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Abstract

From the context of a conte understanding of the phenomenological ori-
gins of friction and wear of materials, we review insightful contributions
from recent experimental investigations of three classes of materials that
exhibit uniquely contrasting tribological behaviors: metals, polymers, and
ionic solids. We focus on the past decade of research by the community to
better understand the correlations between environment parameters, mater-
ials properties, and tribological behavior in systems of increasingly greater
complexity utilizing novel synthesis and in situ experimental techniques. In
addition to such review, and a half-century after seminal publications on the
subject, we present recently acquired evidence linking anisotropy in fric-
tion response with anisotropy in wear behavior of crystalline ionic solids as a
function of crystallographic orientation. Although the tribological behaviors
of metals, polymers, and ionic solids differ widely, it is increasingly more ev-
ident that the mechanistic origins (such as fatigue, corrosion, abrasion, and
adhesion) are essentially the same. However, we hope to present a clear and
compelling argument favoring the prominent and irreplaceable role of in
situ experimental techniques as a bridge between fundamental atomistic and
molecular processes and emergent behaviors governing tribological contacts.
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1. INTRODUCTION

Encounters with friction and wear occur on a daily basis, and there exist many situations in which
friction and wear severely limit the performance of moving mechanical assemblies or altogether
prohibit motion over prolonged operation. Integrated approaches using high-resolution scien-
tific instrumentation and model materials as samples are providing a means to develop a deeper
understanding of the underlying mechanisms in friction and wear of materials (Figure 1).

Materials tribology, which is the study of friction and wear of materials, is an intrinsically mul-
tiscale and multidisciplinary endeavor. As illustrated in Figure 2, the combined access to detailed,
large-scale molecular simulations; exquisite control over interfacial composition and structure; and
atomically specific tribological probes provide an opportunity to study the fundamental mecha-
nisms of friction and wear, and such studies are capable of widely impacting society and future
technologies.

Analytical models, like those from Tomlinson (1) and Frenkel & Kontorova (2), have given the
theoretical context for molecular friction and wear, whereas single-asperity experiments with scan-
ning probe methods have qualitatively supported the models. Mate et al. (3), for example, first ob-
served atomic stick slip. Other investigators have shown qualitative agreement between experiment
and theoretical predictions of frictional anisotropy and superlubricity (4–6), temperature effects
(7–10), and speed effects (11, 12). Although encouraging agreement has been observed between

Fn = ∑ fn
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Asperity contact

a

c

b  Friction coefficient
     (ratio of friction force to normal force) µ = Ff /Fn

d  Wear rate
      (volume lost per unit normal load per distance of sliding)

Ff = ∑ ff

Vol (volume lost)

Figure 1
(a) All surfaces are rough, and this roughness extends to all length scales from the atomic scale to the macroscale. (b) The peaks
(protuberances or asperities) are the high points of surfaces and are involved in multiple microscopic contacts that are distributed across
the contacting surfaces. (c) These asperity contacts are typically nanoscopic and highly stressed. (d ) An ensemble of these nanoscopic
contacts collectively manifests the macroscopic parameters known as friction coefficient and wear rate.
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Figure 2
Materials tribology spans multiple length scales and timescales. There are currently areas of strong overlap between experimental
capabilities and both numerical and theoretical modeling of tribological processes. AFM denotes atomic force microscopy.

theory and experiment, large gaps persist in our understanding of experimentally observed
phenomena.

Advances in computational methods development and the corresponding large increases in
computer resources over the past two decades have enabled atomic-scale simulations to have a
profound impact on a variety of disciplines, including the areas of friction and wear (13–15). For ex-
ample, there have been several simulation studies of nanoindentation (16–22), cutting (23–27), and
scratching (28–31) of metal surfaces by nanometer-scale tips. These simulations have provided
valuable insights into the mechanical responses of the surfaces, including hardness, dislocation
generation, and elastic-to-plastic transition at the nanoscale. Additional simulations have investi-
gated molecules and thin films trapped between sliding surfaces, including tribochemical reactions
(32), the way in which long-chain hydrocarbons influence asperity interactions in sliding metal
surfaces (20), and the role of adsorbed thin films on friction (33–36). The goal of the mitigation
of wear through molecular-scale lubrication has been the emphasis of many simulations (37).

In the context of polymer tribology and in particular the tribology of polytetrafluoroethylene
(PTFE) films, molecular dynamics (MD) simulations have been used to investigate atomic-scale
friction at interfaces of self-mated PTFE constructs (38). The simulations demonstrated
unequivocally that molecular structural orientation at the sliding interface strongly influences
friction and wear, as indicated in Figure 3. Sliding of chains oriented parallel to the chain
backbones resulted in low friction forces and in low barriers to interfacial slip and molecular
reorganization at the surface. In contrast, sliding of chains oriented perpendicular to the chain
backbones resulted in high friction forces and wear in the form of molecular reorientation and
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Figure 3
Snapshots from molecular dynamics simulations using many-body potentials of the evolution of oriented chains of
polytetrafluoroethylene (PTFE) during sliding. The initial structure of the bottom surface is shown in panel a. The sequence in panel b
illustrates the evolution of the bottom surface during sliding when the chains on the top (not shown) and bottom surfaces are oriented
parallel to one another. In contrast, the sequence in panel c illustrates the evolution of the bottom surface when the chains on the top
(not shown) and bottom surfaces are oriented perpendicular to one another. In the latter case, the simulations predict molecular-scale
wear of the PTFE surface. In particular, the chains on the bottom surface deform, break, and are in the process of reorienting to line up
with the direction of sliding, as indicated by the schematics of the numbered chains in panel d.

chain scission. These predictions were examined and validated by complementary experiments
on oriented transfer films of PTFE (38). Microtribological measurements on these aligned
films demonstrated a strong anisotropy in friction and wear, consistent with the MD simulation
predictions. Specifically, the parallel sliding of oriented films produced low friction and wear,
whereas perpendicular sliding led to higher friction, consistent with molecular reorientation.

Despite the important insights obtained from these types of simulations, several important
limitations hinder their widespread utility. First, the computational system sizes are substantially
smaller than the experimental systems by several orders of magnitude. This limits the size scales
on which phenomena can occur in the simulations, potentially causing them to miss events that
occur over a large scale. Second, dissipation timescales are much quicker computationally than
in the experiments, which may also influence the mechanisms by which the surface responds to
the applied forces. The short timescales of classical MD simulations are typically on the order of
several nanoseconds and thus necessitate sliding rates that are frequently orders of magnitude faster
than experimental rates. Third, due to the size and rates of MD simulations, the artificial addition
of high cross-links or other tricks are often used to mimic entanglement. Finally, the contact
pressures are frequently much higher in simulations than in experiments (for stability reasons
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and to minimize the effects of thermal noise on the force measurements). As we move forward,
timescales and simulation sizes must increase in an effort to meet single-asperity nanotribological
experiments.

In this article, we review activities, primarily experimental, aimed at elucidating the various
mechanisms that are involved in wear processes of metals, polymers, and ceramics. Far from an
exhaustive study, we focus on the materials for which we have the most experience in the following
categories: Cu, PTFE, and single-crystal ionic solids.

2. METALS AS A TRIBOLOGICAL MATERIAL

The development and widespread adoption of low-friction, highly durable, and superhard,
solid-lubricant thin-film materials, such as hard-carbon (diamond-like carbon, diamond-like
nanocomposites, and carbonitrides) and nanostructured or patterned coatings, have led to
significant improvements in the reliability and efficiency of metal contacts in engineering
applications ranging from automobile pistons and cylinders to cutting tools and ball bearings
(39–42). Layered and composite thin films have provided an effective and economical means
of tailoring the mechanical and chemical surface properties of relatively inexpensive and
practical-to-manufacture bulk metal and alloy engineering materials. Fundamentally, thin films
are implemented to mitigate the high wear and friction associated with the gross adhesion and
plasticity exhibited by unlubricated and boundary-lubricated metal contacts. Electrical contacts
are arguably the only remaining class of tribological contacts for which metal-on-metal friction
and wear remain a topic of practical interest. In this application, the use of minimally insulating
thin films, including passivating oxides, may cause prohibitive electrical losses.

