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Abstract

Most existing methods for scheduling are based on centralized or hierarchical decision

making using monolithic models. In this study, we investigate a new method based on a

distributed and locally autonomous decision structure using the notion of combinatorial

auction. In combinatorial auction the bidders demand a combination of dependent objects

with a single bid. We show that not only can we use this auction mechanism to handle

complex resource scheduling problems, but there exist strong links between combinatorial

auction and Lagrangean-based decomposition. Exploring some of these properties, we

characterize combinatorial auction using auction protocols and payment functions. This

study is a �rst step toward developing a distributed scheduling framework that main-

tains system-wide performance while accommodating local preferences and objectives.

We provide some insights to this framework by demonstrating four di�erent versions of

the auction mechanism using job shop scheduling problems.

Key words: Auction theory, mechanism design, job shop scheduling, distributed schedul-

ing, Lagrangean relaxation, subgradient optimization.



1 Introduction

Distributed decision making has attracted much attention in recent years due to the

rapid advancement of computing and communication technologies. Local decision mak-

ers responsible for a segment of the decision process now have direct access to powerful

decision tools and workstations. The idea of making decisions in a heterogeneous, dis-

tributed fashion becomes both desirable and practical. Under such systems, decision

makers may contemplate and incorporate their local set of constraints, preferences, and

objectives into the decision process. Nonetheless, local considerations are but loosely

linked to global company interests, and decision makers often have conicting interests

over their shared resources. Two important research issues are thus, aligning global and

local interests, and resolving peer-to-peer conicts in resource sharing.

In this paper, we will focus our attention on resource scheduling problems. Resource

scheduling is a critical component of manufacturing information systems. The structure

of a scheduling system a�ects directly how production functions are planned and car-

ried out. Most existing methods for resource scheduling take one of the following two

approaches: (1) centralized or hierarchical decision making based on some monolithic

optimization model, or (2) distributed but ad hoc decision making designed to �t the

existing organizational structure. Monolithic models are often found in the academic

literature especially in Operations Research, while distributed or localized methods can

be frequently observed in industry. We are interested in mechanisms that allow resource

scheduling to be locally autonomous, and at the same time aligned with global interests.

The need for distributed resource scheduling is most evident in manufacturing systems

with complex product/supply structures, and where customer service is of high priority.

Electronics and automotive manufacturing fall into this category. In these operations,

�rms often have designated product managers each responsible for a set of similar prod-

uct types. By design, each product manager is motivated to satisfy his/her own customers'

requirements. Each product manager must deal with distinctively di�erent set of issues

due to di�erent market conditions, lead time pressure, and processing requirements. It

is seldom economical to construct dedicated production lines for each product family us-

ing duplicated resources. Consequently product managers must share and compete for

production resources in a regular basis. To satisfy the conicting objectives of overall

resource e�ciency and individual product performance (e.g., market responsiveness, cus-
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tomer satisfaction), a new generation of scheduling system is in desperate need.

In this paper, we study a distributed scheduling framework, which we believe is more suit-

able for the manufacturing decision structure. The basic idea is to localize and distribute

the functionality of operational scheduling decisions, leaving the complexity to local deci-

sion makers, while maintaining a simple and generic coordination mechanism at a central

site. The proposed method is distributed in the sense that each local decision maker

bases his/her decisions on a local utility which is de�ned based on both local preferences

and global constraints. Speci�cally, each decision-maker has a local problem to maximize

his/her expected total reward subject to local constraints. This is then communicated to

the coordination mechanism as a \bid". The coordination mechanism or an \auctioneer"

is a bid processor that makes resource allocation based on an iterative auction process

using the bidding information. We will demonstrate that traditional optimization models

for scheduling can be viewed as special cases of the proposed auction structure, and well-

known optimization techniques such as Lagrangean relaxation can be adapted to handle

iterative auction.

2 A Survey of Related Literature

The notion of decentralized decision making can be found in early OR literature as well as

in much recent work in Economics and Computer Science. To put our proposed method in

the context of existing literature, we will provide a survey of the latter two areas: agent-

based scheduling emerged from the Computer Science community, and auction theory and

equilibrium from Economics and Game Theory.

2.1 Distributed and Agent-based Scheduling

Distributed scheduling has attracted much attention recently in the computer science com-

munity. Methods based on multi-agent systems have emerged in the area of Distributed

Arti�cial Intelligence (DAI). The idea is to decouple the scheduling task into subproblems

each solved by a local agent. These approaches are rooted from the constraint satisfaction

version of the scheduling problem [49, 26, 27]. The optimization version of the problem has
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rarely been attempted in DAI [49, 28]. Sycara, et al. [49] revise the micro-opportunistic

scheduling approach studied in [44] to develop a distributed and multi-agent schedul-

ing system. Liu and Sycara [28] propose a multi-agent approach for specially structured

bottleneck job shop scheduling problem with weighted tardiness objective.

Another line of research, also rooted from DAI, is market-based distributed problem solv-

ing. In this approach the communication among the problem-solving agents is governed

by a computational economic process. The contract net approach proposed by Davis and

Smith [10] is among the pioneer work in this area. The contract net model has been

proposed for dynamic on-line manufacturing scheduling where an agent responsible for

a manufacturing step issues a request-for-bids to all agents who can supply the input.

The best bidder is than selected based on a certain criteria [36, 37, 1]. Upton, Barash

and Matheson [50] study a market mechanism for parallel machine scheduling. They

propose a particular bid calculation based on the earliest expected completion time. A

similar auction-based approach for setup time determination is proposed by Wang and

Veeramani [52].

