On-line Math 21

On-line Math 21

3.3.4  Derivatives of other Exponential and Logarithmic functions

  Derivatives of exponential functions

Example 2 If
f(x) = (x2+3)4e3x
(x-3)(2x+5)2
,
find f¢(x) .

Solution


ln(f(x))
=
ln æ
ç
è
(x2+3)4e3x
(x-3)(2x+5)2
ö
÷
ø
=
ln( (x2+3)4e3x) -ln( (x-3)(2x+5)2)
=
4ln( x2+3) +3xln( e) -ln( x-3) -2ln( 2x+5)
=
4ln( x2+3) +3x-ln( x-3) -2ln( 2x+5) ,
so
d
dx
ln(f(x))
=
( 4ln( x2+3) +3x-ln( x-3) -2ln( 2x+5) ) ¢
=
8x
x2+3
+3- 1
x-3
- 4
2x+5
,
which means that
df
dx
=
f(x) æ
ç
è
d
dx
ln(f(x)) ö
÷
ø
=
æ
ç
è
(x2+3)4e3x
(x-3)(2x+5)2
ö
÷
ø
æ
ç
è
8x
x2+3
+3- 1
x-3
- 4
2x+5
ö
÷
ø
.
This may not be terribly pretty, but it is simpler than doing it directly.

Copyright (c) 2000 by David L. Johnson.


File translated from TEX by TTH, version 2.61.
On 28 Nov 2000, 22:44.