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Abstract— In many cases, large area disasters could be
possibly be prevented if the incipient small-scale anomalies are
detected in their early stages. A way to accomplish this would
be to have multiple sensors deployed in disaster prone areas to
detect anomalies. However, compared to static sensor networks,
robotic sensor networks offer advantages such as active sensing,
large area coverage and anomaly tracking. This paper addresses
the problem of coordinating and controlling multiple robots for
the detection of multiple dynamic anomalies in the environment.
The main contribution of the work is a combined approach
for the effective exploration under uncertainty, the anomaly
tracking, and the autonomous on-line allocation of agents.
Robots explore the work area maintaining the history of the
sensed areas to reduce redundancy and to allow for full-map
coverage. When an anomaly is detected, a robot autonomously
determines how to either track the anomaly or to continue the
exploration of the environment, depending on the size of the
anomaly, which is estimated by the length of the perimeter of
the enclosing polygon. We show results of our methodology both
in simulation and with actual robots which have demonstrated
that robots can autonomously and distributively be allocated to
track or to explore depending on the behavior of the detected
anomalies.

Index Terms— Multi-robot systems, robotic sensor networks,
particle filter, perimeter detection, tracking.

I. INTRODUCTION

Large area disasters are usually triggered by small-scale
anomalies in small areas which could possibly be detected
in their early stages. The past decade has seen effective
proposals to approach this problem with the deployment of
multiple mobile sensors for monitoring disaster prone areas.
Compared to static sensor networks, robotic sensor networks
offer advantages such as active sensing, large area coverage
and anomaly tracking. This paper addresses the problem of
coordinating and controlling multiple robots for the detection
of anomalies in the environment with accurate estimations
of their localization and area. The main contribution of the
work is a combined approach to effectively detect and track
dynamic anomalies with a team of robots.

In this paper, we use the term anomaly to designate an
area in the environment where the value of a given physical
variable is out of its typical range. Existing approaches for
detecting and tracking anomalies can be broadly divided into
three classes: searching, anomaly tracking, and integrated
techniques which combine the two first ones. In searching,
mobile robots equipped with sensors are scattered in the
environment and are tasked to find anomalies. In a related

1D. Saldaña, R. Assunção and M.F.M. Campos are with the Computer
Vision and Robotics Laboratory (VeRLab), Computer Science Department,
Universidade Federal de Minas Gerais, MG, Brazil. E-mails: {saldana,
assuncao, mario}@dcc.ufmg.br

*The authors also gratefully acknowledge the support of CAPES, CNPq
and FAPEMIG.

work, Bruemer et al. [1] propose a bio-inspired algorithm
to detect gradient-free chemical contamination area. It uses
social potential fields to cover the full area to search and
find anomalies, which in their work are assumed to be
static. An anomaly can be seen as a punctual target at the
first stage, in [2], and [3] are used probabilistic methods
to achieve this task using multi-robot systems. Marthaler
et al. [4] propose a method based on deformable contours
(e.g. snake) which was modified to position multiple robots
around a gradient-free anomaly. In [5] the authors propose an
algorithm to distribute multiple sensors around a static region
in order to reduce latency, and to increase the precision of
the perimeter estimation. A cooperative algorithm based on
statistical estimation to detect areas with rapid changes is
proposed in [6].

In the second category, the main goal is to track anomalies,
and most approaches are control-based. In [7], a bio-inspired
control model is proposed to navigate (climb and descent)
in gradients with a team of robots. A multiple underwater
vehicle control model is developed in [8], where cooperative
gliders are coordinated with adaptive sampling strategies,
allowing teams of three robots to navigate along gradients
with different formations. An experimental validation of the
Page’s cumulative sum algorithm (CUSUM) [9] is described
in [10]. This work experimentally compares latency and pre-
cision for tracking anomalies with the classic bang-bang type
steering controller [11] with the CUSUM algorithm. Susca
et al. [12] propose a way to approximate a convex static
contour with a polygon in order to track such contour with a
robotic sensor network. Also, gradient descent laws based on
performance metrics such as the area of the inner, outer, and
“outer minus inner” approximating polygons. A recent work
[13] proposes a control method to track dynamic plumes
(pollutants released at a point source) based on the advection-
diffusion model. The robot control they apply is analytically
constructed with probable convergence for chemicals or
liquid substances poured in a marine environment. In [14],
a control model is proposed to track multiple gradients with
UAVs, where robots starts following the gradient and then
track level curves.