Neiman, et al. [34] investigate a multi-agent distributed scheduling system where each

agent is responsible for a set of resources. To perform its assigned tasks, an agent ne-

gotiates with other agents for its required resources. Sandholm [45] proposes a similar

dynamic scheduling approach for the vehicle routing problem.

Another line of research in DAI uses the notion of economic equilibrium [54] to model and

analyze the interactions among distributed agents. Wellman [53] proposes such a approach

which �nds equilibrium prices for multicommodity ow problems. More recently, Ygge

and Akkermans [56] propose a resource-oriented equilibrium-seeking approach for power

load management problems. This is a quantity tatonnement approach for Walrasian or

competitive equilibrium. In a recent study, Wellman, et al. [55] develop price equilibrium

for single-resource preemptive scheduling problems.

2.2 Auction Mechanism Design and Auction Algorithms

McAfee and McMillan [32] de�ne auction as a market institution with an explicit set of

rules determining resource allocation and prices on the basis of bids from market partici-
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pants. The literature on auction theory ourished after the seminal paper by Vickrey [51],

in which he introduces the concept of second-price auctions. A bibliography by Stark and

Rothkopf [48] lists nearly 500 papers over the next two decades after Vickrey's study. In

another survey, Engelbrecht-Wiggans [12] reviews main theoretical results and research

e�orts on auctions and bidding. Smith [47] discusses auction research in experimental

economics published between 1962 and 1990. Most studies in this area focus on single-

object simple auctions [33, 13]. A more recent and broader scoped review on competitive

bidding can be found in [41].

If we consider scheduling problems as assigning time slots on unit-capacity machines (ob-

jects) to a set of competing jobs (bidders), we can see that it is at least as complex as

multi-object auctions which deal with independent-valued, indivisible objects. Hylland

and Zeckhauser [20] consider the problem of allocating individuals to positions with lim-

ited capacities. They propose an auction-assignment mechanism where the individuals

respond to the system with true valuations. Leonard [25] investigates the problem of

eliciting true preferences for an assignment problem in a similar setting. He presents

a generalization of Vickrey's second-price auction mechanism. Demange, Gale and So-

tomayor [11] propose a dynamic or progressive auction for the multi-item case to achieve

incentive-compatible minimum price equilibrium. Instead of a single-pass sealed bid auc-

tion as in Leonard [25], they present two progressive auction mechanisms, one exact and

another approximate. Sankaran [46] proposes an improvement on the exact auction mech-

anism based on a labeling algorithm.

The equivalence of multi-object auctions and the classical assignment problem led Bert-

sekas to develop so called auction algorithm [3]. Auction algorithm is similar to the

approximate auction mechanism proposed by Demange, Gale and Sotomayor [11]. Bert-

sekas show that the price vector obtained at the end of the auction is the approximate

optimal dual vector of the primal assignment problem. This, in fact, is a restatement of

the result of Demange, Gale and Sotomayor. In this context, we can say that �nding the

equilibrium prices in an optimal auction design problem is equivalent to �nding the dual

optimal solution for the assignment problem. Bertsekas later extends auction algorithm

for other network ow problems such as shortest path, transportation and minimum cost

ow [4, 5, 6].

In general scheduling problems a job agent may demand a combination of time slots to

process its operations. Consequently we must deal with auctions in which agents bid for
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multiple items that have inter-dependent valuations. This motivates the investigation of

combinatorial auction in which the bidders demand a set or a combination of indivisible

objects with a single bid. Banks, Ledyard and Porter [2] consider allocating multiple

resources each with divisible capacity when there are uncertainties in supply or demand.

They generalize Vickrey's second-price auction for this environment where each bidder

demands a combination of some portions of each resource with a single bid. Rothkopf,

Pekec and Harstad [42] investigate simultaneous combinatorial auctions in which bidders

submit bids for a combination of indivisible objects. They show that �nding the revenue-

maximizing set of nonconicting bids is NP-Hard. They examine di�erent bid structures

to �nd computationally tractable auction types. Applications of auction mechanisms

to optimization has also been proposed by Graves, Schrage, and Sankaran [16] for class

scheduling, and Rassenti, Smith, and Bul�n [40] for the allocation of airport time slots to

airlines.

In a majority of these problems, competitive (Walrasian) price equilibria are known to

exist and auction procedures aim to reach one of these equilibria operate in an e�cient

manner. In this respect, price-directed auctions can be viewed as tâtonnements designed

to reach market clearing (equilibrium) prices in an exchange economy [31]. Several re-

searchers study the correspondence between equilibrium conditions and the convergence

properties of auction. Most of these work are done in the context of exchange economy

with interdependent and indivisible objects (c.f., [7, 29, 30, 18, 19]). These studies show

that a price equilibrium may not exist in general combinatorial auctions where agents

demand a bundle of interdependent items. Gul and Stacchetti [19] show that in such an

economy unless the agents' utility functions satisfy conditions called gross substitutes or

no complementarities the existence of a price equilibrium is not guaranteed. Bikhchan-

dani and Mamer [7] show that market clearing prices exist if and only if the solution value

of a centralized integer program coincide with that of its LP relaxation. This condition

signi�cantly lower the expectation of reaching price equilibrium using any simple auction

mechanism.
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3 Problem Statement and Solution Methodology

3.1 Problem Statement

We consider the classical job shop scheduling problem (JSP) where a set of jobs is to be

completed and each job requires a set of machines for a certain period of time for pro-

cessing. Each job consists of a series of operations that represent the production steps of

the job. Each operation needs a certain machine for a certain time period called process-

ing time. Once an operation is started, no to interruptions are allowed until completion,

i.e., no preemption. Job processing times and their corresponding machine requirements

represent the job routing. The prescribed sequence of operations in each job de�nes the

precedence constraints. Each machine has a capacity of one, i.e., it can process one and

only one operation at a time. The scheduling objective is to minimize total weighted

tardiness. When all jobs have identical routing, JSP is reduced to a ow shop scheduling

problem. If each job requires only a single stage operation on one particular machine,

or a dominant resource forms the bottleneck, then JSP is reduced to a single machine

problem. For a complete taxonomy of production scheduling problems, see Pinedo [38].

