On-line Math 21
On-line Math 21
3.1 Trigonometric functions
3.1.1 Limits of trig functions
Example 1
Solution
We could start over, going through the same sort of geometric-trigonometric
arguments that we did for the limit of sin(x) . But, instead, we can
be trickier.
|
|
|
( cos(x)-1) ( cos(x)+1) x( cos(x)+1)
|
|
| |
|
| |
|
|
|
Now, after that trick, the numerator has been transformed into sin(x)
(well, two of them). But one of those sin(x) 's can be used to cover
the x in the denominator:
|
|
|
lim
x® 0
|
|
-sin2(x) x(cos(x)+1)
|
|
| |
|
- |
lim
x® 0
|
|
æ ç
è
|
|
sin(x) x
|
ö ÷
ø
|
|
æ ç
è
|
|
sin(x) (cos(x)+1)
|
ö ÷
ø
|
|
| |
|
- |
æ ç
è
|
|
lim
x® 0
|
|
-sin2(x) x(cos(x)+1)
|
ö ÷
ø
|
|
æ ç
è
|
|
lim
x® 0
|
|
sin(x) (cos(x)+1)
|
ö ÷
ø
|
|
| |
|
| |
|
|
|
Copyright (c) 2000 by David L. Johnson.
File translated from
TEX
by
TTH,
version 2.61.
On 24 Nov 2000, 22:54.