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Abstract
The clinical relevance of cohesin in DNA repair, tumorigenesis, and severe birth defects

continues to fuel efforts in understanding cohesin structure, regulation, and enzymology.

Early models depicting huge cohesin rings that entrap two DNA segments within a single

lumen are fading into obscurity based on contradictory findings, but elucidating cohesin

structure amid a myriad of functions remains challenging. Due in large part to integrated

uses of a wide range of methodologies, recent advances are beginning to cast light into the

depths that previously cloaked cohesin structure. Additional efforts similarly provide new

insights into cohesin enzymology: specifically, the discoveries of ATP-dependent transi-

tions that promote cohesin binding and release from DNA. In combination, these efforts

posit a new model that cohesin exists primarily as a relatively flattened structure that

entraps only a single DNA molecule and that subsequent ATP hydrolysis, acetylation, and

oligomeric assembly tether together individual DNA segments.

Introduction

While simple in concept, the binding together of two or more DNA segments is critical to
ensure human health. For instance, DNA interactions either at the base of a loopedDNA mole-
cule or between nonidentical chromosomes stabilize regulatory element (enhancers, promoters,
insulators) registrations that deploy developmental transcription programs. Stabilized loops also
compact and compartmentalize chromatin (Fig 1). DNA interactions between sister chromatids
both identify chromatids as sisters to ensure high fidelity chromosome segregation and provide
access to template DNA required for error-free repair of double-strand breaks (Fig 1).

Cohesins are protein complexes that contain Smc1, Smc3, Mcd1/Scc1/RAD21, SA1,2/
Scc3, Pds5, and Sororin (in metazoan cells) and are critical for each of these DNA associa-
tions. Thus, cohesin pathway mutations that deregulate transcription programs produce
severe and multispectrumbirth defect maladies such as Roberts syndrome (RBS), Cornelia
de Lange syndrome (CdLS), and Warsaw breakage syndrome (WBS) (Fig 1) [7–10]. Tran-
scriptional deregulation is also likely to underlie the tight correlation between cohesin muta-
tion and numerous forms of cancer that include aggressive melanoma, leukemia, and breast,
astrocytic, and colorectal cancers [11–13]. Alternatively, cohesin mutations that abrogate
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tethering together of sister chromatids results in genotoxic sensitivity, aneuploidy (a hall-
mark of cancer cells), and apoptotic cell death (which may exacerbate birth defects through
proliferative stem cell loss) [7,14–16]. Elucidating the structure through which cohesins bind
together DNA segments thus remains of immense interest to both clinical and basic science
researchers.

Three Truths of Cohesin Structure

Early studies provided key insights into cohesin subunit orientations and binding interfaces,
efforts augmented by recent crystallization studies [17–20]. Despite the crucial and multiface-
ted role for cohesins in human health, however, a thorough mechanistic view of cohesin's role
in DNA tethering remains unclear. Interpreting results from even the most heroic of efforts
must be tempered by three realities, or truths, that involve limited assemblies, distinct cohesin
populations, and a bias toward predetermination.

Truth #1: Limited Assemblies

The reality is that the methodologies through which cohesins are either assembled or
enriched profoundly impact the apparent resulting cohesin structure (Fig 2). For instance, in
vitro assembly of recombinant human Smc1,3 appears as an elongated “pair of cherries” in
which the ATPase heads, depending on the hinge angle, are separated by the nearly 50 nm

Fig 1. Cohesin functions. (A) DNA segment interactions stabilized by CTCF (transcriptional repressor) and

cohesins define looped domains that aggregate into clusters of similar transcription outputs (active or silenced),

termed topologically associated domains (TADs). TAD aggregation of both cis (with a single chromosome) and

trans (involving two or more chromosomes) domains is critical for proper development and normal cell proliferation

[1–3]. (B) DNA segment interactions stabilized by cohesins (independent of CTCF) during S phase are critical for

meiotic and mitotic sister chromatid tethering, chromosome condensation, and DNA repair [4–6].