3.2 A Combinatorial Auction Mechanism for Scheduling

We propose a general auction mechanism for JSP using the notion of multi-item combi-

natorial auction. The proposed mechanism is progressive or dynamic [11] since it involves

some number of iterations before allocating objects to bidders. We de�ne \objects" as

discrete time slots on the machines, and \bidders" as individual jobs. An auctioneer is

the coordinating agent or the seller who iteratively updates the prices of objects starting

from initial reservation prices. Based on current pricing, each job tries to �nd the best

combination of time slots on the machines (objects) so as to maximize its own utility

function. The auctioneer evaluates bids from all jobs and updates the reservation prices

according to the conicts among their requests. This process repeats in an iterative fash-

ion until it �nds a conict-free allocation [11]. Obviously, objects have inter-dependent

values, and di�erent combination of objects presents di�erent values for the jobs as is the

case in combinatorial auctions [40, 42]. The precedence and non-preemption constraints

restrict the combination of time slots that each job can bid
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Table 1: Notation used throughout the paper

i Job (bidder) index, i = 1; : : : ; N where N is number of jobs

j Operation index, j = 1; : : : ; ni where ni is number of operations of

job i

t Time slot index, t = 1; : : : ; T where T represents the length of the

planning horizon during which all the jobs can be completed (i.e.

some reasonable upper bound on the makespan of the problem).

k Machine index, k = 1; : : : ;M where M is number of machines

(Hence there are TM time slots for bidding).

Wi Weight or tardiness penalty of job i

di Due date of job i

oik The operation of job i which requires machine k

mij Machine required for operation j of job i, i.e. oik = j if mij = k

pij Processing time of operation j of job i

Bij;a;b Operation bid, i.e. a combination of time slots from time slot a to

time slot b for operation j of job i

Bi Job bid, i.e. collection of operation bids (A combination of time

slots demanded by job i)

In the following, we state more formally the price directed auction procedure for the

weighted tardiness job shop scheduling problem. We adopt the notation shown in Table 1.

The set of objects (time slots available from the machines) can be de�ned as a set of pairs

(machine, time slot). Hence each possible bid Bi from job i is a subset of the following

object set:

O = f(k; t) : 1 � k �M; 1 � t � Tg (1)

Equivalently, each operation bid Bij;a;b is a subset of machine mij's object set:

Omij
= f(mij; t) : 1 � t � Tg (2)

Since preemption of operations is not allowed, the operation bid is restricted as follows:

Bij;a;b = f(mij; t) : 1 � a � t � b � T; b = a+ pij � 1g (3)

Thus, job i's overall bid is a limited combination of allowed operation bids:

Bi =
[

j:ai;j+1>bi;j

Bij;aij ;bij (4)
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The condition in the set de�nition determines the precedence constraints between con-

secutive operations. We will denote the set of all allowed locally feasible bids (i.e., those

satisfying non-preemption and precedence constraints) as Bi.

A job incurs a tardiness cost if its completion is past due, and the job pays a fee for using

the resources at its demanded time slots. We thus de�ne job i's utility function as follows:

Ui(Bi) = �Wimax f0; bi;ni � dig � Pi(Bi) (5)

where Pi(Bi) is the total payment if the demanded time slots in bid Bi are allocated to job

i. First term in the utility function accounts for the total weighted tardiness attributed

to job i by demanding Bi which in turn yields the completion of the job at bi;ni. The total

payment Pi is a function of the time slots demanded in bid Bi. Hence, each job agent

must trade o� possible savings on due-date performance with payments due to resource

usage. The best bid for job i (B�
i ) is one that maximizes the utility function, i.e.,

max
Bi2Bi

Ui(Bi): (6)

The center has several options in regard to the payment function Pi. A most straight

forward payment scheme is regular tâtonnement where all job agents are subject to the

same linear payment function. There is no price discrimination among job agents and

they are charged the same price for a particular (machine, time slot) pair. However, as will

become apparent in the following section, under regular tâtonnement there is no \optimal

pricing" that supports optimal resource allocation. As demonstrated in the context of

large-scale linear programming decomposition [22, 23], linear subproblem objective leads

to degeneracy. To relieve the problems of degeneracy, Jose, Harker and Ungar [23] propose

augmented tâtonnement which imposes price discrimination among job agents using a

quadratic perturbation term [22] in the subproblem objective. As a result, the unit price

paid by a speci�c job agent varies depending on the particular combination of resource

usage it demands. Based on this distinction in the payment (Pi), thus the utility function,

we de�ne two types of tâtonnement: regular, and augmented tâtonnement.

