On-line Math 21
 
On-line Math 21 
      
1.4  Computing limits
   Example 1 
| |  | lim
 x® 0
 
 | x sin | æ ç
 è
 |  | 1 x
 
 | ö ÷
 ø
 | = 0. | 
 | 
Solution
In this case, noting that, no matter what  x  is, 
| | -1 £ sin | æ ç
 è
 |  | 1 x
 
 | ö ÷
 ø
 | £ 1, | 
 | 
then
| | -|x| £ x sin | æ ç
 è
 |  | 1 x
 
 | ö ÷
 ø
 | £ |x|. | 
 | 
So, taking  -|x| = f(x) ,  xsin(1/x) = g(x) , and  +|x| = h(x) ,
and noting that 
| |  | lim
 x® 0
 
 | -|x| = 0 = | lim
 x® 0
 
 | +|x|, | 
 | 
Copyright (c) 2000 by  David L. Johnson.
File translated from
TEX
by 
TTH,
version 2.61.
On 12 Oct 2000, 23:56.