doi:10.1371/journal.pgen.1006337.g001
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length of each Smc coiled coil domain [21]. In the presence of recombinant Mcd1/Scc1 and
Scc3/SA1, Smc1,3 head domains becomemore proximally situated—but remain 25 nm apart
[21]. Analyses of both human and Xenopus cohesins assembled in vivo but then extracted
and enriched yield images of separate ATPase heads (similar to Smc1,3 heterodimers) or
proximally associated heads but ones comprising two or three distinct globular domains [22].
In contrast, cohesins in living cells (analyzed by fluorescence resonance energy transfer
[FRET] in the absence of extraction and enrichment) document exquisitely close Smc1,3
heads—3 nm apart. This distance is likely defined by the two ATP molecules tightly sand-
wiched between SMC1,3 heads [23,24]. The cautious interpretation is that images obtained
of in vivo assemblies after extraction (including homogenization, high salt extraction, sonica-
tion, gel filtration, sedimentation, and/or immunochromatagraphy) likely capture stages of
complex disassembly and/or disruption that mirror the de novo partial assemblies obtained
using recombinant components.

Fig 2. Stages of cohesin assembly. (A) Elongated coiled coil Smc1 and Smc3 proteins dimerize via hinge associations. (B) Smc1,3 become loosely

tethered by Mcd1/Scc1/RAD21, which in turn recruits Pds5 and Scc3/SA1,2 (3 globular head structure). (C) and (D) Smc1,3 heads become tightly

apposed and coiled coil domains zipper to form predominantly rodlike structures. Smc1,3 coiled coil domains can fold over into a C-clamp conformation

to promote head–hinge association. Potential DNA entrapment sites are shown, but subunit dissociations (hinge–hinge, Smc1,3 ATPase heads, or

Smc3-Mcd1/Scc1/Rad21) that allow entrapment, or whether there is a physiological role for C-clamp cohesins, remain hotly debated. (E) ATPase

domains are composite structures that contain Walker A and B motifs from one Smc and D loop and C motif from the other Smc. (F) and (G)

Hypothetical oligomerization models include intercohesin coiled coil or head–head binding, through which DNA segments (not shown) become

tethered together. See text for references and further details.

doi:10.1371/journal.pgen.1006337.g002
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Truth #2: Distinct Cohesin Populations

Should diversity of function (cohesion, condensation, DNA repair, transcription, etc.) lend a
cautionary tale to a “one size fits all” notion of cohesin’s structural endpoint? Importantly,
cohesin functions are demonstrably separable through specific regulatory factors that
include ESCO1,2, ELG1, PCNA, Rad61/WAPL, CTCF, and Scc3/SA1,2 (Fig 3) [25–33]. If
these regulatory factors produce cohesin subsets of dedicated and nonoverlapping function
(including distinct binding partners and cell cycle specificities), then these cohesin “chan-
glings” may exhibit unique endpoint conformations. Elucidating cohesin’s endpoint struc-
ture is further complicated by a diminishing fraction of functioning cohesins. For instance,
over 50% of cohesins are soluble and thus unlikely to reflect a sister chromatid tethering
state. Of the fraction of cohesins deposited during S phase, Smc3 is acetylated by Eco1/Ctf7
in a reaction limited to a postreplication fork context in order to participate in cohesion
[34,35]. Experimental reduction of cohesin levels to less than 15% of wild-type results in
retention of sister chromatid tethering [36], raising the possibility that only a small subset of
chromatin-bound cohesins functionally participate in cohesion. It follows that the popular
view of cohesin’s endpoint structure, one predicated on images obtained in an environment
of “changling” populations and an overabundance of intermediates, warrants a measure of
skepticism.

Truth #3: Single Ring Predetermination

Cohesins are portrayed in the most current and prestigious publications as huge monomeric
rings with near-perfect round lumens that entrap within two DNA segments. In contrast,
however, are numerous findings that cohesins are relatively flattened structures that entrap
only a single DNA segment, such that DNA tetherings rely on cohesin oligomerization (dis-
cussed in detail below). Is citing findings contrary to the notion of a huge ring that entraps
two DNA segments an exercise in “cherry-picking”? The reality is that imaging studies of
Smc complexes largely exclude analyses of higher-order complexes through sedimentation,
filtration, and chromatography protocols that enrich for monomers [21,22,37]. Even so, both
cohesin rods and oligomers are readily apparent in micrographs obtained using electron
microscopy (EM) [21,37]. At issue then are the imposed criteria that exclude rods and