2.1. Introduction to Friction and Wear Processes in Metal Contacts

The friction and wear of metals are a well-trodden area of research, with seminal contributions
from Holm (43), Cocks (44), Greenwood (45), Tabor (46), and Antler (47, 48); Blau (49) has a nice
review of this work. We summarize select research efforts from our laboratories and others that
focus on the physics and chemistry of debris generation in sliding metal contacts. Recent experi-
mental and theoretical efforts have focused on the development of materials solutions exhibiting
higher efficiency and longevity in power and signal transfer applications such as rapidly switch-
ing microelectromechanical systems (MEMS) (50–53) and high-current-density electrical sliding
contacts for power generation (54–67). In such applications, traditional approaches to engineering
design—and even descriptions of wear processes, such as the wear mechanism maps developed
by Lim (68) and Lim & Ashby (69) for steels—have limited applicability. Such pioneering efforts
to unify wear behaviors over a wide range of contact pressures and sliding speeds do not account
for complex environmental and system dependencies. The wear maps for steel (69) outlined the
various mechanisms of wear for a self-mated steel on steel sliding contact. These mechanisms
were delineated primarily along mechanistic lines associated with the temperature of the sliding
contact.

A successful design approach for a notionally unlubricated sliding metal-on-metal contact
requires the combined consideration of the mechanical properties, surface reactivity, deformation
history, wear, and environmental dependencies of the contact materials. Such design strategies
aim to synergistically yield beneficial surface reactions and consider competing mechanisms such
as wear and solid diffusion–dominated processes. Examples of such behavior are grain boundary–
dominated plasticity of nanocrystalline materials (70–72) and thermally and electrochemically
activated degradation pathways of metal electrical contacts (73–75).
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2.2. In Situ Triboelectrochemistry

The practice of mating metal with metal to transfer electrical current from stationary to moving
components for signal transfer and power generation is likely to be at the forefront of materials
challenges in an increasingly electrified world. Demands for higher reliability and efficiency and
the rapidly growing use of dc motors and generators in the automotive and power generation
industries (e.g., multimegawatt wind turbines) will lead to an increased demand for low-wear, low-
electrical-loss, high-current-density electrical contacts. Perhaps one of the more exciting prospects
in this field of research is that a more sophisticated understanding of the complex surface kinetics
governing the friction, wear, and electrical contact resistance behavior of metal electrical sliding
contacts will finally enable practical commercialization of the first and only motor/generator
topologies to remain technologically impractical: the homopolar motor (Faraday 1821) and the
homopolar generator (Faraday, 1831). Such motivations led to investigations in the 1980s on the
wear behavior of metal sliding contacts for high-current-density applications in electric motors
and generators. These investigations resulted in two important discoveries:

1. Reichner (64, 76) demonstrated that the use of humidified CO2 environments was conducive
to low wear [8 × 10−7 mm3/(N·m)], friction (μ ∼ 0.3), and electrical contact resistance
(∼0.5 m�) of Cu electrical sliding contacts at current densities greater than 20 MA/m2 and
sliding speeds greater than 10 m/s.

2. Boyer and colleagues (60, 62, 77) found a current density threshold above which metal fiber
brush wear rates bifurcated significantly depending on the polarity of the dc contact; the
brush was either the positive element or the negative element in the electrical contact. The
authors (60) had the brilliant insight that, with a sufficiently large enough voltage drop across
the contact, the imposed potentials approached the natural oxidation potentials (78, 79).

In more recent investigations, a combination of macroscale multifiber brush (54–56, 80) and
single-asperity in situ triboelectrochemistry experiments against Cu in ionic liquid solutions ex-
hibiting surface chemistry products similar to those of humidified CO2 (81) revealed that this
environment produces reaction kinetics favoring the formation of thin copper carbonate and hy-
droxide species at rates similar to the rate of materials attrition (wear), providing thin, lubricous
films of easily displaced material. X-ray diffraction (XRD) spectroscopy and electron microscopy
revealed a prevailing lamellar wear particle morphology suggesting delamination wear (82–84),
which is a surface fatigue wear process, of the Cu surfaces. The use of a higher-fatigue-strength
Cu-Be alloy further reduced the wear rate by an order of magnitude so that it was above even
the asymmetrical wear current density threshold. Researchers then postulated a more complete
description of the mechanism for the asymmetrical wear behavior (54, 85). This description was
founded on a concept originating in a relatively obscure 1926 publication by Roscoe (86), later
described and elaborated upon by Buckley and others (87–89) in the 1950s and 1970s and referred
to as the Roscoe effect.

The so-called Roscoe effect qualitatively describes how the presence of hard-surface film in-
creases the wear rate (Figure 4). Passivating oxide layers can produce a change in the prevailing
mechanism of near-surface friction–induced plastic strain accommodation in a metal contact under
conditions of moderate contact pressures. These layers can inhibit friction-induced dislocations
from reaching the surface and relaxing (dislocation trapping). In high-current-density contacts,
thick, electrochemically enhanced films more effectively trap dislocations and thereby accelerate
delamination wear. Several groups have reported an analogous reduction in fatigue strength of
thin metal films in fully reversed cyclic bending with and without passivating films (88–90). This
reduction was demonstrated, perhaps most clearly via transmission electron microscopy by Nicola
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Figure 4
(a) Cross-sectional view of a real contact between polished metal surfaces. (b) Diagram of delamination wear in a mildly wearing,
otherwise unlubricated metal contact. (c) Cross-sectional transmission electron microscopy images (from Reference 91) of fatigued
(fully reversed, bulge test) Cu films both unpassivated (left) and Ti passivated (right), demonstrating the trapping of dislocations that
enhances near-surface damage accumulation rates and delamination wear [the Roscoe effect (86, 87)].

et al. (91), to be a function of enhanced strain energy accumulation due to near-surface dislocation
trapping.

Enhanced or inhibited surface reaction kinetics leading to the formation of passivating and
lubricous films affects the rate of surface fatigue damage. This phenomenon causes a bifurcation
in wear rate when electrochemical potential across a metal sliding electrical contact approaches the
natural oxidation potential. This sophisticated understanding of the prevailing wear mechanisms
in high-current-density Cu electrical sliding contacts (Figure 5), summarized in References 54
and 85, provides the motivation for triboelectrochemistry investigations with metallic contacts
in aqueous ionic solutions that (a) exhibit favorable surface reaction kinetics for the formation
of soft, lubricous, and perhaps even electrically conductive thin films and (b) enhance the wear
performance of Cu electrical contacts.

In situ triboelectrochemistry remains a relatively unexplored research arena with significant
potential for innovation. In a 2008 review, Mischler (92) evaluated the state of experimental tech-
niques and analysis of triboelectrochemical data and provided a survey of the latest research efforts
and materials systems investigated. The use of potential/pH equilibrium (Pourbaix) diagrams (93)
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Figure 5
(a) A sliding contact of a self-mated Cu-on-Cu contact in a slightly acidic aqueous environment. (b) Equilibrium (Pourbaix) diagram for
Cu-CO2-H2O (at 25◦C). The diagram outlines the thermodynamic stability of the surface oxides. (c) Frictional voltammetry is a
method that uses electrochemical techniques from corrosion experiments to dynamically and systematically vary the surface oxides
during a friction experiment. The blue arrow shows the onset of electroreduction of CuO, Cu(OH)2, and CuCO3 at approximately
−0.25 V versus SCE. The red arrow shows the onset of electroformation of CuO, Cu(OH)2, and CuCO3 at approximately −0.15 V
versus SCE. SCE denotes saturated calomel electrode. Panel c adapted from Reference 81.

can be a useful road map. However, as Celis et al. (94) demonstrated for a Stellite and AISI 321
tribopair in an aqueous 0.5 M H2SO4 solution, the development of more-sophisticated analytical
techniques and models is necessary to understand the arguably critical behavioral transitions that
occur during tribocorrosion of metal contacts, when competing processes such as wear and surface
reaction kinetics are not effectively described by equilibrium diagrams.

