On-line Math 21

On-line Math 21

3.1  Trigonometric functions

3.1.1  Limits of trig functions

Example 1

lim
x® 0 
cos(x)-1
x
= 0

Solution

We could start over, going through the same sort of geometric-trigonometric arguments that we did for the limit of sin(x) . But, instead, we can be trickier.
cos(x)-1
x
=
( cos(x)-1) ( cos(x)+1)
x( cos(x)+1)
=
cos2(x)-1
x( cos(x)+1)
=
-sin2(x)
x(cos(x)+1)
.
Now, after that trick, the numerator has been transformed into sin(x) (well, two of them). But one of those sin(x) 's can be used to cover the x in the denominator:

lim
x® 0 
cos(x)-1
x
=

lim
x® 0 
-sin2(x)
x(cos(x)+1)
=
-
lim
x® 0 
æ
ç
è
sin(x)
x
ö
÷
ø
æ
ç
è
sin(x)
(cos(x)+1)
ö
÷
ø
=
- æ
ç
è

lim
x® 0 
-sin2(x)
x(cos(x)+1)
ö
÷
ø
æ
ç
è

lim
x® 0 
sin(x)
(cos(x)+1)
ö
÷
ø
=
-( 1) 0
2
=
0.

Copyright (c) 2000 by David L. Johnson.


File translated from TEX by TTH, version 2.61.
On 24 Nov 2000, 22:54.