Fig 3. Multifaceted roles of cohesin. Cohesin functions are separable through cell cycle (red: mitotic;

green: interphase) and genetic manipulations. For instance, mutation of RAD61 suppresses only

condensation defects, while mutation of ELG1 (mimicking overexpression of PCNA) suppresses only

cohesion defects otherwise present in mitotic cells deficient in cohesin activation. Note that human paralogs

ESCO1,2 (yeast Eco1/Ctf7) and Rad61/WAPL orthologs exhibit predominantly separate functions. See text

for references.

doi:10.1371/journal.pgen.1006337.g003
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oligomers and instead limit analyses solely to monomeric "complexes with clearly recogniz-
able coiled coils" [21]—criteria that can provide no other result than open rings! Future
efforts ultimately will establish whether it is the inclusion or exclusion of data that colors cur-
rent views of cohesin structure, but enhanced resolve at the editorial level to include review-
ers of disparate viewpoints would provide much needed balance. Below, I discuss new results
that cohesins are relatively flattened structures before turning to evidence of cohesin
oligomers.

Cohesins: Rod or Ring?

How do we move toward a fully assembled (and functioning) endpoint of cohesin assembly
(Fig 2)? A combination of EM, FRET, and bis-maleimidoethane (BMOE) cross-linking stud-
ies of evolutionarily conserved prokaryotic Smc-ScpAB complexes (BsSMC and PfSmc) doc-
ument that Smc coiled coil domains “zipper” in an intermolecular fashion to form rods. EM
imaging of SMC-related MukB (EcMukBEF) similarly yields images of closely apposed (zip-
pered rods) and separated (V or open) coiled coil conformations [37,38]. Cohesins from
yeast predominantly yield EM images of coiled coil domains zippered up over a significant
portion of the SMC complex to yield Y-type structures [39]. Are rods and Ys artifacts of prep-
aration, or instead are flexible Vs and rings indicative of cohesin disassembly and/or disrup-
tion? Methodologies that complement EM-based techniques provide new and overwhelming
evidence that the cohesin ring model—in which coiled coil arms are separated to form a huge
40 nm lumen—requires extensive revision. First, N-Hydroxysuccinimide ester linkages
induced in closely apposed lysines in vivo reveal that a significant portion of human Smc1,3
coiled coil domains are very closely apposed (lysine cross-link distances below 6 nm!) [21].
Second, cohesin diffuses along DNA curtains (linear DNA tethered at both ends) past a 10
nm barrier but is blocked by a 20 nm barrier (DNA-tethered quantum dot). Further defining
the cohesin lumen is that the 13 nm DNA translocase FtsK pushes cohesin along DNA
instead of passing through the cohesin lumen [40]. Third, transmission electronmicroscopy
(TEM) produces images of minichromosome sisters that appear anchored together by an
extended solid rod roughly the length of flattened cohesin complexes that are largely devoid
of a central lumen [41]. Fourth, small-angle X-ray scattering analyses of Smc1,3 proteins
(hinge-truncated) reveal that coiled coils emerge from the ATPase heads in a parallel fashion
[38]. These rodlike structures are similar to that of condensin (chromatin compacting com-
plex that contains Smc2,4) and also prokaryotic Smc complexes. Indeed, almost universal evi-
dence from EM, FRET, chemical cross-linking, and atomic force microscopy (AFM)
documents rodlike condensin complexes [22,37,38,42,43]. A notable exception comes from
liquid AFM performed on in vivo–assembled but extracted and purified yeast condensins
[44]. In that study, condensins were predominantly folded over to promote hinge–head asso-
ciations, but rings and lassos (dissociated heads in which only one appeared bound to the
hinge) were also observed.Whether such intermediate structures are predicated on the
dynamics of partially disrupted and flexible complexes (having survived extractions and
enrichments) or represent functional cycles (despite conformation changes that occur in the
absence of DNA and ATP) remains unknown [44]. Regardless, the similar degree of conser-
vation among coiled coil domains within Smc1,3 cohesin, and Smc2,4 condensin family
members is consistent with the notion that mutation is limited or constrained to preserve
intermolecular binding along the entire coiled coil domain [45,46]. In summary, these find-
ings herald a new view of cohesin as a relatively flattened rodlikemonomer in which Smc1,3
coiled coils zipper to produce a lumen severely limited in size (<13 nm). Intermolecular
coiled coil associations, however, may be conformationally plastic (beyond V and ring
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precursor assemblies) based on findings that sealing together Smc1,3 hinges in either yeast or
human precludes DNA entrapment [47,48].