In the third category are the methods which integrate both
detection and tracking. The objective is to develop systems
that improve the synergy between the two aforementioned
processes. On such a work is [15], where the authors model
a finite state machine to switch among behaviors such as:
spiral exploration, obstacle avoidance, potential attraction,
and tracking. However, spiral exploration does not cover the
full map and has high redundancy in explored zones [16].
In [17] the authors extend the robot formation based on the
snake algorithm [4] to track an anomaly. [18] deal with the



problem of forest fire monitoring with multiple Unmanned
Aerial Vehicles, in which onboard cameras detect the fire and
image based techniques are used to detect the perimeter of
the affected zone.

Our work falls in the third category, since we propose
a probabilistic approach that integrates full-map coverage
and tracking of multiple dynamic anomalies with a team of
robots. In the searching phase, robots are guided toward the
spots with high probability of the existence of an anomaly
(Section III). When an anomaly is detected, the robots
autonomously determine how to either track the anomaly
or to continue exploration, depending on the size of the
anomaly, which is estimated by the length of the perimeter
of the enclosing polygon (Section IV).

The main contributions of our approach are: (1) an algo-
rithm for the coordination of a team of robots that are tasked
to find and track multiple anomalies. This is an important
feature for real world applications, since in some contexts,
such as fire in a forest or algae bloom in a lake, more than one
anomaly may appear/disappear along the time. Among pre-
vious works, we have found that [1] approaches the problem
of searching for multiple anomalies in an uncoordinated way,
where an anomaly is detected but not tracked. Our approach
allows for autonomous on-line allocation and deallocation
of robots during the tracking process, depending on the size
of the anomalies, which we assume, may dynamically vary.
In our approach, a growing anomaly demands closer atten-
tion and demands that more robots be allocated throughout
mission execution. Meanwhile, if an anomaly is shrinking,
robots formerly allocated to that anomaly may be released
to explore other areas with higher priority; (2) Efficient
exploration. The exploration under uncertainty maintains the
history of the sensed areas to reduce redundancy and to allow
for full-map coverage.

II. PROBLEM STATEMENT

Consider a team R of n robots, located in an environment
defined in the Euclidean space R2. Let W be the workspace
for all robots in the environment. Within this workspace
anomalies,Ai ⊆ W,∀i ∈ {1, 2, ...,m}, may dynamically ap-
pear, which are are modeled as compact areas with nonempty
interior, and it is assumed that there are no intersections
among them, that is,

⋂
iAi = ∅.

Let Pi be a polygon defined the line segments that connect
a sequence of points {p1, p2, ..., pl}, with l ≥ 3, and
which completely enclose anomaly Ai respectively. As the
anomalies are dynamic (size, shape, and position can change
over time), we denote the anomaly i in time t as At

i. We
assume that the anomalies have a slowly-moving behavior
for boundaries, which is less than robots’ velocity.

Problem 1 (Full-map searching for anomaly detection):
How to coordinate a team R of robots to persistently patrol
the full-mapW in order to detect, and enclose with a Polygon
Pi, each anomaly Ai.

Problem 2 (Tracking of multiple dynamic anomalies):
How to allocate robots (possible all n) to track multiple
dynamic anomalies, depending on each anomaly size (e.g
perimeter of the enclosing polygon). In such a way larger
anomalies require more robots for tracking.

A. Available Information

Each robot rj ∈ R,∀j ∈ {1, 2, ..., n} has sensing capa-
bilities to acquire local information, including its pose, and
the concentration levels of the anomaly in the environment.
The anomaly concentration sensed by rj at sampling point
p ∈ W is defined as c = c(t, rj , p), and its gradient is
denoted as ∇c = ∇c(t, rj , p). This gradient can be estimated
by the time series of values acquired from a punctual sensor
measurements or by employing multiple spatially distributed
sensors (e.g. from mobile robots [13]). The area occupied
by the anomalies obey c > τ , when c ∈ ∪iAi, where τ is a
threshold.

In addition, we assume that each robot can communicate
with all other robots of the team by broadcasting messages.
Therefore, at time t, each robot can receive the samples of
all other robots or polygons, if detected. Let P̃i ≈ Pi be
an approximate of the exact enclosing polygon Pi, which
is estimated by each robot and broadcasted through the
communication network.

