into the Σ25M3

4 preceding it and into the

resultant of the arrow preceding that. Its filtration was increased several times.

17. ko∗(K2)

In this section, we state results regarding ko∗(K2) and several duality relationships.

As we did for ku∗(K2) in [10], we depict charts with ko-cohomology grading increasing

from right to left.

Definition 17.1. We define Ã∗
k for k ≥ 2 and (ziB̃k,ℓ)∗ for 1 ≤ k < ℓ to be the ko-

cohomology charts obtained by applying ExtA(1)(Z2,−) to the A(1)-modules Âo
k and

ziB̂o
k,ℓ defined in Section 10, and incorporating differentials and extensions in the ASS,

and filtration increases of the sort used above. Also A∗
k = Σ2k+1Ã∗

k and (ziBk,ℓ)∗ =

Σ2ℓ+2
(ziB̃k,ℓ)∗. We define A∗

1 by incorporating d2 differentials into ExtA(1)(Z2, U⊕N),

similarly to Figure 11.11.

The proof of the following analogue of Theorem 1.3 is identical to that of Theorem

1.3, which appeared in Section 10.
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Theorem 17.2. There is an isomorphism of ko∗-modules

ko∗(K2) ≈
⊕
k≥1

⊕
i≥0

Σ2k+2iA∗
k ⊕

⊕
1≤k<ℓ

⊕
i,j≥0

Σ2k+2i+2ℓ+3j(zα(j)Bk,ℓ)∗

plus a trivial ko∗-module.

The next two results, which, with Theorem 17.2, determine ko∗(K2), are proved in

Section 18.

Theorem 17.3. For any i, there is an isomorphism of ko∗-modules

(ztB̃k,ℓ)∗ ≈ (z4i−ℓ−tB̃k,ℓ)2k+2+8i+4−∗, (17.4)

where ziB̃k,ℓ is as determined in Theorem 4.5.

The value of i is irrelevant since (zr+4B̃k,ℓ)∗+8 ≈ (zrB̃)∗. One would usually choose

i so that 0 ≤ 4i − ℓ − t ≤ 3. Since ko∗ = ko−∗, the right hand side of (17.4) is a

ko∗-module. Since we picture ko∗(−) charts with gradings increasing from right to

left, the charts on both sides of (17.4) will look the same. For example, the charts in

Figure 4.10 for i = 1, 2, 3 can be interpreted as charts of (ztB3,4)∗ for t = 3, 2, 1 if

the indicated gradings x are replaced by 52− x.

Theorem 17.5. For t ≥ 1 and ε ∈ {1, 2}, Ã∗
2t+ε is (2

2t+ε+1+8t+4)-dual to the chart

described as follows. Let e = 2t + 2 − ε and ℓ = 4t + 1, and T = 22t+ε+1 + 8t − 2.

For e ≤ e′ ≤ 4t, let D = 2ℓ−e+2 − 2ℓ−e′+2 and let ΣDEse′,ℓ be a modified version of

ΣDE ′e′,ℓ which extends the sequence of lightning flashes or portions thereof through

grading T . The chart is formed from these together with all edges under them with

second subscript < ℓ, and including differentials and extensions among these edges and

subedges as described in Theorems 3.10 and 3.22. There are additional differentials on

the added lightning flashes with e′ < e on classes in grading 4 or 5 mod 8. There are

additional classes x ∈ (T −1, 0), y ∈ (T, 0), and ηx = 2y, with d2(x) ̸= 0. Finally, all

of the new classes (except y and those in Ese,ℓ) have exotic extensions into the classes

above them.

For k ≤ 2, Ã∗
k does not quite fit the theorem. In Figures 17.7, 17.8, and 17.9, we

display A∗
1 and Ã∗

k for 2 ≤ k ≤ 5. Keep in mind that Ã∗
k is always suspended by odd

multiples of 2k+1 in ko∗(K2) if k ≥ 2.
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We illustrate the theorem with Ã∗
5. It is 84-dual to a chart which we now describe.