Cohesins: Evidence for Oligomers

A second step in moving toward a functional cohesin endpoint structure is determining the
mechanism by which cohesins tether together two or more DNA segments. Is there an oligo-
meric state of cohesin assembly? EM analyses describe oligomers of MukB and BsSMC as
rosettes of ordered SMC assemblies [37], although oligomers are unfortunately largely excluded
from EM analyses [21,37,39]. Additional lines of evidence document not only intracohesin zip-
pering (Smc1-Smc3 coiled coils described above) but also intercohesin oligomerization (zipper-
ing between neighboring Smc1,3 complexes). For instance, TEM images of tethered sister
minichromosomes include rods that are wider than a single flattened cohesin complex, suggest-
ing that cohesins oligomerize side by side [41]. Higher-order coiled coil assemblies are strongly
supported by numerous AFM studies in which both cohesins and condensins clearly fold back
on themselves (Fig 2), likely stabilized through tetrameric intermolecular coiled coil associations
to produce complexes of roughly 25 nm in length with heads and hinges closely apposed
[43,44,49]. Biochemical and cytological analyses document both Pds5 and SA1/Scc3 binding
proximal to both ATPase head and hinge domains, consistent with cohesin folding and inter-
molecular coiled coil associations [21,23]. Crystal structures further reveal that N-terminal
Mcd1 helices associate directly with the head-proximal coiled coil domain of Smc3 [18], extend-
ing the role of SMC coiled coil interactions to include other helices and coiled domains.

Beyond intermolecular coiled coil zippering, other findings support cohesin oligomeriza-
tion. Biochemical studies that documented cohesin subunit interactions concomitantly pro-
vided early evidence that Mcd1/Scc1may indeed cross-link separate Smc1,3 complexes: HA-
tagged Smc3 coimmunoprecipitates HIS-tagged Smc3 in an Mcd1/Scc1-dependent process
[39]. Independent studies further support oligomerization throughMcd1/Scc1 associations:
FLAG-taggedMcd1/Scc1 coimmunoprecipitates both endogenous and MYC-taggedMcd1/
Scc1 [50]. Another driver of oligomeric assembly may derive from SMC head domain dimer-
izations. For instance, Smc1 ATPase head domains homodimerize, an oligomerizationmecha-
nism supported by crystallization studies that human condensin Smc2 head domains also
homodimerize [51,52]. Additional oligomerization strategies include bracelets and duplexes
(Smc1 ATPase head or hinge from one cohesin binds Smc3 ATPase head or hinge from a
neighboring cohesin, respectively) and ring concatenations (handcuffs) [53]. The numerous
oligomerizationmechanisms described above—intercohesin coiled coil zippering,Mcd1 bridg-
ing of juxtaposed cohesins, homotypic ATPase head domain associations, bracelets, duplexes,
and concatenations—are not mutually exclusive, such that combinations may help impose cell
cycle and function-specificconformations (Fig 2).