During the progress of the auction, each job agent i solves its locally constrained util-

ity maximization problem to �nd the best combination of resource-time slots (B�
i ). All

job agents then submit their optimal bids to the auctioneer, who collects the new bids,

computes and announces the updated resource prices, then proceeds with the next itera-

tion. The optimal bids are B�
i � B�

i (�) where � = (�1; : : : ;M), computed from current

machine-time slot prices �kt; k = 1; : : : ;M; t = 1; : : : ; T ) announced by the auctioneer.
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The goal of price updates is to reduce resource conicts among job agents. A conict

exists if one time slot (object) is demanded by more than one job. Since each bid Bi

de�nes a demand point for job i, one way of updating prices in this procedure is to adjust

them according to the excess job demand (number of jobs that bid for a certain time slot

minus the total capacity of the machine). One possible strategy is to have the auctioneer

raise the prices in proportion to the excess demand as follows:

Dkt =
NX
i=1

��ikt � 1 (7)

where ��ikt is 1 if job i demands time slot (k; t) in its optimal bid (i.e. if (k; t) 2 B�
ij;aij ;bij

and mij = k), is 0 otherwise. Since excess demand can be negative, it is possible to

reduce prices for time slots which do not have enough demand. Since no object can be

sold with a negative price, we consider only nonnegative prices. Thus we de�ne the price

adjustment as follows:

�r+1
kt = max f0; �rkt + f(Dr

kt)g (8)

where r is the iteration number, and f is the price adjustment function nondecreasing in

current excess demand Dr
kt. Since a large variety of functions satisfy this property, this

form of price adjustment is quite exible. Based on the form of f we can de�ne di�erent

auction protocols that govern the progress from one iteration to the next.

One such auction protocol is called standard Walrasian tâtonnement in which adjustment

function is de�ned as a constant multiplier times the current excess demand:

f(Dr
kt) = sDr

kt (9)

where s is called price adjustment factor or step parameter. This form of tâtonnement

with a carefully selected step is known to converge to an optimal (equilibrium) allocation

in a pure exchange economy. However, when the demand is discontinuous with interde-

pendencies, one can no longer expect the convergence property to hold in general. Since

the step parameter is constant over iterations we call this a non-adaptive tâtonnement.

The term is de�ned in contrast to the adaptive tâtonnement where the auctioneer makes

aggressive price update in early iterations of the auction to quickly assess the overall de-

mand status among job agents. This is followed by smaller adjustments (low values of

s) in later iterations to �ne tune the quality of allocation. In this case, price adjustment

changes depending on the iterations and the progress of the auction.

With the above discussion, we characterize the combinatorial auction by the following

elements:
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1. Auction Protocols

� Standard Walrasian tâtonnement (Non-Adaptive)

� Adaptive tâtonnement

2. Payment Functions

� Regular tâtonnement (no price discrimination)

� Augmented tâtonnement (with price discrimination)

In the next section, we briey describe a game-theoretic model of this auction-based

allocation scheme.

3.3 A Game Theoretic Perspective

We provide a game theoretic interpretation of the above auction model based on the rela-

tionship between competitive (or Walrasian) economy and game theory. The model uses

the notion of noncooperative pseudogame or abstract economy proposed by Friedman [15]

and Ichiishi [21]. In this game, a player i is inuenced by other player in two ways:

(1)indirect inuence, where i's feasible strategies is restricted to a subset, and (2) direct

inuence, where i's utility level is a�ected. Consider N + 1 players, where players 1 to

N are the job agents, and player 0 is the auctioneer. We assume that each job agent

has enough endowment to buy any collection of time slots (i.e., no budget restrictions).

Job agent i's consumption set (allowed bids) is also its strategy set, i.e., Si = Bi. The

auctioneer chooses a nonnegative price vector from a strategy set de�ned as

S0 = f�kt � 0; k = 1; : : : ;M; t = 1; : : : ; Tg :

Given a pair (B; �), we de�ne restricted (or feasible) strategy set of player i (i = 1; : : : ; N)as

Fi(B; �) = fB
0
i : �

0
ikt � 1�

X
i0 6=i

�0i0kt; 8k; tg

where �0i is de�ned as before according to B0
i. The feasible strategy set of player 0 is not

a�ected by other players, i.e. F0 = S0. The utility function of player i is de�ned as

ui((B; �); B
0
i) = Ui(B

0
i); 8B

0
i 2 Fi(B; �)

10



Here,ui((B; �); B
0
i) is agent i's utility when it chooses B0

i and all others choose

(B1; : : : ; Bi�1; Bi+1; : : : ; BN ; �)

. The utility function of player 0 is

un((B; �); �
0) =

X
k

X
t

�0kt(
X
i

�ikt � 1)

One interpretation of this utility maximization is that the auctioneer seeks to minimize

the total value of the excess capacity of the machines:
P

k

P
t �kt(�Dkt): Then, the triplet

(fSig
N
i=0; fFig

N
i=0; fuig

N
i=0) de�nes a pseudogame.

It is easy to show that the game corresponding to a classical exchange economy has a

strategy equilibrium and that this is a competitive equilibrium. However, this is only true

when the utility functions are concave and the strategy sets are convex. Unfortunately

these conditions are rarely true in general scheduling problems (see [55] for the existence of

equilibrium pricing in one-machine scheduling problems). Nonetheless, the game theoretic

perspective introduces potentially interesting issues for distributed scheduling.