2.3. Low Wear with Unlubricated Metal Contacts

All metal-on-metal contacts experience wear. In engineering applications, the consequences of
wear, wear debris, friction, and the changes in the surface topography and geometry define suc-
cess or failure. Nanostructured metals have shown potential to produce low-wear metal-on-metal
contacts. Progress in the area of physical vapor deposition (PVD) techniques such as pulsed laser
deposition and e-beam deposition has enabled the ability to practically and economically synthesize
nanostructured and nanocomposite thin-film materials exhibiting novel mechanical properties su-
perior to the properties of traditional electroplated, sintered, or cast composites. For example, the
practice of improving the wear resistance of Au coatings by electrodeposition of small amounts
(0.1–1.0 wt%) of Ni or Co species in a primarily Au matrix, referred to as hard Au, has been
used. Lo et al. (95) demonstrated that the increase in hardness and associated several-order-of-
magnitude improvement in wear resistance are attributed primarily to Hall-Petch strengthening,
and not to solution hardening, precipitation hardening, or strain hardening. In the study of the
behavior of contact between nanostructured materials—those with features including grain sizes
below 100 nm and molecularly thin layers of organic and inorganic lubricant films—the tribology
community is rapidly approaching meaningful overlap between experiments and atomistic sim-
ulations. Although the predictive capabilities of simulations remain limited by computing power
to length and temporal scales on the order of nanoseconds and micrometers, there have been
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notable contributions by the modeling community to the collective fundamental understanding
of the behavior of metal-on-metal contacts in a wide variety of operating conditions. For example,
Yanson et al. (96) found a limiting electrical conductivity during the formation of monoatomic Au
chains or nanowires in breaking Au-Au electrical contacts, with direct implications for the perfor-
mance of MEMS. Similarly meaningful to the MEMS community, Gosvami et al. (97) investigated
the temperature-dependent aging behavior (wear) of atomic-scale Au contacts. Utilizing massively
parallel MD simulations to study strain hardening of polycrystalline Al, Yamakov et al. (98) verified
a hypothesis based on experimental evidence that twin boundaries may cause dislocation pileups
and enhance strain hardening. Other groups have investigated the relationship between mechani-
cal strain and thermal energy on grain boundary mobility (99–102), relevant to understanding the
stability of and propensity for relatively hard, wear-resistant nanocrystalline metals to undergo
rapid grain growth. The rapid transition from grain boundary–dominated plasticity, character-
istic of nanocrystalline materials, to traditional defect-dominated plasticity for coarser-grained
(>100-nm) materials is currently the focus of much research interest and effort, the implications
of which are discussed ahead. In the context of stick-slip behavior at a Pt/Au interface, Li et al.
(103) effectively correlated experimental (atomic force microscopy) and MD simulations of stick-
slip behavior, which is perhaps a step toward the holy grail of computational modeling, achieving
predictive capability at the macroscopic scale. Atomistic simulations have the potential to provide
unique fundamental insight into the complex interrelationship between the numerous, complex,
and often stochastic and competing processes governing macroscale tribological behavior by al-
lowing one to systematically deconstruct and artificially probe them independently.

After nearly a century of widespread use, hard Au, effectively Au wherein the grain size is con-
trolled by the addition of grain boundary–segregated species (104) that pin boundaries, remains a
mainstay in the design of robust electrical sliding contacts and an eminently relevant and uniquely
practical material for the study of nanoscale phenomena of metal-on-metal contacts, both exper-
imentally and computationally. Fundamentally, the increased strength and wear resistance are
achieved by the dispersion of a relatively insoluble grain boundary–segregated, secondary metallic
phase in a polycrystalline Au matrix that prevents recrystallization and grain boundary motion
(which stabilizes grain boundaries) via Zener pinning. Average grain sizes on the order of 10–
100 nm and 2–3-GPa hardness can be achieved on greater than 99-vol% pure Au by the addition
of a grain boundary–stabilizing secondary species. PVD techniques were recently used to synthe-
size ceramic dispersion–strengthened Au films with tribological characteristics equivalent to those
of traditional metal-hardened Au (105). This class of materials, ceramic dispersion–strengthened
metal-matrix coatings, additionally helps mitigate a long-standing failure mode of traditional hard
Au coatings: degradation in electrical contact resistance attributed to the formation of electrically
insulating metal oxide films from the solid diffusion of non-noble-metal underlayer and code-
posited species to the sliding surface (73, 74, 106–111).

In their 1979 paper, Rigney & Hirth (112) were perhaps the first to recognize that relatively low
steady-state friction and wear behavior exhibited by some nominally unlubricated metal contacts
may be attributed to the formation of a fine-grained, highly strained surface layer. However, as
they point out, “. . .friction and wear are related, but not in a simple way, and accurate theoretical
correlations of friction and wear have yet to be obtained.” There has been emerging evidence
of a correlation between (a) the transition to low-friction behavior (from μ > 1.0 to μ ∼ 0.2)
of mild-wearing, unlubricated metal contacts and (b) the formation of a nanograined surface
layer of highly deformed base metal. Cross-sectional electron microscopy of surfaces of varying
composition, initial grain size, and operating environment worn in to the low-friction regime have
consistently revealed the presence of a thin, nanocrystalline surface layer not observed at elevated
contact pressures and sliding speeds, which are correlated with more severe wear (113–115). The
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transition to low-friction behavior of unlubricated, coarse-grained metal surfaces depends on
contact pressure and sliding speed (113). In sufficiently aggressive contact conditions, gross wear
outpaces the grain refinement process of near-surface material, which is needed to facilitate low
friction (μ ∼ 0.2), although the stability and formation process of the nanocrystalline surface layer
remains poorly understood (113). A 2010 review on the fatigue of nanocrystalline metals by Padilla
& Boyce (116) provides some insight into the mechanics of crack initiation and propagation in
nanocrystalline metals, although it is unclear how strain rate effects (speed dependencies) play a
role in the formation process of a nanocrystalline layer during sliding. In situ deposition of thin
solid-lubricant films, such as vapor-phase lubrication (55, 117, 118), was used to demonstrate
that friction processes drive the surface recrystallization and grain refinement in metal-on-metal
sliding contacts. When the lubricant films are sufficiently thin and lubricous, the wear of the metal
surfaces abates, as long as the rate of deposition of the surface film outpaces the removal of the
film.

The wear of sliding metal contacts of engineering alloys occurs through friction-induced sur-
face deformation and reduced grain size at the interface. This process can be accelerated through
the formation of thin, dense, and mechanically strong surface oxides that trap the friction-initiated
dislocations and accumulate them beneath the contacting surface. As the process of frictional slid-
ing repeats, this nanocrystalline zone increases in depth as the grain size at the surface continues
to reduce. Correspondingly, the hardness of these surface layers increases at the cost of fatigue
strength, which decreases. Eventually, this deformed and cold-worked nanocrystalline layer be-
comes so hard and brittle that it shatters off into fine wear particles or sheets that are ejected
from the sliding contact (Figure 6). Recent work on the stability of nanocrystalline metals may
present novel routes to understanding and engineering more-wear-resistant metal contacts. In a
2012 publication, Chookajorn et al. (119) demonstrated localized, intrinsic thermodynamic sta-
bility for a wide range of nanocrystalline binary metal alloys, in one example completely inhibiting
the recrystallization of a W-Ti powder specimen of 20-nm average grain size. Specimens were
prepared by ball milling and were exposed to 1,100◦C for a 1-week period without a measurable

ba

1 μm

1 μm

1 μm

Sliding direction

1 μm

Protective Pt layerProtective Pt layer

Protective Pt layerProtective Pt layer

Delamination pathway
to the specimen surface
Delamination pathway

to the specimen surface

~1-μm layer of highly deformed metal~1-μm layer of highly deformed metal

i

ii

i

ii

Figure 6
(a) Cross-sectional scanning electron microscopy images inside the wear track of a single-crystal Ni
superalloy (CMSX-4) worn in against Si3N4 in N2 (i ) before and (ii ) after a delamination wear event of the
tribologically formed nanocrystalline surface layer. (b) An electron backscatter diffraction crystallographic
orientation map adapted from Prasad et al. (115) showing cross-sectional views of (i ) an unworn area and
(ii ) a worn-in area of a polycrystalline Ni substrate.
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change in grain size. Two primary technical challenges limit the adoption of these thermally stable
nanocrystalline metal alloys as practical engineering materials: (a) a demonstration of intrinsic or
even partial stability under mechanical strain and (b) the development of thin-film or bulk synthesis
and fabrication routes.