The cohesin oligomerizationmodel makes two crucial predications that distinguish it from
the simplistic single ring entrapment model. The first of these is that oligomerization allows for
interallelic complementation, such that coexpression of twomutant alleles that individually fail
to support viability might now provide for cell growth. In fact, the combination ofmcd1-Q266
andmcd1-1 alleles fully rescues the condensation, cohesion, and cell viability defects exhibited
by cells under conditions in which either single mutation alone is both lethal and elicits dramatic
cohesion and condensation defects.Moreover, coexpression of smc3-42 and smc3-K113Rmuta-
tions similarly support robust cell viability under conditions in which either single allele is lethal
[54]. Importantly, expression of either mcd1-Q266 or smc3-K113R subunit restores chromatin
binding of the cognate mcd1-1 and smc3-42 subunit, in further support of the model that these
interallelic complementations are predicated on intimately juxtaposed cohesin complexes [54].
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The second prediction of the oligomeric tetheringmodel is that cohesion inactivation (leading
to separation of previously tethered sister chromatids) can be distinct from cohesin release from
DNA. In contrast, the single ring around two sister chromatids model requires that separation
of previously tethered sisters must occur through cohesin release fromDNA. When this predic-
tion was tested directly, mitotic inactivation of cohesion (using a temperature-sensitive Pds5
allele) resulted in sister separation despite nearly full retention of chromatin-bound cohesin
[33,55]. Identical results were obtained during characterization ofmcd1-Q266Qmutant cells
[56]. Importantly, chromatin-retained cohesins in pds5-inactivated cells retain their acetylation
state (a modification that occurs only during S phase), negating arguments that the detected
cohesins involved newly loaded (i.e., duringmitosis) complexes [33]. This reemergingmodel of
cohesion establishment—that cohesins stably deposited onto each sister chromatid are subse-
quently converted to a tethering-competent, higher-order structure [57]—suggests that sister
chromatid tethering requires multiple transition states that are likely regulated by both cohesin
ATP hydrolysis and Eco1/Ctf7-dependent acetylation.

Cohesin Enzymology: Is It Only about Gates?

Cohesins are actually quite dynamic—an attribute required for distinct functions throughout
the cell cycle (Fig 3). In metazoan cells, cohesin deposition and release cycles start late in mitosis
of the previous cell cycle and continue through G1 to provide for adaptive regulation of tran-
scriptional programs and nuclear architecture. Similar to just about every other chromatin-asso-
ciated protein complex, these cohesins are stripped from chromatin during passage of the DNA
replication fork [58,59]—a process that allows for genome-wide resetting of transcriptional out-
puts. In turn, deposition during S phase ensures cohesin decoration onto each sister chromatid,
with subsequent Eco1/Ctf7-dependent acetylation of Smc3 engendering both Sororin recruit-
ment (metazoan cells) and sister chromatid tethering [60]. Deposition extends into mitosis
(although these cohesins normally do not participate in cohesion)—after which chromatid-
bound cohesins are inactivated by proteolysis—defining anaphase onset and resulting in chro-
mosome segregation. Intriguingly, a large fraction of chromatid-bound cohesins are removed
during prophase in a proteolytic-independent process that requires SA1,2/Scc3 phosphorylation
[35,61]. Identifying the “gate” or subunit pair that regulates cohesin dynamics, however, is
obfuscated by conflicting evidence and potentially distinct entry and exit reactions [47,62,63],
reminding us that we remain in the early stages of cohesin research. Regardless, elucidating the
enzymology of cohesins in different parts of the cell cycle is vital to resolve transition states
through which both adaptable and stable cohesin populations are simultaneously achieved.
Cohesin enzymology is complex, however, because each of the two ATPase domains are com-
posite structures (Fig 2). For instance, the Smc3 ATPase requiresWalker A and B motifs from
Smc3 as well as the D-loop and Signature or C-motif from Smc1 [64,65]. Thus, mutations in
Smc1 can abrogate Smc3 ATP hydrolysis and vice versa. Moreover, Smc1,3 are asymmetrically
positionedwithin the cohesin complex, and individual ATP hydrolysis cycles appear similarly
asymmetric in terms of cohesin function [18,21,62,63,66]. Thus, how ATP binding and hydroly-
sis and acetylation impact deposition and stability remain exciting frontiers in cohesin research.

A New Role for ATP Hydrolysis

Scc2/Mis4/NIPBL and Scc4/Ssl3/MAU-2 (herein Scc2,4) are required for robust deposition of
cohesin onto DNA and stimulates Smc1,3 ATP hydrolysis. In turn, Smc1,3 head domains that
can both bind and hydrolyze ATP are required for stable cohesin deposition onto DNA [67–
71]. In the limited context of a single ring entrapment model, these early reports suggested that
Scc2,4 promotes ATP hydrolysis (and ADP dissociation) to open the cohesin ring such that
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subsequent ATP binding closes the ring to stably entrap within both sister chromatids. As pre-
viously pointed out, however [65], this model requires cessation of ATP hydrolysis to maintain
cohesion throughmitosis.

