On-line Math 21

On-line Math 21

5.1  The definition of the Riemann Integral

Example 3
ó
õ
1

0 
x2dx = 1
3
.

Solution

Proceed as with the previous example, presuming that the limit exists. Then, we can just look at uniform subdivisions and circumscribed rectangles, as before. With n subintervals, then xi = 0+i/n , and since we are using circumscribed rectangles and f(x) is increasing, then xi* = xi in each case (the right-hand edge of the ith subinterval gives f the largest value in that subinterval). So the Riemann sum is:
n
å
i = 1 
f(xi)Dxi
=
n
å
i = 1 
( xi) 2 æ
ç
è
1
n
ö
÷
ø
=
n
å
i = 1 
æ
ç
è
i
n
ö
÷
ø
2

 
æ
ç
è
1
n
ö
÷
ø
=
1
n2
n
å
i = 1 
i2
=
1
n2
n(n+1)(2n+1)
6
.
Taking the limit as n® ¥, which also implies that the mesh of these subintervals goes to 0, we have
ó
õ
1

0 
x2dx
=

lim
n® ¥ 
n
å
i = 1 
f(xi)Dxi
=

lim
n® ¥ 
n(n+1)(2n+1)
6n3
=
1
3
.

Copyright (c) 2000 by David L. Johnson.


File translated from TEX by TTH, version 2.61.
On 29 Dec 2000, 22:52.