For comparison, use Figure 17.9 with grading x replaced by 84 − x. Start with E ′5,9
in Figure 3.15 with its last lightning flash completed and followed by one more (in

grading 74 to 78). The classes in Figure 3.15 with big dots are hit by differentials,

but the ones with circles do not support differentials. Next we add Σ32E ′6,9, Σ48E ′7,9,
and Σ56E ′8,9 (use Figure 3.11 with these replaced by Σ40E ′2,5, Σ56E ′3,5, and Σ64E ′4,5)7

extended through grading 78, which means that the latter two must have lightning

flashes completed, and one additional lightning flash added to Σ40E ′2,5 in grading 74

to 78. Big dots and circles in these will all take effect. Also add subedges of all of

these with second subscript < 9, but do not extend them. Add classes x and y as in

Theorem 17.5, and insert differentials and extensions as in Figure 17.6, in which the

E5,9 part should be 11 higher.

7The extra Σ8 is due to increasing subscripts by 4.
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Figure 17.6. Forming the end of (the 84-dual of) Ã∗
5
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Figure 17.7. Charts for k ≤ 3
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Ã∗
2

Ã∗
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Figure 17.8. Ã∗
4
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Figure 17.9. Ã∗
5
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We close this section by discussing Theorem 1.4, which establishes duality between

ko∗(K2) and ko∗(K2). Here is the proof. Note that [13, Corollary 9.3] says that

R = ko satisfies the hypothesis of [7, Theorem 3.1] with a = 6, while X = K2 has

ko∗(X) torsion-free by our calculation or by [2], implying Theorem 1.4 by [7, Theorem

3.1].

Similarly to an observation in Section 8, the actions of ·2 and η in the Pontryagin

dual appear backwards from the usual interpretation. The duality in Theorem 1.4

applies to each Ak. For example compare Figures 2.3 and 17.9. The actual A5 would

have gradings of each increased by 64. The generator g of (ko6(Ã∗
5))

∨ is the class in

filtration 31. Then 25g is the class in filtration 0, and η2g ̸= 0. This corresponds to

the class in position (0, 0) in Figure 2.3. At the other end of the charts, the class g′

in (66, 0) in Figure 2.3 of order 4 with ηg′ ̸= 0 corresponds to the class in (72, 1) in

the Pontryagin dual of Figure 17.9.

The duality in Theorem 1.4 also applies to each ztB̃k,ℓ. Combining Theorems 1.4

and 17.3 yields

(ztB̃k,ℓ)∗ ≈ (ztB̃k,ℓ)∗+6 ≈ (z4i−ℓ−tB̃k,ℓ)2k+2+8i−2−∗. (17.10)

This gives duality relations among ztB̃k,ℓ charts. For example, for 1 ≤ t ≤ 3, let i = 2

and obtain

(ztB̃3,4)∗ ≈ (z4−tB̃3,4)46−∗,

an isomorphism as ko∗-modules, using the dual action of ko∗ on the right hand side.

Refer to Figure 4.10. You can observe that the charts for zB̃3,4 and z3B̃3,4 are 46-

dual, and the chart for z2B3,4 is 46-self-dual. Note how the exotic ·2 and η extensions

between gradings 32 and 34 in z2B̃3,4 are dual to the nice part of the chart between

gradings 12 and 14. Using (17.10) with ℓ = 2ℓ′ and t = 2i−ℓ′, we obtain the following

generalization.

Proposition 17.11. If ℓ is even and t ≡ ℓ
2
mod 2, then ztB̃k,ℓ is (2k+2+4t+2ℓ−2)-

self-dual.