Recent findings document a more complex series of transition states. For instance, chroma-
tin-associated cohesins exhibit at least two different residency states—one dynamic (sensitive
to elevated salt levels) and a second that is quite stable (insensitive to elevated salt levels). To
participate in sister chromatid tethering, however, chromatin-bound cohesins must be acety-
lated by Eco1/Ctf7 [56,72–81]. If sister chromatid tethering is predicated on cohesin oligomeri-
zation, might ATP hydrolysis both persist after stable cohesin deposition and facilitate Eco1/
Ctf7 cohesion establishment? In directly testing the first of these predictions, the Koshland lab
discovered that robust ATP hydrolysis indeed persists in stably chromatin-bound cohesins
[65]. The second prediction that Smc1,3 ATP hydrolysis may promote tethering in conjunction
with Eco1/Ctf7-dependent acetylation of Smc3 was borne out by identification of SMC1muta-
tions (such as smc1-D1164E) that bypass Eco1/Ctf7 function. Intriguingly, smc1-D1164E sup-
ports cohesin deposition onto DNA—but abrogates Smc3 ATP hydrolysis [63,65]. How might
this modified subunit promote cohesion in the absence of Eco1/Ctf7? Possibilities include that
this smc1 allele mimics Smc3 acetylation and/or locks Smc3 in an intermediate ATP hydrolysis
(ADP+Pi) state that promotes cohesion. The notion, however, that Smc3 ATP hydrolysis is
blocked by Eco1/Ctf7 acetylation contrasts earlier findings [79] and is further challenged by
the fact that smc1-D1164E eco1/ctf7 double-mutant strains still exhibit significant cohesion
defects, albeit well below the level of eco1/ctf7 single-mutant cohesion defects [63,65]. The
degree to which SMC ATP hydrolysis ceases after establishment thus requires further testing.

The identification of smc1-D1164Emay provide insights regarding the putative mechanism
of cohesin oligomerization. Given that smc1-D1164E at least partially rescues the cohesion
defect otherwisepresent in eco1/ctf7mutant cells, smc1-D1164Emay support not only cohesin
binding to DNA but also intermolecular associations required for oligomerization. The deter-
mining role for Smc3 acetylation or ATP hydrolysis in sister chromatid tethering through oligo-
merization thus remains an important question. Intriguingly, smc1A-L1128V (analogous to
yeast smc1-L1129V that bypasses Eco1/Ctf7 function despite loss of ATPase activity) expression
in human cells produces unresolved sister chromatids [63]—a phenotype typically produced by
defects in the prophase-specific removal of cohesins from chromosome arms. Further analyses
of ATPase mutations that appear capable of separating cohesin deposition from its nonproteoly-
tic removal may thus prove quite valuable. Moving forward, in vitro systems that more faithfully
mimic in vivo deposition (cohesin deposition that is stimulated by Scc2,4, ATP, and DNA, is
salt-resistant, and is targeted to previously identified cohesin-associatedDNA loci) and similar
physiologically relevant assays, coupled with the incredible AFMDREEM imaging system (in
which topological contributions by DNA and protein are resolvable), should provide exquisite
specificity for future analyses of both cohesin ATP cycles and cohesin structure [65,79–82].

Conclusion

In the 1997 movieMen in Black, Agent Kay (played by Tommy Lee Jones) consoles a recruit
shaken by the revelation of aliens on earth. “Fifteen hundred years ago, everybodyknew the
earth was the center of the universe. Five hundred years ago, everybodyknew the earth was flat
and fifteenminutes ago, you knew that people were alone on this planet. Imagine what you'll
know . . . tomorrow.” By analogy: fourteen years ago, everybodyknew that the DNA replication
fork passed through single huge cohesin rings previously loaded during G1 [39]. Ten years ago,
everybodyknew Smc1,3 ATP hydrolysis drove hinge dissociations that allowed for the capture
of sister chromatids within a single lumen [47], and last year, everybodyknew that cohesins
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captured DNA through Smc3 head-Mcd1 release and reclosure [62]. Given that flattened cohe-
sins individually decorate sister chromatids during S phase and that tethering likely requires
ATP and/or acetylation-dependent oligomerization, imagine what we will learn . . . tomorrow.