3.4 Lagrangean Relaxation

We will now turn our attention to an integer programming (IP) formulation of the job

shop scheduling problem with weighted tardiness objective. Although there are several IP

formulations for JSP we will use the discrete time formulation due to Pritsker, Watters,

and Wolfe [39]. The decision variable is Xijt, where

Xijt =

8<
: 1 if operation j of job i has started by time t,

0 otherwise.
(10)

The JSP under consideration can be formulated as follows:

(JSP )

min
X
i

Wi

2
4 X
t>di�pi;ni

(1�Xi;ni;t)

3
5 (11)
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s.t. Xi;j;t+1 � Xi;j;t; 8i; j; t < T (12)

Xi;j;t � Xi;j�1;t�pi;j�1; 8i; j > 1; t (13)X
i;j:mij=k

(Xi;j;t �Xi;j;t�pij) � 1; 8k; t (14)

Xi;j;t 2 f0; 1g ; 8i; j; t (15)

The �rst set of constraints (12) makes sure that once an operation is started, it remains so

in all subsequent time periods. This is due to the de�nition of Xijt as outlined in (10) and

the non-preemption requirement. Constraints (13) state that an operation cannot start

until all its predecessors are completed. Finally, the machine capacity constraints (14)

state that at most one job can be processed on a particular machine in a given time

period. The objective function (11) is the total weighted tardiness derived from the fact

that a cost of Wi is incurred for each time period after di during which job i has not been

completed.

The objective function can be rewritten as follows:

X
i

Wi

2
4 X
t>di�pi;ni

(1�Xi;ni;t)

3
5 =X

i

Wi(T � di + pi;ni) +
X
i

X
j

X
t

�wijtXijt (16)

where

wijt =

8<
: Wi if j = ni and t > di;

0 otherwise.
(17)

Since the �rst term in the objective function (16) is a constant we represent it as A =
P

iAi

where Ai =Wi(T � di + pi;ni).

When we dualize the machine capacity constraints (14) of (JSP ) with nonnegative La-

grangean multipliers �kt; 8k; t we obtain the following Lagrangean Relaxation problem:

(LR�)

min
X
i

Ai +
X
i

X
j

X
t

(�mij ;t � �mij ;t+pij � wijt)Xijt �
X
k

X
t

�kt (18)

subject to (12), (13), and (15)

We decompose LR� into independent job-level subproblems as follows:

v(LR�) =
X
i

v(LR�;i)�
X
k

X
t

�kt (19)
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where v(P ) denotes the value of optimal solution of problem P , and

v(LR�;i) = minAi +
X
j

X
t

(�mij ;t � �mij ;t+pij � wijt)Xijt (20)

s.t. Xi;j;t+1 � Xi;j;t 8j; t < T (21)

Xi;j;t � Xi;j�1;t�pi;j�1 8j > 1; t (22)

Xi;j;t 2 f0; 1g 8j; t (23)

Each subproblem satis�es the integrality property, in fact each is the dual of a specially

structured maximum ow network problem [43]. Hence, each job-level subproblem can

be solved using e�cient network ow algorithms.

For a vector of Lagrangean multipliers �, v(LR�) which is a function of solutions to

(LR�;i), provides a lower bound on the optimal cost of (JSP ). The best lower bound

corresponds to the solution of the following Lagrangean dual problem:

(LRD) max
��0

v(LR�)

There are alternative ways to improve the Lagrangean lower bound and solve the La-

grangean dual, among them is the subgradient search procedure [35]. Subgradient opti-

mization starts with an initial value for the multipliers �, e.g. �0 = 0. Then the method

generates a sequence �r over the iterations r by the rule

�r+1
kt = maxf0; �rkt + srkt(X

�r)g (24)

where sr is an appropriately selected step size and kt(X
�r) is the subgradient of the

capacity constraint of machine k at time period t de�ned by the optimal solution X�r of

LR�r :

kt(X
�r) =

X
i;j:mij=k

(X�r
i;j;t �X�r

i;j;t�pij
)� 1 (25)

Step size sr should satisfy certain conditions in order to get a good convergence to optimal

Lagrangean dual value. A formula that has proven e�ective in practice is as follows [14]:

sr = �r

 
UB � v(LR�r)P

k

P
t 

2
kt(X

r)

!
(26)

where �r is a scalar satisfying 0 < �r � 2 and UB is a target upper bound value for

Lagrangean dual which can be updated over the iterations.
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We may update the upper bound value using a fast heuristic that converts the capacity-

infeasible solution (due to resource conicts) to a feasible one in each iteration. It is

also suggested in the literature that one should decrease the value of � if there is no

improvement over a certain number of iterations [14]. The procedure stops when (1) a

capacity-feasible global solution is found for problem LR�r , (2) lower bound is epsilon-

close to the upper bound, (3)� becomes very small, or (4) a speci�ed number of iterations

is reached. Typically the procedure end with an infeasible solution due to the last three

criteria.

3.5 Combinatorial Auction and Lagrangean Relaxation

In this section, we show that subgradient search in the context of Lagrangean Relaxation

can be viewed as a particular version of combinatorial auction introduced in Section 3.2.

We focus our attention on the payment functions and the auction protocols.

3.5.1 Payment Functions

We �rst establish a basic property connecting Lagrangean Relaxation with the regular

tâtonnement version of combinatorial auction. Using the well-known properties of La-

grangean duality we can then explore alternative payment functions.

Theorem 1 For a given resource price vector �, let the payment function Pi be the sum of

the current resource prices for the slots included in a bid Bi (as in regular tâtonnement),

i.e.,

Pi(Bi) =
niX
j=1

bijX
t=aij

�mij ;t (27)

Then, the following solution Xijt 8j; t de�ned using the optimal bid B�
i (�) of job agent i

solves the job-level network ow problem LR�;i de�ned by (20){(23).