The present cross section of recent advances in the understanding of the processes governing
the wear and friction of metals demonstrates that, even though this is perhaps the oldest and most
intensely investigated class of tribological materials, there is plenty of room at the interface for
influential and fundamental discovery.

3. POLYMERS AS A TRIBOLOGICAL MATERIAL

3.1. Introduction to Polymers in Tribology

Whereas metallic and ceramic surfaces are rarely used in notionally unlubricated applications,
polymers not only are used in unlubricated conditions but also are often thought of as solid-
lubricant materials. Polymers’ ability to provide reasonably low friction coefficients and wear
rates under a wide range of working conditions with high reliability have made them a widely
used material for dry or self-lubricating bearings and bushings. As a class of materials, polymers
typically have large ratios of strength to modulus and low surface energies; these attributes help
mitigate wear by promoting large elastic strains and by facilitating the transfer of protective films
to high-energy surfaces, respectively.

Ultrahigh-molecular-weight polyethylene (UHMWPe) is a unique polymer solid lubricant in
that it exhibits relatively low friction and wear without lubricating or reinforcing fillers. Its most
notable tribological application is as the bearing material in orthopedic devices; in boundary-
lubricated unidirectional conditions with water or bovine serum, friction coefficients are on the
order of 0.05 (120), and wear rates approach 10−9 mm3/(N·m) (121), a value rivaled by mass gains
from fluid uptake. Its unidirectional wear rate is roughly two orders of magnitude lower than that
found in vivo, however. During sliding, traction forces reorient the polymer chains at the surface,
which significantly strengthens the material and reduces wear rates (121). Joint kinematics studies
have revealed significant deviations from linear sliding (122), and cross-shear from controlled,
multidirectional sliding increases friction by 100% (120) and wear to values more consistent with
those found in vivo (121).

Other polymers exhibit significantly higher friction or wear than UHMWPe under most con-
ditions and require the addition of lubricating or reinforcing fillers (123). Lancaster (124) was
among the first to investigate fiber reinforcement as a route to improve friction and wear prop-
erties of polymers. The addition of 30% high-strength carbon fibers reduced friction by 50%
and reduced wear by more than 90% for all but four already wear-resistant polymers. Follow-up
studies showed that perpendicularly oriented fibers produced the greatest reinforcement effect
and proposed that the perpendicular orientation maximized preferential load support by the filler.
Sung & Suh (125) made similar experimental observations but proposed that the perpendicular
orientation interfered with the propagation of subsurface cracks.

PTFE, perhaps the most notable tribological polymer due to its exceptional frictional prop-
erties, has shown the greatest capacity for wear reduction through filler reinforcement. Although
the highest reported wear rates among polymers belong to unfilled PTFE (126), the lowest re-
ported wear rates belong to a PTFE-based composite (127). Tanaka et al. (128) first attributed
the unusually high wear rate of PTFE to the ease of destruction of its unique banded structure.
Bahadur & Tabor (129) found that effective fillers reduced the size of the wear debris, which
more readily attached to the countersurface to form a protective transfer film that helps prevent
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subsequent wear. Blanchet & Kennedy (130) showed that the wear rate of PTFE was unusually
high only above a critical speed and determined that the transition occurred when frictional shear
stresses exceeded the interfacial strength of subsurface cracks. They proposed that fillers reduced
wear rates of PTFE by interrupting subsurface crack propagation.

Tanaka & Kawakami (131) were the first to investigate the effect of filler size on wear reduction
of PTFE composites. The filler that provided the poorest improvement in wear resistance was
TiO2, which happened to be the only nanoscale filler in the study. This result was consistent with
the crack interruption and preferential load support hypotheses; Tanaka & Kawakami concluded
that small particles cannot effectively prevent the destruction of the banded structure and are simply
swept away within large debris particles. At this time, the community agreed that nanoscale fillers
were unable to reinforce polymeric solid lubricants.

In the late 1990s to 2000, Wang and colleagues (132–136) published a series of papers on the
reinforcing effects of ceramic nanofillers on polyetheretherketone (PEEK). Although PEEK is
already quite wear resistant without reinforcement, nanofillers reduced wear by as much as 10
times [down to 10−6 mm3/(N·m)]. The first PTFE nanocomposite study since the initial report by
Tanaka & Kawakami (131) was published by Li et al. (137) in 2001 on nanoscale ZnO-reinforced
PTFE. Li et al. showed reductions in wear from 10−3 mm3/(N·m) to 10−5 mm3/(N·m), but
perhaps the most important result was the deterioration of wear resistance beyond an optimum
loading, an observation that conflicts with the prevailing linear-rule-of-mixtures models. In 2003,
Chen et al. (138) showed that carbon nanotubes reduced wear further to 2 × 10−6 mm3/(N·m).
Although this improved effect from large-aspect-ratio fillers was consistent with the hypotheses of
the time, a 2003 study by Sawyer et al. (139) showed that alumina nanoparticles provided further
reductions at lower filler loadings [1 × 10−6 mm3/(N·m) at 10%]. In 2005, Burris & Sawyer
(140) published a study of roughness effects on the wear of the alumina-PTFE nanocomposite. By
varying the filler particle size in an attempt to study the interaction between asperity height and
particle radius, they discovered that the larger alumina particles reduced wear by another order of
magnitude at loadings as low as 1 wt%. Later studies showed that trace (<1%) nanofillers could
reduce steady-state wear rates to less than 10−7 mm3/(N·m), nearly four orders of magnitude
below the rates for unfilled PTFE (141). Independent follow-up studies corroborated the
unusually low wear rates of these materials and changed the landscape for the design of polymeric
tribomaterials (142–145). These PTFE-alumina nanocomposites with steady-state wear rates of
∼10−7 mm3/(N·m) and less are referred to as ultralow-wear PTFE composites.

3.2. Nanoscale Interactions Offer New Direct-Reinforcement Mechanisms

Traditional polymer composites use high loadings (20–50%) of hard, perpendicularly oriented
fillers to enhance wear performance through well-understood mechanical routes (Figure 7a).
Unfortunately, these characteristics sacrifice other (e.g., ductility, thermal, and chemical) proper-
ties of the polymer while abrading transfer films and the countersurface and thus partially offset
their reinforcement effects. Initially, nanoparticles may have been proposed to address the abrasion
problem, as nanoparticles have a characteristic dimension (<200 nm) smaller than the transfer film
thickness. However, nanoparticles can be extremely hard, and nanoparticle abrasion can polish the
countersurface to promote transfer film stability. Furthermore, nanoparticles have high number
densities and ratios of surface area to volume. A nanocomposite has one thousand times the filler
surface area and one billion times the number of particles of a comparable microcomposite (i.e.,
20-nm versus 20-μm average filler diameter). Although polymers and fillers are often inert and
are expected to have weak interfaces, the likelihood for chemical interaction increases with an
increased ratio of surface area to volume.
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Figure 7
(a) Wear rate versus filler weight percent for PTFE microcomposites and nanocomposites in the literature:
(i ) Reference 137, (ii ) Reference 138, (iii ) Reference 139, (iv) Reference 146, (v) Reference 141,
(vi ) Reference 144, and (vii ) References 147–151. (b) Steady-state wear rate versus average friction
coefficient for PTFE filled at 5 wt% with various fillers sliding against stainless steel at 250-N normal load,
50.8-mm/s sliding speed, and 25.4-mm stroke length. Abbreviation: CNT, carbon nanotube.