18. Proofs of ko∗(K2) theorems

In this section, we prove Theorems 17.3 and 17.5. We begin by recalling from [12]

results about ExtA(1)(Z2,−) applied to the A(1)-modules in the splitting of H∗(K2).
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For k ≥ 4 , let M̃k = Σ−2kMk be the A(1)-module introduced early in Section

10, and for r ≥ 0 let M r∗
k denote the chart obtained by applying ExtA(1)(Z2,−) to

Σ−4DzJM̃k, where zJM̃k = zj1 · · · zjrM̃k is a module defined in [12, Definition 3.3]

and D =
∏

2ji . In Figure 18.1, we repeat [12, Figure 4.1], which shows M0∗
k for

5 ≤ k ≤ 7, illustrating what we hope is an obvious pattern.

Figure 18.1. M0∗
k

s s s sss s s
s ss

s s ssss s s
s ss ss

s s s sssss s s. .
.

. .
.

. .
.

4 0 8 04 9 4 0
k = 5 k = 6 k = 7

In [12, Proposition 2a] it is shown that M r∗
k is formed from M0∗

k by increasing all

filtrations by r and extending to the left using v41-periodicity. See Figure 18.2 for

M2∗
5 . Clearly M

(r+4)∗
k = Σ8M r∗

k .

The tableau for (ztB̃k,ℓ)∗ is obtained from that of ztB̃k,ℓ by applying ∗ to all the

summands, reversing the order of the list of summands, and reversing the direction

of the arrows. For example, the first (of four) rows of (B̃5,9)∗ is obtained from (14.1)

to be

Σ128M1∗
7 ← Σ121M5∗

4 Σ120M3∗
4 ← Σ113M4∗

5 Σ112M2∗
5 ← Σ105M4∗

4 Σ104M2∗
4 ← Σ97M3∗

6 .

The following result says that if i+ j + k ≡ 0 mod 4, then the charts M i
k and M j∗

k

are (2(i+ j + k)− 5)-dual. We illustrate in Figure 18.2.

Figure 18.2. Dual M5’s.

3 7 11 8 4 0
s ss s s s s s sss s s

s ss s s s s s sss s s
M1

5 M2∗
5

Proposition 18.3. Let S = i+ j + k. If S ≡ 0 mod 4, then (M i
k)x ≈ (M j∗

k )2S−5−x.
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Proof. First note that M0∗
k leaves filtration 0 in the same way that M i

k does when

k + i ≡ 0 mod 4, by Figures 12.7 and 18.1. Since they have the same k, hence the

same maximal heights, we deduce that if k + i ≡ 0 mod 4, then M i
k and M0∗

k (drawn

cohomologically) are isomorphic up to grading. Next note that M3
5+4t, M

2
6+4t, M

1
7+4t,

and M0
8+4t all leave filtration 0 in grading 11 + 8t, while, for any k, M0∗

k does so in

grading 0. With S = 8 + 4t and x = 11 + 8t, 2S − 5− x = 0, so the gradings in the

proposition work if i ≤ 3. Increasing i by 4 adds 8 to where M i
k leaves filtration 0, so

the proposition is true if j = 0.

If the proposition is true for (i, j, k), then it is true for all (i′, j, k) with i′ ≡ i mod

4, since increasing i by 4 suspends M i
k by 8. Let (i, j, k) be arbitrary with i+j+k ≡ 0

mod 4. The proposition is true for (i′, 0, k) with i′ ≡ i + j mod 4 and i′ > j. Since

changing (i, j) from (i′, 0) to (i′ − j, j) increases filtration by j in both M i
k and M j∗

k ,

the proposition is true for (i′ − j, j, k) and hence also for (i, j, k).

The proof of Theorem 17.3 follows from combining Proposition 18.3 with the ob-

servation preceding it about the tableau for ztB̃k,ℓ. The details are a bit delicate, so

we provide two examples.

The first four terms of the tableau for (ztB̃5,9)∗ are

Σ128M
(1+t)∗
7 ← Σ121M

(5+t)∗
4 Σ120M

(3+t)∗
4 ← Σ113M

(4+t)∗
5 .

By Proposition 18.3, this is isomorphic to

(M8−t
7 )155−∗ ← (M7−t

4 )148−∗ (M9−t
4 )147−∗ ← (M7−t

5 )140−∗.