Xijt =

8<
: 1 if t � a�ij

0 otherwise.
(28)
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Proof. First, note that the constraints (21){(23) are the same constraints that de�ne the

set Bi of allowed bids Bi. If we substitute the de�ned payment function (27) into the

utility function Ui(Bi) (see Equation (5)), we obtain

Ui(Bi) = �Wimax f0; bi;ni � dig �
niX
j=1

bijX
t=aij

�mij ;t

We note that, for a given �, this is negative of the objective (20) of the job-level problem

(LR�;i). Then, the maximum value of the constrained utility function is the same as

the minimum value of the job-level objective in LR. Since B�
i (�) is optimal, it solves the

utility maximization problem de�ned by (6). Hence,

Ui(B
�
i ) = �Wimax

n
0; b�i;ni � di

o
�

niX
j=1

b�
ijX

t=a�ij

�mij ;t = v(LR�;i)

where a�ij and b�ij respectively represent the �rst and last time slots for each operation j

included in the bid B�
i . That is, a

�
ij de�nes the optimal starting time of the operation j

of job i in optimal bid B�
i . Hence, can construct the solution (28) using the de�nition of

decision variables X.

Theorem 2 Let �� be the optimal resource prices corresponding to the Lagrangean Dual

Problem (LRD), i.e.,

�� = argmax
��0

v(LR�);

and B�
i (�

�) be the optimal bids for price vector �� where

Ui(B
�
i ) = v(LR��):

Locally optimal bids B�
i (�

�) solves (JSP ) if and only if �� and B�
i satisfy the Strong

Lagrangean Duality Theorem [35].

Proof. This follows directly from Theorem 1 and the well-known Strong Lagrangean

Duality Theorem.

Only in rare cases do discrete optimization problems satisfy the requirement of Strong

Lagrangean Duality. In the case of (JSP), a signi�cant duality gap between v(LR��) and

v(JSP ) is to be expected. This result implies that there is unlikely to be optimal resource
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prices (therefore bids) that would support the optimal solution to JSP. In other words, if

linear resource pricing with no price discrimination is used in combinatorial auction (as

is the case in regular tâtonnement), the auction procedure does not lead to an optimal

resource allocation. A market clearing mechanism (in this case, a feasibility restoration

heuristic, or a branch and bound algorithm) will be necessary at the end of the auction to

resolve the resource conicts. As discussed in Section 3.2, even in the case of a large scale

linear program (which does satisfy Strong Lagrangean Duality at optimality), there may

not be resource prices supporting the optimal solution due to subproblem degeneracy.

The above results motivate the consideration of price discrimination in the job payment

function, which leads to an augmented tâtonnement [22, 23]. In this case, the center

announces a price schedule instead of a price vector:

�0kt = �kt + q�ikt (29)

where �kt is the original price, q is a carefully selected small constant for better conver-

gence, and �ikt is de�ned as before (i.e., 1 if time slot t on machine k is demanded by job

i, 0 otherwise). Thus, job i's payment function is de�ned as:

Pi(Bi) =
niX
j=1

bijX
t=aij

�0mij ;t
(30)

This change is reected in the objective of the i'th subproblem in LR as follows:

Ai +
X
j

X
t

� wijtXijt +
X
j

X
t

�mij ;t(Xijt �Xi;j;t�pij) +
X
j

X
t

q(Xijt �Xi;j;t�pij)
2 (31)

However, the standard price schedule (29) applied to (JSP ) has an anomaly as the

quadratic perturbation term added to the objective joins to the linear term (with the

multiplier q) since

(Xijt �Xi;j;t�pij)
2 = Xijt �Xi;j;t�pij :

To address this issue, we de�ne a di�erent perturbation scheme which adds a quadratic

term for each time zone de�ned as a combination of �xed number of consecutive time

slots. The revised objective is as follows:

Ai+
X
j

X
t

�wijtXijt+
X
j

X
t

�mij ;t(Xijt�Xi;j;t�pij)+
X
j

HX
h=1

q(
Th+L�1X
t=Th

Xijt�Xi;j;t�pij)
2 (32)

where H is the number of time zones each with length L and beginning time of a zone h

is de�ned by Th. We can then de�ne the time zone capacity as the sum of L consecutive

16



capacity constraints in (14):

Th+L�1X
t=Th

X
i;j:mij=k

(Xi;j;t �Xi;j;t�pij) � L; 8k; t (33)

We now have two alternative utility functions de�ned based on the speci�c payment

function set by the center:

� Regular tâtonnement where payment function Pi is de�ned as in Equation (27).

� Augmented tâtonnement in which payment function Pi includes a quadratic pertur-

bation de�ned in Equation (32).

Note that for the latter case each job agent needs to solve a quadratic subproblem. This

implies a higher computational cost per iteration, but the overall convergence might com-

pensate for this extra cost.

3.5.2 Auction Protocols

As summarized earlier, auction protocols can be implemented in a non-adaptive stan-

dard Walrasian fashion, or as an adaptive tâtonnement. The subgradient optimization

(Section 3.4) can be viewed as a particular version of the latter. While the subgradient

optimization tries to penalize infeasibility of dualized constraints, the auctioneer updates

the resource prices so as to discourage conicts on the demanded objects. While the

subgradient algorithm adjusts the prices proportional to the amount of infeasibility, the

auction algorithm updates the prices proportional to desirability of the object (measured

in terms of excess demand). In fact, the subgradient (25) de�ned for the optimization

procedure can be set equal to the excess demand (7) used in the auction:

kt(X
�r) = Dr

kt: (34)

Then, one adaptive way of updating prices is to set the adjustment function f in (8) as

below:

f(Dr
kt) = srD

r
kt (35)
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In this case, the auction algorithm can be set equivalent to the subgradient optimization.