Acknowledgments

RVS thanks lab members (Caitlin Zuilkoski, Donglai Shen, MikeMfarej), Prof. Lynne Cassi-
meris, and “Cassbens” members for helpful discussion during the preparation of this manuscript.

References
1. Merkenschlager M, Nora EP. CTCF and Cohesin in Genome Folding and Transcriptional Gene Regu-

lation. Annu Rev Genomics Hum Genet. 2016; 17: 8.1–8.27.

2. Ghirlando R, Felsenfeld G. CTCF: making the right connections. Genes Dev. 2016; 30: 881–891. doi:

10.1101/gad.277863.116 PMID: 27083996

3. Rudan M Vietri, Hadjur S. Genetic Tailors: CTCF and Cohesin Shape the Genome During Evolution.

Trends Genet. 2015; 31: 651–660. doi: 10.1016/j.tig.2015.09.004 PMID: 26439501

4. Skibbens RV, Colquhoun JM, Green MJ, Molnar CA, Sin DN, Sullivan BJ, Tanzosh EE. Cohesinopa-

thies of a feather flock together. PLoS Genet 2013; 9: e1004036. doi: 10.1371/journal.pgen.1004036

PMID: 24367282

5. Rankin S. Complex elaboration: making sense of meiotic cohesin dynamics. FEBS J. 2015; 282:

2426–2443. doi: 10.1111/febs.13301 PMID: 25895170

6. Hirano T. Chromosome Dynamics during Mitosis. Cold Spring Harb Perspect Biol. 2015; 7: a015792.

doi: 10.1101/cshperspect.a015792 PMID: 25722466

7. Cucco F, Musio A. Genome stability: What we have learned from cohesinopathies. Am J Med Genet C

Semin Med Genet. 2016; 172: 171–178. doi: 10.1002/ajmg.c.31492 PMID: 27091086

8. Dorsett D, Merkenschlager M. Cohesin at active genes: a unifying theme for cohesin and gene expres-

sion from model organisms to humans. Curr Opin Cell Biol. 2013; 25: 327–333. doi: 10.1016/j.ceb.

2013.02.003 PMID: 23465542

9. Banerji R, Eble DM, Iovine MK, Skibbens RV. Esco2 regulates cx43 expression during skeletal regen-

eration in the zebrafish fin. Dev Dyn. 2016; 245: 7–21. doi: 10.1002/dvdy.24354 PMID: 26434741

10. Liu J, Krantz ID. Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet. 2009; 76: 303–314.

doi: 10.1111/j.1399-0004.2009.01271.x PMID: 19793304

11. Mannini L, Musio A. (2011) The dark side of cohesin: the carcinogenic point of view. Mutat Res 728:

81–87. PMID: 22106471

12. Rhodes JM, McEwan M, Horsfield JA. Gene regulation by cohesin in cancer: is the ring an unexpected

party to proliferation? Mol Cancer Res 2011; 9: 1587–1607. doi: 10.1158/1541-7786.MCR-11-0382

PMID: 21940756

13. Williams MS, Somervaille TC. Leukemogenic Activity of Cohesin Rings True. Cell Stem Cell 2015; 17:

642–644. doi: 10.1016/j.stem.2015.11.008 PMID: 26637939

14. Panigrahi AK, Pati D. Road to the crossroads of life and death: linking sister chromatid cohesion and

separation to aneuploidy, apoptosis and cancer. Crit Rev Oncol Hematol. 2009; 72: 181–193. doi: 10.