Numerous investigators have found significant improvements in mechanical properties of a
range of polymers with low loadings of nanofillers (152–164). Eitan et al. (153) found significant
load transfer across the interfaces of multiwall carbon nanotubes and polycarbonate using Raman
spectroscopy; the degree of load transfer increased when nanotubes were treated. Low loadings
of nanofillers also dramatically change glass transition temperatures, the crystalline phase, and
the morphology of the polymer (158, 165–169). Contrary to the traditional view of mechanical
reinforcement, in which the filler and polymer behave as they would individually, these results
suggest that these fillers can fundamentally change the polymer.

Physical interactions at the polymer/filler interface have long-range effects on the polymer over
a nanoscale region known as the interface region, the interaction zone, or the interphase. Maiti &
Bhowmick (170) used atomic force microscopy to show that the thickness of the interface region is
on the nanometer length scale and increases with compatibility between the filler and the matrix.
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Although the effects of a nanoscale interface region on a traditional composite are negligible, these
regions can make up a significant fraction of the total volume of a nanocomposite, resulting in
dramatic changes in the apparent properties of the polymer.

3.2.1. Potential effects of the interface region on the wear of PTFE nanocomposites.
One interesting insight into the origin of ultralow-wear PTFE composites is that, with otherwise
identical conditions, the mechanism can be switched on or off by changing the alumina nanoparticle
(140). This insight suggests that some physical or chemical property of the particle, and more
specifically of the particle surface, activates the mechanism. We consistently find that low-wear
PTFE fibrillates extensively, particularly near stress concentrators, whereas high-wear PTFE
blunts and ruptures. These stark mechanical differences suggest that the particles fundamentally
change the polymer.

The mechanical properties of PTFE depend strongly on its crystallinity, crystalline phase, and
crystalline morphology (171–175), all of which may be strongly influenced by interactions at the
polymer/nanoparticle interface. PTFE has a unique crystalline structure that is often described as
banded, and this banded structure contains intermittent bands of crystalline polymer and amor-
phous polymer (128); the viscoelastic properties of this banded structure are related to its friction
and wear responses (176). Within crystalline regions, lamellar slices are composed of folded PTFE
chains. An individual chain is a fully fluorinated carbon backbone in a helical conformation, the
twist of which dictates the phase. The three well-known phases occur near room temperature.
Phase II (177, 178) exists at less than 19◦C, is the most brittle phase, and is characterized by a
triclinic unit cell with a = b = 0.559 nm. Phase IV exists between 19 and 30◦C; as temper-
ature increases beyond 19◦C, the helix untwists, the lattice becomes hexagonal, and the lattice
spacing increases by ∼1% (177). Phase I, which exists at greater than 30◦C (179), is the toughest
phase (173) and is characterized by a distorted hexagonal lattice and by general molecular disorder
(180–182).

Preliminary differential scanning calorimetry (DSC) and XRD measurements were made to
investigate whether nanoparticle stabilization of the tough phase I contributes to wear reduc-
tions of these low-wear materials (183). Initial low-temperature DSC suggested that α-phase
alumina (α alumina) reduced the PTFE phase-transition temperatures (I–IV and IV–II) by ∼2◦C,
which suggests increased molecular disorder at a given temperature. Room temperature XRD pro-
duced consistent results. The full-width half-maximum of the primary peak (2θ = 18◦) increased,
whereas the magnitude of 2θ at the peak decreased; these results indicate increased deviation of
the lattice spacing and increased mean lattice spacing, respectively. The peak height in the 2θ =
35–45◦ region was reduced relative to the background, suggesting increased deviations in the helix
conformation (along each chain or from chain to chain). High-temperature DSC showed increased
crystallinity and melt temperature (by 1◦C at 5 wt%); these results suggest that nanoparticles may
have helped nucleate crystallization and increased the size or organization of the crystals, respec-
tively. However, more recent and exhaustive, unpublished studies have shown that such changes
do not always occur, nor do they correlate to the wear resistance of the material. PTFE is an ex-
tremely complex semicrystalline polymer, and although no definitive signature of wear resistance
has yet been identified with standard polymer characterization techniques, there is no doubt that
the ultralow wear rates observed are made possible by one or more nanoscale phenomena.

3.2.2. Dispersion. The influence of the nanoparticles on the polymer is limited by how well the
particles have been dispersed. High surface area per unit volume, the very property that makes
nanoparticles special, also encourages them to stick or agglomerate. This behavior results in a
competition between the potential for mechanical enhancement and difficulty of dispersion. Such
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Figure 8
Schematic illustrations of the effects of nanoparticle dispersion on the free-space length Lf for a 6% nanocomposite; the dispersion
quality deteriorates, and Lf increases from left (a) to right (c). The polymer is shown in white, the nanoparticle is shown in black, and
the interface region is shown in blue at the interface of the particle and the polymer. Red boxes represent the free-space length of each
dispersion.

limitations may have played a role in the poor performance of early nanocomposites, particularly
those involving high loadings of particles (10–50%). Comparisons between studies have been diffi-
cult due to the lack of a standard quantitative dispersion characterization method. Although many
proposed methods (184–194) characterize a property of the distribution of particles (a strategy
with virtually endless possibilities), our experience with tribological nanocomposites suggests that
the characteristic size of the unreinforced polymer domain is the feature that matters most; we
have termed this the free-space length, Lf (195). As Lf decreases, the influence of the interface re-
gion (Figure 8) increases along with the reinforcement effect. We would therefore expect smaller,
better dispersed, and higher loadings of fillers to improve the properties. Figure 8 illustrates the
effect of dispersion quality on Lf for a 6% nanocomposite.

To investigate the role of dispersion, a fluorinated silane treatment (trifluoropropyl
trimethoxysilane) was used to improve the dispersibility of α alumina in PTFE (141). Wear rates
were measured at 0.125, 0.5, and 1% loadings with treated and untreated nanoparticles. Wear
rates of untreated nanocomposites were low at higher loadings but became inconsistent at 0.125%
loadings, reaching 10−4 mm3/(N·m) in one case. Low and stable wear rates were found for each
treated sample. Although agglomerates were observed in both cases, untreated nanoparticles were
always clustered, whereas treated nanoparticles were found individually and clustered; the result
was a reduction in Lf from 1,240 to 540 nm.

Although there remain many open questions about the specific mechanisms that enable trace
loadings of particles to reduce polymer wear by four orders of magnitude, the literature suggests
that nanoscale fillers (with high ratios of surface area to volume), quality filler dispersions, and
strong interactions between the polymer and filler are favorable. The α alumina appears to be par-
ticularly effective at low loadings, especially under enhanced dispersion conditions, for reasons that
likely involve uncharacterized long-range effects of the particle/polymer interface on the nearby
polymer chains. Numerous other fillers also promote ultralow wear in PTFE, although many oth-
ers do not. Successful PTFE nanocomposites have exhibited the tendency to fibrillate during fail-
ure. The results suggest that the dominant mechanisms of reinforcement are damage localization
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Figure 9
(a–c) Images showing transfer film’s characteristic morphology in the (a) run-in, (b) transition, and (c) steady-state phases. (d ) Energy-
dispersive spectroscopy analysis showing the relative concentrations of O and Al at the run-in and steady-state stages, which correspond
to the locations on the surfaces delineated by the white boxes in panels a and c. The Al reflects filler contributions, whereas the O
reflects defluorination and oxidation of the PTFE.

[interruption of crack propagation (130)] and the corresponding regulation of debris size (129),
which encourages the adhesion of the protective transfer films necessary for low-wear sliding.

3.3. Mechanisms of Secondary Reinforcement Through Transfer
Films and Tribofilms

Polymer composites are often mated against a relatively smooth and hard countersurface. Once
debris particles are removed from the composite surface, they stick to the countersurface, transfer
back to the composite, or escape the tribosystem altogether. The material that transfers to the
countersurface becomes a protective layer termed the transfer film. In general, when materials
slide with low and ultralow wear rates, they produce fine wear debris and thin, uniform transfer
films. This observation has led to the widely held belief that fine wear debris and high-quality
transfer films play critical roles in wear reduction.

