On-line Math 21

On-line Math 21

2.2  Differentiation Rules

Theorem 2 [The Power Rule]. For each positive integer n , (xn)¢ = nxn-1.

Proof:

This works similarly to the specific cases we went over earlier. Audio

For f(x) = xn ,
f¢(x)
=

lim
h® 0 
f(x+h)-f(x)
h
=

lim
h® 0 
(x+h)n-(x)n
h
=

lim
h® 0 
xn+n xn-1h+... +hn-xn
h
 Hint
=

lim
h® 0 
n xn-1+... +hn-1, by cancelling the xn¢s and dividing by h.
=
n xn-1.

Copyright (c) 2000 by David L. Johnson.


File translated from TEX by TTH, version 2.61.
On 27 Oct 2000, 01:29.