On-line Math 21
 
On-line Math 21 
      
3.3.4  Derivatives of other Exponential and Logarithmic functions
       
  Derivatives of exponential functions
   Example 2 
If 
| | f(x) = | (x2+3)4e3x (x-3)(2x+5)2
 
 | , | 
 | 
 find  f¢(x) .
Solution
| |  |  | | ln | æ ç
 è
 |  | (x2+3)4e3x (x-3)(2x+5)2
 
 | ö ÷
 ø
 |  | 
 |  |  |  | | ln( (x2+3)4e3x) -ln( (x-3)(2x+5)2) | 
 |  |  |  | | 4ln( x2+3) +3xln( e) -ln( x-3) -2ln( 2x+5) | 
 |  |  |  | | 4ln( x2+3) +3x-ln( x-3) -2ln( 2x+5) , | 
 | 
 | 
so
| |  |  | | ( 4ln( x2+3) +3x-ln( x-3) -2ln( 2x+5) ) ¢ | 
 |  |  |  | |  | 8x x2+3
 
 | +3- | 1 x-3
 
 | - | 4 2x+5
 
 | , | 
 | 
 | 
which means that 
| |  |  | | f(x) | æ ç
 è
 |  | d dx
 
 | ln(f(x)) | ö ÷
 ø
 |  | 
 |  |  |  | |  | æ ç
 è
 |  | (x2+3)4e3x (x-3)(2x+5)2
 
 | ö ÷
 ø
 |  | æ ç
 è
 |  | 8x x2+3
 
 | +3- | 1 x-3
 
 | - | 4 2x+5
 
 | ö ÷
 ø
 | . | 
 | 
 | 
This may not be terribly pretty, but it is simpler than doing it directly.
Copyright (c) 2000 by  David L. Johnson.
File translated from
TEX
by 
TTH,
version 2.61.
On 28 Nov 2000, 22:44.