B. Robot Model

Our model assumes that the robots are non-holonomic, and
their pose is represented by the vector (x, y, θ)T . We use the
velocity control model, which assumes that a robot may be
controlled by issuing both the rotational and the translational
velocity ut = (vt, ωt)

T .

III. SEARCHING FOR ANOMALIES

In this section, a method to solve Problem 1 is proposed.
We treat the anomalies in the environment as a multi-modal
distribution that can change dynamically at each time step.
Our method tries to incrementally improve the estimation
of the distribution by merging robot measurements and
simulating the random behavior of the anomaly. Then we
try to approximate the anomaly shape by a polygon.

A modification of the particle filter technique [2] is devel-
oped since it offers a probabilistic method that converges to
multi-modal probability distributions. Robot navigation and
coordination are based on the uncertainty about anomalies,
with every robot trying to visit the nearest spot with highest
likelihood of being an anomaly.

A particle can be considered as a point on a map, and
it represents the probability of having an anomaly in that
location. Each robot has its own set of particles Xt =

{x[1]t , x
[2]
t , ..., x

[N ]
t }, which represents its belief over the

possible anomalies in the environment. An accumulation of
particles in a region may indicate a high probability of having
an anomaly there. As a consequence, the robot will try to
pursue it in order to reduce the uncertainty at that specific
location.

At the initial state, robots start searching the area without
previous knowledge of the existence or position of any
anomaly. Therefore, the N particles are spread based on
a uniform distribution within W . The particle filter is an
iterative process that requires two fundamental models to be
defined: the motion and the updating of the particles.



1) Motion model: A random motion model displaces a
particle in a random distance from time t − 1 to t based
on a Gaussian distribution. The particle’s motion is defined
by a (2 × 2) covariance matrix Σ in order to capture the
spreading velocity of the anomaly. Equation 1 describes the
motion model for particle k, k = 1, 2, ..., N based on the
last estimation, x[k]t−1, and a random motion with normal
distribution N (0,Σ):

p(x
[k]
t |ut, xt−1) ∼ N (x

[k]
t−1,Σ). (1)

This model is used when there no additional information
about the behavior of the anomaly is available. In this case,
a random motion is assumed. Although in this paper no
a priori information about the dynamic behavior of the
anomaly is used, this information may help to enhance the
exploration process as long as the particles simulate that
behavior. For example, a fire in a forest evolves in an
apparently random fashion, but if the wind is blowing, the
fire will tend to spread in the direction of the wind, and if the
wind’s strength and orientation is known, a better estimation
of the evolving anomaly may be obtained.

2) Updating Model: The estimation of the anomaly’s
distribution is updated using the robot’s sensor readings. At
each iteration, every particle is re-sampled based on weights.
Equation 2 determines how the weight of a particle k is
updated based on sensor readings.

w
[k]
t =





a, if c < τ

b, if c ≥ τ ∨ x
[k]
t ∈ ∪iPi

0, if x[k]t /∈ W
1/m, outside sensor range,

(2)

where the constant a is a small value that represents a
low probability of the existence of an anomaly at a given
point when no anomaly is sampled (c = 0); b is a value ≥ 1
used to increase the particle’s weight given that an anomaly
is sampled or particle is inside an available-polygon x[k]t ∈
∪iPi; value 0 is set if the particle is outside the map x[k]t /∈
W; and for a point not sampled at time t, a normalized value
1/N is set. (e.g. in the experiments we used a = 0.1, and
b = 1.3).

When each particle has its own weight, the group of parti-
cles is re-sampled to randomly clone particles proportionally
to their updated weight [19]. After several iterations, the
result is an accumulation of particles in places with higher
possibility of the existence of an anomaly. When no anomaly
is detected in the environment, the robots will try to navigate
towards the areas with particle accumulations in order to visit
the spots which most probably hash anomalies.

We define two working modes: The exploration and track-
ing modes. When a robot does not detect an anomaly locally,
it starts to explore the environment by pursuing particles in
order to visit places with probable anomalies.