This could also written as

(ΣM8−t
7 )156−∗ ← (Σ8M7−t

4 )156−∗ (Σ9M9−t
4 )156−∗ ← (Σ16M7−t

5 )156−∗,

which are the first four terms of the tableau for (z3−tB̃5,9)156−∗ (see (14.1)), consistent

with Theorem 17.3.

For a more general verification, we compare dual terms in (10.5). The (2i + 1)st

term in the first half of the tableau for (ztB̃k,ℓ)∗ is

Σ8(2k−1−i−1)+8(M
α(2k−1−1−i+1)−1+t

4+ν(2k−1−1−i+1)
)∗ = Σ2k+2−8i(M

k−2−α(i−1)+t
4+ν(i) )∗.

Since α(i) = α(i− 1) + 1− ν(i), Proposition 18.3 implies that this equals

(M
−k−t+α(i)+1+4j
4+ν(i) )2k+2−8i+8j+3−∗, (18.4)
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where j is chosen so that −k− t+ α(i) + 1 + 4j ≥ 0. The (2i+ 1)st term in the first

half of the tableau for (z4j−ℓ−tB̃k,ℓ)2k+2+8j+4−∗ is

(Σ8i+1M
ℓ−k+α(i)+1+4j−ℓ−t
4+ν(i) )2k+2+8j+4−∗.

With a little manipulation, this equals (18.4).

Proof of Theorem 17.5. It is easy to verify, using Proposition 18.3, that the tableau

for Ã∗
2t+ε is (2

2t+ε+1 +8t+4)-dual to that of E ′2t+2−ε,4t+1, except at the right end. We

illustrate with Ã∗
5. We write each row of the tableau for E ′5,9 directly beneath that of

Ã∗
5, and observe the 84-duality, since 84 = 65 + (2 · 12− 5).

Σ64M0∗
7 ← Σ57M4∗

4 Σ56M2∗
4 ← Σ49M3∗

5 Σ48M1∗
5 ← Σ41M3∗

4 Σ40M1∗
4 ← Σ33M2∗

6

ΣM5
7

5,9←Σ8M4
4 Σ9M6

4

6,7←Σ16M4
5 Σ17M6

5

6,8←Σ24M5
4 Σ25M7

4

7,8←Σ32M4
6 (18.5)

Σ32M0∗
6 ← Σ25M3∗

4 Σ24M1∗
4 ← Σ17M2∗

5 Σ16M0∗
5 ← Σ9M2∗

4 Σ8M0∗
4 ← V ∗

5

Σ33M6
6

6,9←Σ40M5
4 Σ41M7

4

7,8←Σ48M5
5 Σ49M7

5

7,9←Σ56M6
4 Σ57M8

4

8,9←Σ64M0
11 (18.6)

The chart V ∗
k is formed from ExtA(1)(Z2,Z2 ⊕ Σ−8NU) with dk+1 differentials,

similarly to Vk discussed early in Section 11. The module NU is shown in Figure

11.1, and ExtA(1)(Z2,Σ
−8NU) is easily calculated to be the black part of Figure 18.7,

which includes ExtA(1)(Z2,Z2) in red, and a d6 differential, relevant for V ∗
5 . The

right side of Figure 18.7 shows the result after filtrations are increased to make the

differential a d1. Except for the classes in grading 6 and 7, it looks like a Moore

spectrum M(2k−1). The η extension from −2 to −3 follows from (11.2).

Figure 18.7. Forming V ∗
5
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.
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We illustrate the proof using k = 5, but the argument clearly generalizes. It seems

easiest to use the gradings of E ′5,9 and dualize (84− ∗) the gradings of Ã∗
5. Until the

end part of their tableaux (V ∗
5 or Σ64M0

11), the charts and differentials in forming Ã∗
5

and E ′5,9 are the same. In Figure 18.8, we compare V ∗
5 (with the dual gradings) and

Σ64M0
11. Note especially that their lower edges agree in grading ≥ 83.

Figure 18.8. Comparing V ∗
5 and Σ64M11

0

. .
.