Moreover, the basic principle of price adjustment in an adaptive tâtonnement is paral-

lel to the idea of subgradient price adjustments. The proven convergence properties of

subgradient search are particularly attractive. Nonetheless, at the end of the subgradi-

ent optimization a signi�cant duality gap is to be expected and a feasibility restoration

heuristic must be used to eliminate the positive excess demand.

We now de�ne in more speci�c terms the two auction protocols based on the de�nition

of the price adjustment function (8):

� Non-adaptive tâtonnement, f(Dr
kt) = sDr

kt.

� Adaptive tâtonnement, f(Dr
kt) = srD

r
kt where sr is the step size de�ned in (26).

The combinatorial auction mechanism for scheduling is summarized in Figure 1. As shown

in the procedure, the auctioneer is not only responsible for price update in each iteration,

it also performs feasibility restoration in each iteration. In this way, the auctioneer may

announce the best potential feasible schedule in case the auction terminates early. This

can be viewed as an upper bound calculation routine used in each iteration. Note that each

job agent's local problem is a maximum ow problem, for which there exist polynomial

algorithms.

4 Examples

Combining the two di�erent payment functions and the two auction protocols leads to

four di�erent versions of combinatorial auction. In the following, we use small job shop

examples to illustrate the implementation details of the proposed auction algorithm. We

are also interested in gaining insights on the convergence behavior as well as the quality

(duality gap) of the �nal solution when the auction terminates.

We �rst study small (3 machines, 3 jobs, or 3x3) scheduling problems. Since the routing

structure of the jobs dictates both the level and the sequence in which the jobs demand for

resources, we expect the auction mechanism to behave quite di�erently under di�erent
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Step 1. Initialization: The auctioneer initializes the machine-time slot prices �, (�0kt =
0; 8k; t); set iteration counter r = 0, scalar parameter �r (�0 = 2), and the
multiplier of the quadratic term (q = 0:1) (for augmented tâtonnement only).

Step 2. Each job agent solves the job-level utility maximization subproblem (using
either one of the payment functions) then submits the its optimal bid (B�

i (�
r))

to the auctioneer. Each bid corresponds to a job-level schedule.
Step 3. The auctioneer combines all the bids and generates a capacity-infeasible shop-

level schedule. The summation of total weighted tardiness and total potential
payments from the jobs gives a lower bound (LBr) for the original JSP.

Step 4. The auctioneer converts this capacity-infeasible schedule into a feasible one by
resolving the resource conicts. Using this feasibility-restored shop schedule, the
auctioneer computes corresponding total weighted tardiness as an upper bound
(UBr).

Step 5. The auctioneer updates the best upper bound value found so far, UB  
UBr, and records the best feasible shop schedule. The auctioneer updates �r if
necessary (Halve it if there is no improvement in LBr in last 3 iterations).

Step 6. The auctioneer computes the excess demand vector (D), (step size sr in the
case of adaptive tâtonnement) and updates time-slot prices �r+1 using one of the
protocols.

Step 7. Checks if a stopping criterion is satis�ed. If not, the auctioneer starts the
next iteration r  r + 1, go to Step 2. Otherwise, stop, and announce the best
feasible schedule found.

Figure 1: An iterative combinatorial auction mechanism for resource scheduling

routing structures. We choose three di�erent routing structures for our examples: (1)

random job shop: the sequence each job visits the machines is random, (2) bottleneck job

shop: the routing is random as in (1), but all jobs require longer processing times on a

speci�c bottleneck machine, and (3) ow shop: the jobs visit the machines in the same

order, but require di�erent processing times. We investigate each of the three routing

types in the following sections.

4.1 Random job shop

The data for this problem is shown in Table 2 (This is a modi�ed version of the 3x3 job

shop example in [24]). First, we implement the adaptive regular tâtonnement in which

the payment function has no price discrimination and the auction protocol is adaptive as
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Table 2: 3x3 Random job shop example

Job Weight Due date Machine (Processing time)

1 4 10 1 (3), 2 (1), 3 (6)

2 6 10 3 (3), 1 (7), 2 (1)

3 2 12 1 (2), 3 (4), 2 (4)

Machine 1

Machine 2

Machine 3

1 2 3 654 10987 11 12 13 14 15 16 17 18 19 20Time
Slots

Job 1

Job 2

Job 3

Figure 2: Infeasible shop schedule after combining the job bids (�rst iteration)

in subgradient search. We set the planning horizon (T ) as 30 time periods. Hence, we

have 30 time slots (objects) in each machine and 90 objects in total that the job agents

must bid for. The capacity-infeasible shop schedule constructed by the auctioneer after

the �rst iteration is shown in Figure 2. As shown in the �gure, the job-level schedules

satisfy non-preemption and precedence constraints, the machine capacity constraints are

violated in a few time slots. The auctioneer will increase the prices of these time slots in

the following iteration and thereby reducing the demand. The feasibility restored schedule

after iteration 4 is shown in Figure 4.

For the examples problems in this section, we restricted the number of iterations (K) to

30. The price pro�le for each machine at the end of the auction is shown in Figure 3.

As we can see, each machine has a considerably di�erent price pro�le over the time slots.