A. Exploration

The exploration process must attain the following objec-
tives: (1) maximize the number of visited particles, giving
priority to the nearest one, (2) maximize the distance to

the other robots, (3) maximize the distances to the obsta-
cles and to the map borders. Therefore, we use potential
fields to navigate in the continuous space [20]. This well
known technique is based on the physical model of electrical
charges, assuming that a robot is a positive electrical charge
which is attracted by all the negative charges. Other robots
and obstacles are also modeled as positive charges that repel
the robot. Therefore, the robot’s velocity and orientation are
computed as the vector sum of all forces involved.

The forces acting on robot rj are generated by particles
x ∈ X , other robots rk ∈ R− {rj},∀k 6= j ∈ {, 1, 2, ..., n},
and obstacles o ∈ Obs (map borders are also introduced and
are model as obstacles). Eq. 3 computes the resulting force
magnitude for any entity z = {x, rk, o} with constants of
proportionality βx, βr′ , and βo respectively. The orientation
of vector Fz is computed as the angle between the location
of the entity z and the robot rk.

|Fz| =
βz

d(rj , x)2
. (3)

Eq. 4 describes the resultant force vector FT . It sums the
attraction forces generated by all particles and subtracts the
repulsion forces due to to obstacles and other robots.

FT =
∑

x∈X
Fx −

∑

rk∈R−{rj}

Frk −
∑

o∈Obs

Fo. (4)

The force vector FT = 〈ρ, φ〉 may be decomposed into
its magnitude ρ and orientation φ. The robot navigates with
constant linear speed v = Kv in the direction of the resultant
force. Angular speed is defined by a Proportional-Derivative
(PD) controller as described by Equation 5,

ω = K1 φ+K2 φ̇, (5)

where K1, and K2 are the PD constants.

B. Tracking an anomaly

When a robot r detects an anomaly cr > τ , it enters in
its tracking mode to enclose the anomaly. The control of the
linear speed is based on the distance to other robots in order
to avoid collisions, and the angular speed is computed based
on the gradient of the anomaly concentration, ∇cr in the
area (Eq. 6).

[
vt
ωt

]
=

[
vtrack − Ktrack

d(r,r′)

K3(∇cr − τ) +K4 ∇ċr

]
, (6)

where K3 and K4 are PD control constants, vtrack is the
maximum linear speed, Ktrack is a proportionality constant,
and r′ is the robot in front of robot r. In anomaly tracking,
one of the most used methods is the bang-bang [9], [10],
which can be emulated with the model of Eq. 6 and setting
K4 = 0. However, by sintonizing K4, oscillations and
convergence time is reduced. The linear velocity υ is just
proportional to the closest robot or obstacle in front of it.



(a) Open polyline (b) Closed polyline (c) Resultant polygon

Fig. 1: Processing robot path to identify a polygon.

C. Estimating the enclosing polygons
Our method tries to approximate the dynamic anomaly At

i

by a polygon P t
i . When an anomaly is detected by a robot r,

(c > τ ), it enters in the tracking mode and creates a polyline
Q. For each new sample c, the polyline will add the location
of the sensed value to the polyline Qt−1,

Qt = Qt−1 ∪ {loc(c)}. (7)

At each time step, we check if the polyline closes, that is,
if a polygon has been formed formed by that polyline. The
verification if Qt generates a polygon is accomplished by
comparing the distance of the last sampled point pn and all
the other lines. The resulting sequence to generate a polygon
is restricted to be ordered in counter-clockwise manner. If the
last point pl is close (< δ) to line (pj , pj+1), Qt is updated
to Qt = {pj+1, pj+2 . . . pl}. For instance, Fig. 1a shows an
open polygon (the arrowhead represents the robot pose, and
points are samples where the anomaly has been detected),
where the point p4 is very far from the other edges. The
robot proceeds on tracking and sampling until the polyline
closes. Fig. 1b depicts the case where the first point p0 is
close to the edge (p0, p1), then, point p0 is deleted and the
edge (p7, p1) is added in order to close the polygon.

The parameter δ should be defined carefully because a
can close the polygon too early and consequently losing
precision. In contrast, a short distance could not identify the
polygon when the anomaly is shrinking or expanding.

IV. MULTIPLE ANOMALY SUPPORT

Most of the state of the art techniques are focused on
tracking a single anomaly. The existence of multiple regions
of interest involve coordination issues, task allocation and
complementary sensor fusion. For instance, allocating many
robots to enclose a perimeter is a problem for most of the
approaches, because this creates redundancy in the sensed
area and reduces the perception for new anomalies.

