On-line Math 21
On-line Math 21
3.3.4 Derivatives of other Exponential and Logarithmic functions
Derivatives of exponential functions
Example 2
If
f(x) = |
(x2+3)4e3x (x-3)(2x+5)2
|
, |
|
find f¢(x) .
Solution
|
|
ln |
æ ç
è
|
|
(x2+3)4e3x (x-3)(2x+5)2
|
ö ÷
ø
|
|
| |
|
ln( (x2+3)4e3x) -ln( (x-3)(2x+5)2) |
| |
|
4ln( x2+3) +3xln( e) -ln( x-3) -2ln( 2x+5) |
| |
|
4ln( x2+3) +3x-ln( x-3) -2ln( 2x+5) , |
|
|
so
|
|
( 4ln( x2+3) +3x-ln( x-3) -2ln( 2x+5) ) ¢ |
| |
|
|
8x x2+3
|
+3- |
1 x-3
|
- |
4 2x+5
|
, |
|
|
which means that
|
|
f(x) |
æ ç
è
|
|
d dx
|
ln(f(x)) |
ö ÷
ø
|
|
| |
|
|
æ ç
è
|
|
(x2+3)4e3x (x-3)(2x+5)2
|
ö ÷
ø
|
|
æ ç
è
|
|
8x x2+3
|
+3- |
1 x-3
|
- |
4 2x+5
|
ö ÷
ø
|
. |
|
|
This may not be terribly pretty, but it is simpler than doing it directly.
Copyright (c) 2000 by David L. Johnson.
File translated from
TEX
by
TTH,
version 2.61.
On 28 Nov 2000, 22:44.