. .
.

77 83 87 67 71 75 79 83 87

V ∗
5 (dual gradings)

Σ64M0
11

s ss
ss
ss s s ss

ssss

s s sss ss
ss

s s sssssss s ss
ss
ss
s s s sssssssss s s ss

ss
ss
s

In forming E ′5,9, the Σ64M0
11 will be modified four times, to ΦΣ64M0

10, then Φ3Σ64M0
9 ,

then Φ7Σ64M0
8 , and finally Φ15Σ64M0

7 , by having its lower edge hit a lightning flash

with a d1. These lightning flashes are first Σ57M8
4 , then the result of the

7,9← preceding

it, then the result of the first two arrows of the second row of (18.6), and finally the

result of the arrows in the second row of (18.5). This hitting into lightning flashes

will also take place in forming Ã∗
5, each time reducing the M(24) by one 2-power,

until after four such d1’s, it has vanished (except for the classes in 77 and 78).

The difference between forming E ′5,9 and Ã∗
5 is that prior to grading 83 these four

stable lightning flashes, which in forming E ′5,9 were interacting with parts of the mod-

ifications of Σ64M0
11, have nothing to interact with in forming Ã∗

5. So they are present

in Ã∗
5, as extensions of sequences of lightning flashes that were modified in forming

E ′5,9. Beginning in grading 82, they are terminated. The differentials and extensions

among these lightning flashes follow for many reasons: v41-periodicity from earlier

ones, comparison with ku, or Toda bracket arguments.
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19. Appendix: Notation and some terminology

In this appendix, we list our specialized notation and a few items of terminology,

in roughly alphabetical order.

Ak §1 summand of ku∗(K2)

Ak §1 ko∗ analogue of Ak

Ãk §2, Thm.3.1 Σ−2k+1Ak

Ak §1, §12 ku∗ analogue of Ak

Ãk §13.3 Σ−2k+1
Ak

A∗
k Def.17.1 ko∗ analogue of Ak

Ã∗
k Def.17.1 Σ−2k+1A∗

k

Âk Def.9.2 E1-submodule of H∗(K2) corresponding to Ak

Âo
k §10 A(1)-module analogue of Âk

A(1) §10 subalgebra of Steenrod algebra generated by Sq1 and Sq2

α(n) §1 number of 1’s in binary expansion of n

ASS §1 2-primary Adams spectral sequence

Bk §1 summand of ku∗(K2)

Bk,ℓ §4 summand of ku∗(K2) corresponding to two Bk’s and Sk,ℓ

Bk,ℓ §1, §4 ko∗ analogue of Bk,ℓ

B̃k,ℓ §4 Σ−2ℓ+2Bk,ℓ
B̂k,ℓ Def.9.2 E1-submodule of H∗(K2) corresponding to Bk,ℓ

B̂o
k,ℓ §10 A(1)-submodule of H∗(K2) corresponding to Bk,ℓ

bi(M) §9 ith generator or v-tower from bottom of an E1-module M

c §11 complexification ko→ ku

Ck Def.9.1 a certain E1-submodule of H∗(K2)

Ci,k Def.4.3 a chart which appears in ziB̃k,ℓ
dr §8 differential in ASS for ku∗(K2), increasing y by r

dr §8 differential in ASS for ku∗(K2), increasing y by r

Ee,ℓ §3, Thm.6.6 edges which form ko∗(K2) and ko∗(K2)

E ′e,ℓ Def.3.8 pre-edges: Ee,ℓ prior to certain differentials

E1 §8 subalgebra of Steenrod algebra generated by Q0 and Q1
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E2 page §7, §9 the initial stage of a spectral sequence