The adaptive subgradient price update essentially captures the desirability of each time
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Figure 3: Price pro�les at the end of adaptive regular tâtonnement

slot on each machine. At the end of this adaptive tâtonnement, the auctioneer announce

the best overall schedule generated over the iterations. Figure 5 plots LB and the best

UB values versus iterations. Major improvements on LB are in early iterations. The �nal

duality gap for this problem is 14.6%. For this example problem, the best UB schedule

with the total weighted tardiness of 22 (achieved in iteration 4) is optimal (The optimality

proof is done outside the algorithm by solving the problem monolithically; it is shown in

Figure 4).

The iterative process in Non-Adaptive tâtonnement is similar to the adaptive version

except that the step parameter (s) is constant over the iterations. We experimented with

several s values but we will only summarize the results for the case of s = 0:2. The price

pro�le achieved at the end is similar to that shown in Figure 3. The change in LB and

UB over iterations is plotted in Figure 6. While LB improves slower than in the adaptive

process, the best UB is achieved in a later iteration (9th).

We next study augmented tâtonnement with non-adaptive and adaptive price updates.

Recall that the augmented approach requires the use of \time zones." We constructed

each time zone by combining two consecutive time slots, i.e., L = 2 and H = 15. In

augmented tâtonnements, the selection of the parameter q directly a�ects the convergence

behavior. For the example problems, we experimented with several values and �xed q

at 0.1. For the adaptive augmented tâtonnement. Note that the LB and UB are now

computed by solving job agent subproblems with a revised quadratic objective function.
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Figure 4: Feasibility-restored shop schedule after the fourth iteration (the best UB sched-

ule which is also optimal.
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Figure 5: Lower bound (LB) and Upper bound (UB) during the adaptive regular

tâtonnement

The revised LB and UB values are shown in Figure 7 with a �nal duality gap of 23.4%.

The best restored feasible schedule (in fact, it is the optimal schedule shown in Figure 4)

is found in iteration 3.

The implementation for non-adaptive augmented tâtonnement is straight-forward. Al-
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Figure 9: Price pro�les for each machine at the end of adaptive regular tâtonnement

(Bottleneck Job Shop)
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Figure 10: Lower bound (LB) and Upper bound (UB) values during the adaptive regular

tâtonnement (Bottleneck Job Shop)

The augmented tâtonnement with the adaptive auction protocol yields results as shown

in Figure 12. Using perturbed payment function helps achieve the best upper bound in

the second (2nd) iteration. The results for its non-adaptive counterpart are very similar

to the adaptive version and are not presented.
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Table 4: 3x3 Flow shop example

Job Weight Due date Machine (Processing time)

1 4 10 1 (3), 2 (1), 3 (6)

2 6 13 1 (3), 2 (7), 3 (1)

3 2 12 1 (2), 2 (4), 3 (4)
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Figure 13: Price pro�les at the end of adaptive regular tâtonnement (Flow Shop)

bound (which is also optimal) is reached in third iteration, and the �nal duality gap is

17.2%. If we compare the duality gaps between di�erent routing structures, we see that

the bottleneck job shop has the smallest, the ow shop the next, and the job shop the

largest.

Revised values of LB and UB for augmented tâtonnement with the adaptive auction

protocol are depicted in Figure 15. It reaches the optimal solution in second iteration. The

results of the non-adaptive version of both the regular and the augmented tâtonnements

are not presented for brevity, since they are consistent with the earlier observations (i.e.

slower convergence, wider duality gaps).
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tâton
n
em

en
t
(F
low

sh
op
)

5
C
o
n
c
lu
sio

n
s

In
th
is
p
ap
er,

w
e
in
tro

d
u
ced

a
grou

p
of
p
rice-d

irected
au
ction

m
ech

an
ism

s
for

d
istrib

u
ted

sch
ed
u
lin

g.
W
e
in
vestigated

tw
o
au
ction

protocols
(n
on
-ad

ap
tive

W
alrasian

an
d
ad
ap
tive
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mechanisms using small examples representing three major routing structures (random

job shop, bottleneck job shop, and ow shop). As demonstrated in the examples, the prices

of time slots (objects) depend heavily on the demand patterns (i.e., routing structures

and processing times) of job agents.

This paper presents a step toward answering many important questions concerning dis-

tributed scheduling. By exploring the relationship among auction tâtonnements, discrete

optimization algorithms, and distributed decision making, we are able to categorize di�er-

ent alternatives for implementation and their possible implications. The computational

examples show that the adaptive price update with subgradient step might be superior

to the non-adaptive auction protocol. Moreover, augmented tâtonnement using quadratic

price discrimination might be e�ective in speeding up the convergence. Of course, a much

more extensive computational study is necessary to generalize these results. Other gen-

eralization may include the cases where each agent responsible for several jobs. In this

case, the agents' local problem will be more di�cult to solve, but on the other hand, less

resource conicts may result.

In this study, we do not address the issue of incentive compatibility, i.e., how and why the

job agents decide to participate in the auction and how to design incentives so that the

job agents reveal their true preferences. We assume that all job agents will participate in

the auction and will report their true optimal solutions. Earlier studies show that some

price-directed mechanisms that guarantee the convergence to a globally optimal solution

are incentive compatible in certain cases [8, 9]. There is no research to-date for the

more complex discrete optimization problems. We believe that in order to achieve true

distributed scheduling in realistic settings, the above issues and many other complicating

factors need to be carefully addressed.
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