3.3.1. Debris size, transfer film morphology, and relationship with wear. These ultralow-
wear PTFE nanocomposites endure a run-in period of elevated wear rates before transitioning
to ultralow wear at steady state. We recently conducted in situ studies of the transfer film to
investigate how it forms and the role it plays in the transition to ultralow-wear sliding (196). We
observed three distinct transfer film morphologies (Figure 9). In the run-in phase, high wear rates
were accompanied by the deposition of relatively large platelets onto the countersurface. As sliding
continued, the size of the platelets and the wear rate monotonically decreased, but interestingly,
the platelets were removed and replaced on a cycle-by-cycle basis throughout the run-in phase.
These results indicate that transfer film adhesion is initially uninvolved and refute the hypothesis
that the nanoparticles serve primarily to directly bond the polymer debris to the counterface.
Energy-dispersive spectroscopy (EDS) of the transferred material showed that the composition
was identical to the bulk material, a result that refutes the hypothesis that (at least without other
inputs) the particles degrade the polymer to promote adhesion.

The debris size decreased with sliding until no new debris were observed; this point marks a
transition period for which cycle-by-cycle wear was immeasurable (to 10 μg) and any transferred
debris became optically undetectable. With continued sliding, the region darkened optically, and
scanning electron microscopy revealed that the darkening was due to the accumulation of nanoscale
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PTFE fragments (∼100 nm in lateral dimension) that were alumina deficient and heavily oxidized.
With further sliding, these deposits became optically visible and persisted for, as far as we could
tell, the remainder of the experiment. Clearly, these fragments were strongly adhered, possibly
because degradation offered the opportunity for strong bonding or because the energetics of the
small size scale favored adhesion over removal (probably both). We term these fragments seeds
because they appear to nucleate the growth of the transfer film in its traditional embodiment (196).

Following a period of sliding in the transition phase, the sudden occurrence of a significant wear
event produced optically visible debris fragments and a quantifiable change in mass. These larger
wear fragments also adhered for extended periods of sliding, suggesting degradation-enhanced
adhesion. With continued sliding, existing fragments coalesced, and additional fragments were
deposited to eventually form a continuous network, as shown in Figure 9. During the steady-state
phase of wear, the transfer film was worn and new wear fragments were deposited at equal rates.
EDS showed that the steady-state films were heavily oxidized and alumina rich.

3.3.2. The tribochemistry of ultralow-wear PTFE composites. Whereas EDS can provide
compositional clues into filler accumulation and oxidation, X-ray photoelectron spectroscopy
(XPS) can be used to probe specific chemistries. XPS measurements revealed evidence of a new
chemical species in tribofilms (an altered “skin” on the surface of the worn polymer composite)
and in transfer films following ultralow-wear sliding (Figure 10). The new peaks in the C 1s
spectrum are consistent with defluorinated and otherwise degraded PTFE. XPS suggests that the
tribochemically generated species observed in the transfer film of ultralow-wear alumina-PTFE
composites is consistent with oxygen-containing end groups that were not present before sliding. It
is hypothesized that this new species enhances transfer film adhesion. The formation of these new
end groups requires defluorination or backbone cleavage (to provide a reaction site) and sources
of oxygen and/or either water or hydroxide near the sliding interface; in laboratory experiments,
humid air can provide both. This hypothesis suggests that the wear performance of these systems
depends strongly on the environment.
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Figure 10
(a) Unfilled PTFE and (b) PTFE nanocomposite transfer film topography as formed by sliding against a
304L stainless steel countersample. (c–e) C 1s X-ray photoelectron spectra for (c) an unfilled PTFE reference
sample, (d ) an unfilled PTFE transfer film, and (e) a PTFE and 5-wt% alumina nanocomposite transfer film
formed on stainless steel in an environment of N2 (∼80%) and O2 (∼20%) with a relative humidity of
∼35%. From Reference 145.
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Figure 11
Wear rate as a function of (a) water partial pressure and (b) relative humidity for a PTFE composite filled with 5-wt% α alumina and
slid against stainless steel at 250-N normal load, 50.8-mm/s sliding speed, and 25.4-mm stroke length. From References 145 and 197.

Experiments were performed in air (80% N2/20% O2), humid nitrogen (145), and humid
vacuum environments (197). Wear rate is plotted as a function of chamber pressure and relative
humidity in panels a and b of Figure 11, respectively. The wear rate of the PTFE-alumina
nanocomposites increased with decreased environmental water vapor, whereas the wear rate of
unfilled PTFE did not (Figure 11). These wear experiments in various environments support the
hypothesis that tribochemistry between the worn samples and the environment plays an important
role in wear reduction.

3.3.3. Tribological bond breaking. Contrary to the predominant delamination wear mechanism
and the notion that PTFE exhibits poor adhesion, several investigators have shown that extremely
thin and oriented fragments of PTFE transfer readily and adhere strongly. Our recent in situ
surface plasmon resonance tribology experiments supported these results and showed that PTFE
transfers as early as the first cycle (198). XRD and atomic force microscopy studies of PTFE transfer
films have shown molecular alignment and structure consistent with the drawing of individual
chains (or small collections) from the bulk. Such transfer requires that chains (typically 10–100 μm
in length) be drawn completely from the entangled bulk or be broken (chain scission) when the
draw stresses exceed the strength of the backbone. If we assume that the C-C bond and PTFE-
countersurface bond (through van der Waals interactions) have characteristic strengths of 1 GPa
and 10 MPa, respectively, a simple force balance predicts that the chain breaks when it interacts
with the countersurface over a length of >50 nm. This estimate suggests that chain scission is
actually quite favorable, explains observations of immediate transfer, and offers the pathway for
tribochemical reaction and strong adhesion.

The notion of tribochemistry (199), including chain scission and reaction, has been explored
in fluoropolymers (200–210). Using a computational chemistry approach, Onodera et al. (210)
showed that PTFE can be defluorinated by alumina to form a carbon radical, which can
interact with the environment and other surfaces. The possible tribochemical defluorination
of PTFE and other fluoropolymers has been identified through Auger spectroscopy and XPS
(201–205, 207). Other researchers show possible mechanisms for transfer film formation caused
by enhanced tribochemical interactions and chain scission (206, 208–210). Combining the
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mechanistic possibilities (206, 208–210) with the results from the environmental experiments
(145, 197) clarifies the tribochemical mechanisms. Chain scission event sites, when terminated by
constituents from water, promote the formation of carboxylates (206). Numerous C-C bonds are
broken each time a wear particle is generated, providing abundant opportunities for chemistry
and unique new tribological surfaces, which is likely why the friction coefficient of PTFE-alumina
composites increases to values of 0.15 to 0.2 or greater as the transfer film reaches a steady state.

3.3.4. Tribofilms. Although a well-adhered transfer film is necessary for ultralow wear, the
formation of a robust tribofilm on the polymer surface is perhaps of equal importance (211).
Interestingly, initial wear rates at early sliding cycles are comparable for unfilled PTFE and PTFE-
alumina composites (Figure 12); here, unfilled PTFE and 2-, 5-, and 8-wt% alumina–filled PTFE
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Figure 12
(a,b) Run-in and tribofilm formation. Total volume lost as a function of sliding cycle for unfilled and 2-, 5-, and 8-wt% α alumina–filled
PTFE composites slid against stainless steel at 250-N normal load, 50.8-mm/s sliding speed, and 25.4-mm stroke length. Plotted on
(a) semilog and (b) linear axes for visualization. (c) Images of tribofilms on the wear surface of the polymer composite for 2- and 8-wt%
α alumina composites. Cycle number is shown at the bottom-right of each image in panel c.
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composites are slid against a stainless steel countersurface. When wear volume is plotted as a
function of sliding cycle (or time or distance), there is a transition from an initial high wear rate
to an ultralow wear rate. The transition from high wear to low wear occurs earlier with increasing
filler loading percent (up to 8 wt%). The dispersion quality of these samples would be classified as
poor to moderate by most standards (211). In this case, the poor dispersion can be supplemented
by increased filler loading. This finding suggests that low wear requires a critical loading of filler
for sufficient damage compartmentalization.