η §2 nonzero element of ko1 (corresponds to Hopf map)

fb(i) Thm.6.6, Table 1 function telling how many classes hit by differentials

Φi Def.3.18 increases filtration of a chart by i

Γk §9 exterior algebra on {yi : i ≥ k}
h0, h1 §11 elements in Ext corresponding to 2 and η

hk Def.4.3 a height function

H∗(K2) §8 cohomology with Z2 coefficients

Ik Def.6.1 E1,k in grading < 8

J(k, i) Def.9.1 a useful function

K2 §1 Eilenberg-MacLane space K(Z2, 2)

ko∗ §1 connective KO homology

ko∗ §1 connective KO cohomology

ku∗ §1 connective KU homology

ku∗ §1 connective KU cohomology

Kt,ε(x, y) Def.6.4 charts depicted in Figure 6.5

L(8a) §13.1 label of W 8a−7 ← W 8a

Lt,ε(x, y) Def.6.1 charts depicted in Figure 6.2

Λk §8 exterior algebra on {zi : i ≥ k}
lg(i) Thm.6.3 [log2(i)]

lightning flash §1 a frequently-occurring chart with 6 classes

Mk §8 E1-modules from [10]

Mk §9 ku∗ chart for the module Mk

Mk §10 A(1)-module corresponding to Mk

M̃k §10 Σ−2kMk

M i
k §3 ko∗ chart for M̃k with filtrations decreased by i

M i
k §15 A(1)-module with chart M i

k

M i
k §13.2 ku analogue of the chart M i

k

M i∗
k §18 ko-cohomology analogue of M i

k

M̂ s
4 Def.3.5 M s

4 with 0 or 1 classes adjoined

stably Mk Def.3.7, §13 the behavior of any M i
k in large gradings
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M(n) Def.3.19, §12 mod n Moore spectrum or ko∗(M(n))

MSpin §16 Spin cobordism spectrum

N Figure 8.5 an E1-module which admits structure of A(1)-module

NU §10 an A(1)-module corresponding to the E1-module y1N

ν(n) §9 the exponent of 2 in n

P §10 the Poincaré series of a graded vector space

pre-edge Def.3.8 generic term for E ′e,ℓ
M∨ §1, §8, §17 The Pontryagin dual, Hom(M,Z/2∞), of M

q §8 an element of H9(K2)

Q0 §8 another name for Sq1

Q1 §8 the Milnor primitive Sq3+Sq2 Sq1

R §6 ko∗ in grading 0, 1, and 2

Σi throughout i-fold suspension, raises grading by i

Sqi §10, §13.2, §16 generators of the Steenrod algebra

Sk,ℓ §1 a factor of summands of ku∗(K2)

τi(M) §9 ith generator or v-tower from top of an E1-module M

U §10 A(1)-module corresponding to y1

v §8 generator of ku−2 or ku2; Bott periodicity element

v-tower §1, §8 portion of a ku∗ or ku∗ chart consisting of elements vix

v41 §3 filtration-4 element of ko8; Adams periodicity element

Vk Def.3.19 initial step in forming E1,k
wi Thm.1.1, 16.1 dual Stiefel-Whitney classes

W n §13.1 ΣnM term in a tableau

W n
i §13.1 W n with subscript of M decreased by i

χ §16 the antiautomorphism of the Steenrod algebra

y1 §8 element of H4(K2)

yk §9 y2
k−1

1

Yj,k §9 term in Ck containing yj1 as factor

Z2 §1 group of order 2

zj §8, §9 an element of H2j+2+2(K2)

zi,j §9 z2i zi+1 · · · zj−1
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Zℓ
k §9 zkzk+1 · · · zℓ−1

zJMk §10 = zj1 · · · zjrMk is an A(1)-module from [12]

zi §4 product of i distinct Σ−2j+2
zj’s

ziBk,ℓ §1, §4, §10 chart like Bk,ℓ but built from Ma+i
b

ziB̃k,ℓ §4, §10, §14 Σ−2ℓ+2
ziBk,ℓ

ziB∗
k,ℓ §17 ko∗ analogue of ziBk,ℓ

ziB̃∗
k,ℓ §17 ko∗ analogue of ziB̃k,ℓ

z(n) Def.9.1
∏

zji where n =
∑

2ji
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