A. Polygon estimation
Each robot r continuously communicates the value of a

sensed point or a polygon, if the last was obtained. If the
robot has a polygon, then it broadcasts the simplified polygon
data and the time of its detection. This shared information
is fused with local information as follows:

1) Fusing polylines: Robot r locally can estimate the
polylines of the other robots by receiving the punctual
samples and applying Equation 7 for each one independently.
Those polylines can be merged to estimate a polygon. To
merge the polyline Qr and the polyline of other robot Qr′ ,
we check if one of the edges in Qr intersects with one of

(a) Three polylines (b) Fused polyline (c) Resultant polygon

Fig. 2: Fusioning polylines Q1, Q2, and Q3.

Qr′ edges by cross-validation. If an edge (pi, pi+1) ∈ Qr

intersects with an edge (p′j+1, p
′
j) ∈ Qr′ , at the intersecting

point pint, then the merge polyline, which is computed by

Qr = {p′0, p′1, . . . , p′j} ∪ {pint} ∪ {pi+1, . . . , pl}. (8)

The new merged polyline is replaced by the current polyline
only if the length of the merged polyline is larger than the
current one. Then the new polyline is checked to identify if
it closes. This process is repeated for each polyline. Figure
2a illustrates an example with three polylines from three
different robots, which are merged by applying Equation 8
twice to get a larger polyline Q1 (Fig. 1b), which finally
obtains polygon P1 of Figure 2c.

2) Using shared polygons: Robot r compares its samples
with the measurements sent by the other robots in order to
take advantage of a previously detected polygon. Polygons
shared in the network have two characteristics: (1) They are
simplified to drastically reduce the number of points to be
shared by applying the Ramer-Douglas-Peucker algorithm
[21], which deletes redundant points based on a pre-defined
distance threshold, and (2) each polygon includes a tag first-
detection-time so it may have priority in robot allocation.

The metric to determine the required number of robots ηi
to track an anomaly Ai is defined by

ηi = dγ
k∑

i=1

d(pi, pi−1)e, (9)

where γ is a constant that determines the number of robots
required per unit of length. Therefore, we tag the polygon
as available-polygon if the number of robots tracking the
anomaly is less than ηi, and full-polygon in otherwise.

If the distance from an available-polygon (shared by other
robot) is less than a threshold, then we merge the point to
polygon, and use the previously shown approach. Let Pr′ be
the polygon received by robot r′, and (p′j , p

′
j+1) be the edge

nearer to the robot r. The resulting polygon is computed as

P = {p′j+1, ..., p
′
l′} ∪ {p′0, ..., p′j} ∪ {p0}. (10)

B. Multi-Robot coordination

We use the particles to represent and to update the world
model. In order to determine if a polygon is open or closed
for a robot, we use Equation 9 and attract ηi robots by
increasing the particles according to Equation 2. However,
if the anomaly increases in size, then ηi value will be
augmented, and the tag will change to available-polygon to
attract other robots. The case when the anomaly reduces its
size is more complex. For a shrinking anomaly Eq. 9 gives
a smaller number which will cause some of the robots to



Fig. 3: Simulation with six robots tracking an anomaly and
two robots exploring the environment.

stop tracking and start exploration. Choosing which robots
will stop and which will continue to track the anomaly
is determined by comparing the first-detection-time of the
polygon, when recent robots left, and they put tag as full-
polygon and spread the particles randomly across the map.
To avoid robots to be attracted by full-polygons, Equation 2
is extended with the clause w[i]

t = 0 if the particle x[i]t is
within a full-polygon.

V. EXPERIMENTS AND RESULTS

Three validation scenarios have been used with three types
of anomalies: Static, expanding and shrinking. We analyze
the accuracy of estimation of the detected area and of robot
allocation along the time for each scenario. The area of
the anomaly is denoted by area(P t

1) and the estimation by
area(P̃ t

1). As the approximate polygon also covers areas
without anomaly, area(P̃ t

i − P t
i ), and uncovered areas,

area(P t
i − P̃ t

i ), we have defined the estimation error εt as
denoted in Equation 11.