1016/j.critrevonc.2008.12.002 PMID: 19162508
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59. Brüning JG, Howard JL, McGlynn P. Accessory replicative helicases and the replication of protein-

bound DNA. J Mol Biol. 2014; 426: 3917–3928. doi: 10.1016/j.jmb.2014.10.001 PMID: 25308339

60. Peters JM, Nishiyama T. Sister chromatid cohesion. Cold Spring Harb Perspect Biol. 2012; 4:

a011130. doi: 10.1101/cshperspect.a011130 PMID: 23043155

61. Murayama Y, Uhlmann F. Chromosome segregation: how to open cohesin without cutting the ring?

EMBO J. 2013; 32: 614–616. doi: 10.1038/emboj.2013.22 PMID: 23395901

PLOS Genetics | DOI:10.1371/journal.pgen.1006337 October 27, 2016 11 / 12

http://dx.doi.org/10.1371/journal.pone.0002453
http://dx.doi.org/10.1371/journal.pone.0002453
http://www.ncbi.nlm.nih.gov/pubmed/18545699
http://dx.doi.org/10.1098/rsob.150005
http://www.ncbi.nlm.nih.gov/pubmed/25716199
http://www.ncbi.nlm.nih.gov/pubmed/11909539
http://dx.doi.org/10.1016/j.celrep.2016.01.063
http://www.ncbi.nlm.nih.gov/pubmed/26904946
http://dx.doi.org/10.1016/j.jsb.2006.01.001
http://dx.doi.org/10.1016/j.jsb.2006.01.001
http://www.ncbi.nlm.nih.gov/pubmed/16495084
http://dx.doi.org/10.1371/journal.pone.0004674
http://www.ncbi.nlm.nih.gov/pubmed/19262687
http://dx.doi.org/10.1016/j.cell.2006.08.048
http://www.ncbi.nlm.nih.gov/pubmed/17081975
http://dx.doi.org/10.1038/emboj.2013.7
http://dx.doi.org/10.1038/emboj.2013.7
http://www.ncbi.nlm.nih.gov/pubmed/23361318
http://dx.doi.org/10.1093/emboj/cdg247
http://dx.doi.org/10.1093/emboj/cdg247
http://www.ncbi.nlm.nih.gov/pubmed/12773391
http://dx.doi.org/10.1083/jcb.200801157
http://www.ncbi.nlm.nih.gov/pubmed/19075111
http://dx.doi.org/10.1016/j.molcel.2004.08.030
http://www.ncbi.nlm.nih.gov/pubmed/15383284
http://dx.doi.org/10.1074/jbc.M115.670794
http://dx.doi.org/10.1074/jbc.M115.670794
http://www.ncbi.nlm.nih.gov/pubmed/26491021
http://dx.doi.org/10.1098/rstb.2004.1609
http://www.ncbi.nlm.nih.gov/pubmed/15897179
http://dx.doi.org/10.1091/mbc.E15-06-0331
http://www.ncbi.nlm.nih.gov/pubmed/26378250
http://dx.doi.org/10.1371/journal.pgen.1002856
http://www.ncbi.nlm.nih.gov/pubmed/22912589
http://dx.doi.org/10.1091/mbc.E14-04-0929
http://www.ncbi.nlm.nih.gov/pubmed/24966169
http://www.ncbi.nlm.nih.gov/pubmed/11076851
http://dx.doi.org/10.1371/journal.pone.0075435
http://www.ncbi.nlm.nih.gov/pubmed/24086532
http://dx.doi.org/10.1016/j.jmb.2014.10.001
http://www.ncbi.nlm.nih.gov/pubmed/25308339
http://dx.doi.org/10.1101/cshperspect.a011130
http://www.ncbi.nlm.nih.gov/pubmed/23043155
http://dx.doi.org/10.1038/emboj.2013.22
http://www.ncbi.nlm.nih.gov/pubmed/23395901


62. Murayama Y, Uhlmann F. DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate

Mechanism. Cell. 2015; 163: 1628–1640. doi: 10.1016/j.cell.2015.11.030 PMID: 26687354

63. Elbatsh AM, Haarhuis JH, Petela N, Chapard C, Fish A, Celie PH, et al. Cohesin Releases DNA

through Asymmetric ATPase-Driven Ring Opening. Mol Cell. 2016; 61: 575–588. doi: 10.1016/j.

molcel.2016.01.025 PMID: 26895426

64. Hopfner KP, Tainer JA. Rad50/SMC proteins and ABC transporters: unifying concepts from high-reso-

lution structures. Curr Opin Struct Biol. 2003; 13: 249–255. PMID: 12727520
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