On-line Math 21
On-line Math 21
1.4 Computing limits
Example 1
|
lim
x® 0
|
x sin |
æ ç
è
|
|
1 x
|
ö ÷
ø
|
= 0. |
|
Solution
In this case, noting that, no matter what x is,
-1 £ sin |
æ ç
è
|
|
1 x
|
ö ÷
ø
|
£ 1, |
|
then
-|x| £ x sin |
æ ç
è
|
|
1 x
|
ö ÷
ø
|
£ |x|. |
|
So, taking -|x| = f(x) , xsin(1/x) = g(x) , and +|x| = h(x) ,
and noting that
|
lim
x® 0
|
-|x| = 0 = |
lim
x® 0
|
+|x|, |
|
the squeeze theorem implies that
|
lim
x® 0
|
x sin |
æ ç
è
|
|
1 x
|
ö ÷
ø
|
= 0. |
|
Copyright (c) 2000 by David L. Johnson.
File translated from
TEX
by
TTH,
version 2.61.
On 12 Oct 2000, 23:55.