εt = area(P t
i − P̃ t

i ) + area(P̃ t
i − P t

i ). (11)

We initially conducted simulated experiments on the ROS-
Gazebo 3D simulator, and then with real robots. Real and
virtual robots are assumed to be the iCreate base, differential
mobile platform equipped with: Onboard-computer, commu-
nication module IEEE 802.3.11 (WIFI), and an RGB camera.
Figure 3 shows the Gazebo environment with eight robots,
and those that are tracking the anomaly (represented by a
rug with a texture of fire). Our software for real and virtual
robots is open source and is available1.

A. Simulations

An important factor that needs to be taken into account is
the number of points that conforms to the detected polygon
and that will be broadcasted. The error εt increases linearly
with the applied threshold in the Ramer-Douglas-Peucker
algorithm, however, the number of required points decreases
exponentially. We used a non-convex static anomaly with
area = 3.49m2 and perimeter = 7.15m, which was sam-
pled with 186 points by a single robot. Using a threshold =
0.1m, the number of points are drastically reduced to 10

1The source code is available at https://github.com/dsaldana/
roomba sensor network
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Fig. 4: Allocation of robots to multiple static anomalies

points (e.g. 95% of the original number of points) with error
ε̄t ≈ 0.23m2.

The simulated environment is defined by a map with
dimensions of 5× 4 meters. In the initial setup, eight robots
are distributed over the map. We analyze the following three
scenarios.

1) Static anomalies: In this scenario, three static
anomalies turn up in different places at different times
[40s, 160s, 280s]. Fig. 4a illustrates the robot allocation for
tracking. When the first anomaly appears, the number of
robots increases progressively until the polygon is closed, as
described in section IV, where the required number of robots
cover the anomalies is computed as

∑
i ηi (Eq. 9), and the

remaining robots proceed to continue the exploration. This
can be seen in the figure as the three initial peaks in the
tracking robots, which are reduced to one after the anomaly
is detected. Since the anomalies are static, the error εt is
proportional to the total area generated by the anomalies.
Figure 4b shows the shared polygons at different times.

2) Expanding: Two anomalies show up at different loca-
tions of the map. They start to expand in different directions
and with different velocities. Fig. 5a shows that while an
anomaly is growing, the area is sub-estimated and the error εt
is proportional to the velocity of expansion. Fig. 5b illustrates
the heterogeneous expansion along the time.

3) Shrinking: In this scenario, the same two anomalies
shrink until they stabilize. As the anomaly is tracked in
counter-clockwise manner, the controller generates move-
ments to the right-side but the anomaly is moving to the
opposite direction. This continuous rectification in orienta-
tion generates an oscillatory movement that is reflected in
the error εt, as it can be seen in Figure 5c. Similarly to the
expanding scenario, the εt is affected by the velocity of the
anomaly behavior and by the rectification of the tracking
controller.

B. Experiments with real robots

Our testbed is composed by a map of 3 × 1.8 meters
and three robots (Figure 6). Localization is acquired by
processing images of an overhead camera with a wide-
angle lenses. Dynamic anomalies are computer generated and
projected on the floor.

On the one hand, reduced spaces limit the deployment and
movement of a larger number of robots in the environment.
On the other hand, the time for finding all anomalies and
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Fig. 5: Two dynamic anomalies reducing their area

Fig. 6: Actual robots tracking anomalies.

generating enclosing polygons is reduced. On these exper-
iments, we found that the detecting process speeds up in
comparison with simulations because of the small space and
size of the anomalies, but the precision of our sensor suit
limits the quality of the estimated polygons.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a probabilistic distributed coor-
dination method to detect and track multiple dynamic anoma-
lies using a robotic sensor network. Two problems were tack-
led, namely, full map coverage to find anomalies and multi-
robot coordination to track multiple dynamic anomalies. We
have experimentally shown, both in simulation and with real
robots, that our approach can simultaneously detect regions
out of normal conditions.

Experimental results demonstrated that the proposed
method works in different scenarios, where autonomous
robot allocation is effectively executed based on the regions
which require more attention.

An important issue in scalability is the message broad-
casting. We have shown experimentally using eight robots,
but for communication may become burdensome for larger
number of robots.

As a future research, the estimation of the anomaly can
be improved by merging detected polygons based on the
sampled time, since recent measurements give better estima-
tions. Another aspect concerns complex shapes, for example,
regions with interior holes, which we understand it might be
tackled with the use of different types or robots (e.g. aerial
and ground robots).
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