The transition from high wear to ultralow wear during the initial sliding, or run-in period,
of PTFE-alumina composites also coincides with the development of a brown tribofilm on the
surface of the polymer composite (Figure 12c) (211). This tribofilm is more readily formed
with increased filler loading up to 8-wt% alumina filler. The 8-wt% alumina composite readily
forms a tribofilm after ∼1,000 to 5,000 sliding cycles (Figure 12c) and very quickly transitions
to an ultralow, steady-state wearing system. However, the 2-wt% alumina composite takes much
longer to form a steady-state film (Figure 12c), which corresponds to a longer run-in period.
There is also a period during which the tribofilm starts to form (at approximately cycle 1,000)
and then subsequently wears (cycle 5,000 to 10,000), corresponding to extended high wear rate.
A stable tribofilm is formed between cycle 10,000 and cycle 50,000 (Figure 12c), and the system
transitions to ultralow wear at approximately cycle 20,000 (Figure 12a,b). After extended sliding
cycles (hundreds of thousands to millions of sliding cycles), ultralow, steady-state wear is reached
[as low as 2 × 10−8 mm3/(N·m)]. For perspective, this wear rate equates to one monolayer of PTFE
being removed from the surface every 100 sliding cycles (although in reality wear and transfer
events are much larger and infrequent).

XPS analyses of the tribofilm revealed tribochemically degraded PTFE as shown in
Figure 10 (145). Furthermore, nanoindentation revealed that this tribofilm on the wear surface
of the polymer is mechanically harder and stiffer than the bulk composite and unfilled PTFE;
in fact, the tribofilm is progressively harder with increased sliding cycles (211). This increase in
hardness is consistent with the increased hardness of degraded PTFE and with the accumulation
of hard nanoparticles at the tribological interface. The tribochemically degraded PTFE in the
tribofilm may have improved cohesive strength, may better regulate debris size through crack
arresting, and may replenish transfer film with new carboxyl-terminated debris.

3.4. Summary

We have found that trace quantities of nanofillers can reduce the wear of PTFE by four to five
orders of magnitude, an improvement that cannot be explained through traditional reinforcement
mechanisms. We have worked to elucidate the responsible mechanisms for nearly a decade and
have found a number of potential contributing factors. Although we have not pinpointed exact
mechanisms, they appear to be nanoscale in nature and to feedback into one another. Figure 13
illustrates our current hypothesis for the unprecedented dry-sliding wear performance of these
unique nanocomposite materials.

Low loadings of well-dispersed nanoscale fillers maximize the interaction area between the
filler and the matrix and minimize the characteristic length scale of the unreinforced polymer.
These interactions, when sufficiently strong, may have long-range effects on the polymer and
on its mechanical response at the nano-, micro-, and macroscales. Interestingly, wear rates,
debris morphology, and transfer film properties are relatively unaffected by the particles during
the early stages of sliding, which suggests that the reinforcement effect is primarily indirect.
Debris are initially compositionally identical to the bulk and do not adhere to the countersurface
(Figure 13a). The wear rate and debris size of all PTFE nanocomposites decrease with continued
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Mechanistic hypothesis for ultralow-wear PTFE nanocomposites. Characteristic processes of transfer film formation are illustrated in
relative order from a through g. Notable observations and interactions are described in i–vi.

sliding (Figure 13b,c), but only ultralow-wear PTFE exhibits marked degradation at the interface
(Figure 13d ). These chemical modifications lead to harder, more brittle (possibly through
cross-linking and conjugation), and more-wear-resistant polymer surfaces. We can disrupt
ultralow wear by removing the environmental water vapor necessary to form the chelating
reaction products, supporting the importance of tribochemistry. The nanoparticles may reduce
the barriers to PTFE defluorination and chain scission to promote this tribochemistry.

Whereas debris size and wear rates reach moderate steady-state values, the wear rates
of ultralow-wear materials continue to decrease until debris become optically undetectable
(Figure 13d ). At this point, chemically degraded nanoscale PTFE fragments transfer and strongly
adhere to the countersurface; nanoscale phenomena are likely involved in accelerating reactions
and increasing adhesive strength. During the transition phase, frictional input continues to chem-
ically and mechanically degrade the surfaces until the first significant posttransition wear event
occurs (Figure 13e). Unlike debris from the run-in phase, debris from the steady-state phase
degrade, adhere strongly to the countersurface, and coalesce (Figure 13f ) to form a continuous
and stable transfer film (Figure 13g) that is eventually worn and replenished at equal rates.

Although nanofillers typically improve mechanical properties only modestly, we have shown
that trace quantities of nanofillers can increase the wear resistance of a polymer by 10,000 times;
to our knowledge, this is the most extreme example of nanofiller reinforcement in the polymer
nanocomposites literature. The model we describe here remains a hypothesis but is consistent
with nearly a decade of work by our group and others in the field to elucidate the responsible
mechanisms. Although the specific nanoparticle surface property responsible for activating the
ultralow-wear mechanism in PTFE has not been isolated, the observation that wear resistance can
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be switched on and off with only subtle filler changes has exciting implications for the future of
tribomaterials design and for other areas of polymer science and engineering.

4. IONIC SOLIDS

The usefulness of ceramics as tribological materials is evident in theory and in practice (212, 213)
[e.g., in the context of gas turbine engine bearings (213)]. Ceramics are found in a wide range of
engineering applications in the form of both thin films and bulk materials due to their superior
wear resistance, hardness, fatigue strength, thermal stability, and chemical inertness compared
with conventional metal alloy materials. Erdemir considered the ionic potentials of crystalline
oxides to select bulk (214) and design nanocomposite (215) solid-lubricant materials. Later, a
data-driven, informatics approach was used to predict friction coefficients of single-crystal ionic
solids on the basis of a range of materials parameters, including electronegativity, intermolecu-
lar distance, Madelung constants, melting temperature, density, and numerous other parameters
(216). However, a fundamental understanding of the mechanisms of friction and wear remains
elusive, largely due to the complex dynamic and transient nature of tribological systems. The
availability of tribometers with high-resolution in situ microscopy (217) is rapidly bridging the
gap between idealized physical systems and practical experiments and is enabling more sophis-
ticated experiments in attempts to understand the tribological behavior of ceramics in varying
environments at the single-asperity scale.

More generally, single-crystal ionic solids, which naturally span several orders of magnitude in
wear resistance, offer a unique opportunity to understand and characterize the structure-function
relationship for the fundamental mechanisms of energy dissipation in sliding interfaces that result
in wear and friction.

With the advent of friction force microscopy (218), tribological interactions between materials
can be made at the atomic scale, revealing new frictional and wear behaviors (219–228). Crystalline
ionic solids and minerals have revealed remarkable behavior at the nano- and atomic length scales,
including direction-dependent friction (229), site-specific friction (terrace versus step sites) (228),
atomic stick slip (221, 223, 227), velocity-dependent friction (225), and thermally activated friction
and wear (224). Modeling and simulation efforts to explain the tribological phenomena observed
in these systems include various Tomlinson models (230–233), atomistic calculations (234, 235),
and MD simulations (19, 236, 237).

Remarkably, in the 1960s fundamental observations were made to link macroscale friction ex-
periments to atomic structure of ionic solids, prior to the capabilities of molecular simulations and
nanoscale experiments. In 1964, Steijn (238) and Bowden et al. (239) first observed crystallographic
orientation dependence on the coefficient of friction of single-crystalline, ordered solids, includ-
ing rock salts, diamond, and face-centered-cubic and body-centered-cubic metals. Both Steijn and
Bowden et al. performed experiments on the same {001} family of planes of the rock salt structure;
Figure 14 shows the result of the anisotropy in friction for Steijn’s NaCl experiment (Figure 14a)
and for Bowden et al.’s MgO experiment (Figure 14b). These studies were among the first to link
molecular order and orientation to tribological properties. More recently, motivated by a renewed
interest in the tribological behavior of ceramics at high temperatures, Erdemir (240) investigated
the friction behavior of various self-mated oxides and composite oxide materials at temperatures
in the range of 300–1,200 K and proposed a general correlation between high ionic potentials and
highly screened cations with low-friction behavior.

