On-line Math 21

On-line Math 21

5.2  The Fundamental Theorem of Calculus

Theorem 1 Let f be a continuous function on an open interval containing [a,b] . Set
G(x): = ó
õ
x

a 
f(t)dt.
Then, G(x) is differentiable on [a,b] and its derivative is f , that is, G¢(x) = f(x).

Proof:

Define G as in the statement. Then, compute the derivative:
G¢(x)
: =

lim
h® 0 
G(x+h)-G(x)
h
=

lim
h® 0 
ó
õ
x+h

1 
f(t)dt- ó
õ
x

1 
f(t)dt

h
=

lim
h® 0 
ó
õ
x+h

1 
f(t)dt+ ó
õ
1

x 
f(t)dt

h
=

lim
h® 0 
ó
õ
1

x 
f(t)dt+ ó
õ
x+h

1 
f(t)dt

h
=

lim
h® 0 
ó
õ
x+h

x 
f(t)dt

h
=

lim
h® 0 
f(c)((x+h)-x)
h
, by the MVT, integral form.
=

lim
h® 0 
f(c)
f(x), since c is between x and x+h.

Copyright (c) 2000 by David L. Johnson.


File translated from TEX by TTH, version 2.61.
On 1 Jan 2001, 12:02.