Interestingly, Steijn (238) and Bowden et al. (239) showed opposite trends in friction coefficient
dependence on sliding direction. Bowden et al. reported the highest friction in the <100> family of
directions, and Steijn showed high friction in the <110> family of directions. Several differences in
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Frictional anisotropy in crystalline solids. (a) Coefficient of friction on the (100) surface of NaCl as a function of crystalline sliding
direction as presented by Steijn (238). The x-axis sweeps through 360◦ of sliding directions. (b) Coefficient of friction on the (001)
surface of MgO as a function of crystalline sliding direction as reported by Bowden et al. (239). The x-axis sweeps through 180◦ of
sliding directions. Both experiments are on the same {001} family of planes of the rock salt structure.

the experiments may account for this disagreement. First, MgO and NaCl have different properties
due to the relative charges of each (+2:−2 versus +1:−1, respectively). Additionally, the loading
conditions (contact stresses and stress distributions) and probe materials differed: Bowden et al.
used sharp conical diamond probes, whereas Steijn used 1/16-inch-diameter sapphire probes.
Unlike Bowden et al., Steijn reported no measurable variation in friction of MgO for the sapphire
spherical probes at comparable loads. This difference in contact pressure and contact geometry
resulted in higher contributions of plowing friction in the measurements on MgO by Bowden
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Wear anisotropy in crystalline solids. Wear rate on the (100) surface of (a) NaCl and (b) MgO as a function of crystalline sliding
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et al. In contrast, the sliding experiments on NaCl by Steijn resulted in a more gradual material
removal process, with adhesive interaction and plastic flow dominating the frictional anisotropies.

Fifty years later, we present a comparable experiment that links the wear rate of a rock salt to the
crystalline order and orientation (Figure 15). Wear experiments on the (001) surface of rock salts,
including NaCl and MgO, revealed that the materials wear rates have a significant dependence
on crystallographic wear direction. These wear experiments used a 1/8-inch-diameter sapphire
ball with an applied normal load of 1 N. The materials experienced maximum wear when sliding
in the <100> family of directions and minimum wear when sliding in the <110> direction. For
MgO, the wear rate in the <100> direction was approximately three times higher than in the
<110> direction. These trends are strikingly similar to the friction results provided by Bowden
et al. (239) as well as by Steijn (238) in 1964. This new link is made possible by advances made in
instrumentation and technologies that are available to modern scientists. Five decades ago, Steijn
and Bowden et al. noted that the wear tracks were wider in the <100> family of directions than
in the <110> family of directions for materials such as NaCl, LiF, and MgO. These findings not
only provide a link between materials structure and property but highlight the importance of a
material’s short- and long-range order, organization, and orientation in relation to its tribological
properties. These new results provide insight into the molecular origins of wear and present the
opportunity to predict and design ionic solids for ultralow-wear operation. Furthermore, the
dependence of wear on sliding direction of these materials suggests that systems can be further
optimized for low wear by orienting materials and coatings for optimal wear performance.

5. CLOSING REMARKS

More than five centuries after da Vinci’s pioneering work, the study of friction and wear of bulk
materials remains a practically relevant and scientifically fruitful endeavor. The tables of friction
and wear properties commonly found in design textbooks belie the true complexity of tribological
contacts. Theoretical modeling and nanoscale experimentation have shown that friction is fun-
damentally driven by intermolecular forces. The macroscopic friction coefficients and wear rates
expressed by single-crystal ionic solids, for example, reflect the roles of crystallographic orienta-
tion and bond energy of the surface ions. Additionally, even molecularly thin films of adsorbed
species from the environment can dramatically change the nature of the surface interactions.
For metals, the removal of adventitious carbon or other environmental contaminants can lead
to direct metal-to-metal contact, strong adhesion, order-of-magnitude-increased friction, and
several-orders-of-magnitude-increased wear.

Wear events are highly irregular, making controlled and systematic experimental studies of
the underlying fundamental processes challenging. The integration of high-resolution in situ
characterization methods is opening new pathways for fundamental investigation. Intermolecular
forces are short ranged and exist only at locations of intimate contact. These real contact areas
are typically much smaller than the apparent area, occur only at the most prominent opposing
asperities, and rapidly change locations as sliding ensues. When bonds are broken through wear,
the environmental species tend to dictate the chemical reaction products, which subsequently
affect the interface interactions. In metals, the kinetics of oxidation can tip the balance between
mild wear and severe wear. The effects of oxidation and reaction products can be even more
significant to the tribological behavior of polymers; small and chemically modified debris fragments
can adhere strongly to abrasive countersurfaces to create a stable, low-friction, and low-wear
interface. Although the pathways and fundamental mechanisms leading to low friction and high
wear resistance can vary widely for different materials, the formation of favorable surface films—
tribofilms—is a critical aspect of tribological performance.
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The past two decades have witnessed the development of increasingly sophisticated experi-
mental tools intended to more directly probe molecular-scale processes. These tools have enabled
systematic investigations of a wide range of environmental effects on single-asperity contacts com-
posed of materials ranging from the practical and traditional to more exotic nanostructured and
graded composites. The gaps between simulated and experimental length scales and timescales
remain an important barrier to progress, although trends of experimental miniaturization and
increasingly greater computing power are helping to bridge these gaps. The present cross sec-
tion of recent advances demonstrates that, although tribology research has roots dating back five
centuries, there is plenty of room at the interface for fundamental and impactful discovery.
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228. Meyer E, Lüthi R, Howald L, Bammerlin M, Guggisberg M, Güntherodt HJ. 1996. Site-specific friction

force spectroscopy. J. Vac. Sci. Technol. B 14(2):1285–88
229. Liley M, Gourdon D, Stamou D, Meseth U, Fischer TM, et al. 1998. Friction anisotropy and asymmetry

of a compliant monolayer induced by a small molecular tilt. Science 280(5361):273–75
230. Hölscher H, Schwarz UD, Wiesendanger R. 1996. Simulation of a scanned tip on a NaF(001) surface

in friction force microscopy. Europhys. Lett. 36(1):19
231. Fusco C, Fasolino A. 2005. Velocity dependence of atomic-scale friction: a comparative study of the one-

and two-dimensional Tomlinson model. Phys. Rev. B 71(4):045413
232. Nakamura J, Wakunami S, Natori A. 2005. Double-slip mechanism in atomic-scale friction: Tomlinson

model at finite temperatures. Phys. Rev. B 72(23):235415
233. Steiner P, Roth R, Gnecco E, Baratoff A, Meyer E. 2010. Angular dependence of static and kinetic

friction on alkali halide surfaces. Phys. Rev. B 82(20):205417
234. Shluger AL, Williams RT, Rohl AL. 1995. Lateral and friction forces originating during force microscope

scanning of ionic surfaces. Surf. Sci. 343(3):273–87
235. Yoshimichi N, Hitoshi S. 2000. Frictional force microscopic anisotropy on (001) surfaces of alkali halides

and MgO. Jpn. J. Appl. Phys. 39(7S):4497
236. Livshits AI, Shluger AL. 1997. Self-lubrication in scanning-force-microscope image formation on ionic

surfaces. Phys. Rev. B 56(19):12482–89
237. Trevethan T, Kantorovich L. 2004. Physical dissipation mechanisms in non-contact atomic force mi-

croscopy. Nanotechnology 15(2):S44
238. Steijn RP. 1964. Friction and wear of single crystals. Wear 7(1):48–66
239. Bowden FP, Brookes CA, Hanwell AE. 1964. Anisotropy of friction in crystals. Nature 203:27–30
240. Erdemir A. 2000. A crystal-chemical approach to lubrication by solid oxides. Tribol. Lett. 8(2):97–102

www.annualreviews.org • Mechanistic Studies in Friction and Wear of Bulk Materials 16.33

Changes may still occur before final publication online and in print.

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
01

4.
44

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 L
eh

ig
h 

U
ni

ve
rs

ity
 o

n 
05

/2
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.




